Feynman’s engaging title for his 1959 lecture, “There’s plenty of room at the bottom” is as valid now as it was when he gave it. He presented a vision of a scientific world beyond a few billionths of a meter that was at that time far away of any technological feasibilities and applications. However, it opened the minds towards the creation of new scientific disciplines that are now called nanoscience and nanotechnology. The “nano” prefix not only refers to the extremely small but also stands for the integration of traditional physics, chemistry, biology and engineering disciplines to form an interdisciplinary science which has far-reaching consequences for science, the environment and society.
Scientific research is about gaining knowledge of a system, which technology can then use for developing practical applications. In the nanoscale dimension, there are unrivalled possibilities for the development of functional objects and techniques in areas ranging from nanoelectronics, nanoscale sensors and novel data storage devices to novel materials and coatings, cosmetics, fuel cells, catalysts, to pharmaceuticals and medical implants. The properties and phenomena that these objects exhibit occur precisely because they are extremely small, existing in an environment where the laws of physics operate in unfamiliar ways. Today, the full ramifications of many experimental achievements are not always apparent and how many of these will result in applications in the future is unclear – the potential is perhaps only limited by our own imagination.