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ABSTRACT 
 

 
 
 
 
 
  
 
 
INTRODUCTION 
Until recently, quantum mechanics calculations 

were thought of as CPU-intensive and only 

applicable to perhaps tens of moderately sized 

(typically under 100 atoms) molecules within a 

reasonable cost in computer resources. The often 

described phenomenal increase in the performance 

of computer hardware has, however, been 

accompanied by a similar increase in the efficiency 

of quantum mechanics software, so that, for 

instance the geometry optimization of ascorbic acid 

with MNDO, [1] which took about 40 minutes 

CPU-time on a Convex C1 superminicomputer at 

the end of 1983, now takes only 5 seconds on an 

average PC under Windows NT. This, and the fact 

that most cheminformatics applications are 

inherently massively parallel through the trivial 

parallelization of calculating one molecule per 

processor, make quantum mechanical techniques 

applicable to tens of thousands of compounds 

within a single day, as we were able to demonstrate 

a few years ago. [2] This article is intended to 

describe the use and applications of semiempirical 

molecular orbital techniques (exclusively AM1 [3] 

and PM3 [4]) to complete databases and for the 

prediction of physical properties. Such techniques 

are equally well suited to the estimation of 

biological activity, but this will be the subject of a 

second article. [5] This article will concentrate on 

the advantages of using quantum mechanical, rather 

than classical mechanical, methods and on the 

derivation of robust, reliable and accurate 

quantitative structure-property relationships 

(QSPRs) with individual error estimation for each. 

 
WHY QUANTUM MECHANICS? 
Classical mechanical (force field) techniques 

employ a simple mechanical model of the 

molecular system. It is therefore not surprising that 

they do not do as good a job of describing 

properties that can be derived from the electron 

density of the molecule such as the molecular 

The use of semiempirical MO-theory for complete databases is demonstrated using the
example of the Maybridge Chemical Company Database (53,000 compounds). 3D-
Descriptors derived from the quantum mechanical wavefunction are used to set up QSPR-
models using neural nets as the interpolation technique. Techniques for cross-validation of 
such models and for calculating individual error estimates for each compound are
discussed. The examples are illustrated for properties such as logP, the vapor pressure,
aqueous solubility and boiling points. The multi-net method of estimating individual error 
bars appears to give a good approximation of error limits of ± one standard deviation for
several datasets. 
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electrostatics, polarizability, ionization potential 

etc. as quantum mechanical techniques that treat the 

electrons explicitly. This is illustrated be the 

molecular electrostatic potentials shown for 

guanine in Figure 1. Figures 1(a) and 1(b) show the 

solvent-excluded surface [6] of guanine color coded 

according to the electrostatic potential at the 

surface. The color scale is the same for the two 

figures. Figure 1(a), however, shows the quantum 

mechanically calculated molecular electrostatic 

potential (MEP), whereas Figure 1(b) shows the 

MEP obtained from an atomic multipole model in 

which the partial atomic charges were fitted to the 

quantum mechanical MEP using the VESPA 

technique. [7] Thus, Figure 1(b) represents almost 

the best approximation to the quantum mechanical 

results obtainable from an atomic monopole model 

(not quite the best as VESPA fits to charges outside 

the molecular surface).  

Figure 2 shows the areas of the surface in which the 

difference between the two different MEPs is 10 

kcal mol-1 or more. The surface is now color coded 

according to the difference in MEPs at the surface. 

Only the areas in which the absolute difference 

exceeds 10 kcal mol-1 are shown. Red indicates a 

positive difference and blue negative. The red 

circles indicate the nitrogen H-bond acceptor 

regions and the blue ellipse the H-bond acceptor 

region above the ring system. 

 The importance of the data illustrated by Figure 2 

lies not in the magnitudes of the deviations, 

although these are significant, but in their positions, 

The largest concentrations of deviations between 

the two types of MEP lie at the two hydrogen-bond 

acceptor site on the ring nitrogens (marked by red 

Figure 1: Color coded MEP-surface of guanine (red is positive, blue negative) calculated (left) using the NAO-PC
technique [7] from the AM1 wavefunction and (right) using VESPA-derived [6] atomic monopoles. 

Figure 2: Difference {QM-monopole} of the two MEPs
shown in Figure 1, again shown as a color-coded 
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circles) and at the H-bond acceptor site on the face 

of the ring system (marked by the blue ellipse). 

Thus, by projecting the quantum mechanical charge 

distribution onto an atomic monopole model we 

lose significant information exactly where it is 

important for intermolecular interactions. 

Thus, we can expect that quantum mechanical 

methods should describe strong (electrostatic) 

intermolecular interactions better than atomic 

monopole based force field techniques. This is, 

however, not the only advantage of quantum 

mechanical techniques. Properties such as 

polarizability, ionization potentials, electron 

affinities, multipole moments etc. are readily 

available. Descriptors based on these properties can 

be expected to play a significant role in QSPRs 

designed to predict common physical properties. 

 

frequency-dependent polarizabilities.  

 

0 10 20 30 40

Experimental Polarizability 

0

10

20

30

40

A
M

1-
C

al
cu

la
te

d 
Po

la
riz

ab
ili

ty

 

Figure 3: Calculated [11] and experimental
molecular electronic polarizabilities (Å3)
using the original variational technique [10]
with AM1. 
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THE MOLECULAR POLARIZABILITY 
Apart from the often dominant and longrange 

electrostatic interactions, weak intermolecular 

forces (dispersion) play a major role in determining 

intermolecular interactions. [8] In order to treat 

these forces, which dominate for intermolecular 

interactions between nonpolar molecules, correctly, 

we need to be able to calculate the molecular 

electronic polarizability accurately. There are 

several types of calculational technique available 

for calculating the polarizability from the molecular 

wavefunction, but most are too unwieldy to be used 

routinely for applications on complete databases. 

Among these are the finite field perturbation 

method, [9] which, however, is compute-intensive 

and requires a large, flexible basis set in order to 

give good results, and the perturbational sum-over-

states (SOS) technique. [10] The latter, however, 

requires a configuration interaction calculation in 

order to obtain the excited states and is therefore 

also very compute-intensive. The SOS-method 

does, however, have the advantage that it can give 

  

A more computationally tractable technique that we 

have used for some years is the variational method 

developed by Rivail and his coworkers. [11] This 

technique requires only some multipole integrals 

and the density matrix and can therefore be 

appended to a normal SCF-calculation much like a 

population analysis and without increasing the time 

of the calculation significantly. Figure 3 shows the 

results of such calculations with AM1 for a test set 

of organic molecules.  

The results show a systematic deviation for the 

Figure 4: Comparison of calculated and
experimental molecular electronic
polarizabilities (Å3) using the parametrized
variational technique [11] with AM1. 
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larger molecules and a significant scatter for the 

smaller ones. The standard deviations between 

calculation and experiment for MNDO, AM1 and 

PM3 are 1.94, 2.99 and 4.44 Å3, respectively.  

Thus, although the original variational method 

fulfils the computational requirements for use in a 

cheminformatics application, it is not accurate 

enough. In order to remedy this situation, we 

developed a parameterized variational technique. 

[12] 

If the multipole integrals, which are normally a 

function of the Slater exponents and ordinal 

numbers, are treated as variable parameters and the 

optimized for a set of 156 organic molecules, the 

results shown in Figure 4 are obtained for the 

independent test set of 83 organic molecules also 

shown in Figure 3. 

The standard deviations between calculation and 

experiment for MNDO, AM1 and PM3 are now 

0.78, 0.70 and 0.74 Å3, respectively. Thus, the 

parameterized variational method offers a 

computationally economical and accurate method 

for determining molecular electronic 

polarizabilities. It also offers the advantage that, 

with certain restrictions, it can be partitioned into 

atomic polarizability tensors, which, although not 

physically measurable, are particularly useful for 

additive, atom-atom dispersion models. 

 
AM1 OPTIMIZATIONS FOR A COMPLETE 

DATABASE 
The computational software must fulfill two 

conditions for a semiempirical technique such as 

AM1 or PM3 to be applied to a database of perhaps 

hundreds of thousands of compounds. It must be 

fast and it must be extremely reliable. Perhaps 

surprisingly in the light of the introduction, speed is 

not really a problem. Database applications can use 

the full power of massively parallel architectures, or 

even of large compute clusters with relatively slow 

communication. This is of course because the 

computational effort per molecule is relatively large 

and data transfers relatively small and seldom. We 

reported [1] a benchmark application of AM1 to the 

Maybridge database [13] a few years ago. The 

computational protocol necessary to process a 2D-

database like Maybridge is shown in Table 1. 

 

Table 1: Processes, software and failure rates for 
processing the Maybridge database. [1] 
 

Process Software # of 
failures 

Data cleanup SDFClean [14] 211 

2D →→→→ 3D 

Conversion 

CORINA [15] 41 

AM1 optimization VAMP [16] 68 

Generate 

descriptors 

PROPGEN [17] 0 

Apply models PROPHET [18] 0 

 
The data cleanup process is necessary because, 

even if each structure were entered perfectly, the 

structures needed for quantum mechanical 

calculations are not necessarily those entered in 

databases. Ion pairs, for instance, may be entered as 

covalently bound structures, free base plus 

counterion, or in other less standard ways. Because 

generally the counterion is not considered in 

quantum mechanical calculations, it must be 

eliminated and the correct protonation site 

determined if the free base is entered. Finally, it is 

also necessary to check that the structures entered 

in the database make chemical sense. This process 

resulted in 211 compounds from Maybridge being 

marked for manual processing, mostly because the 

exact site of protonation was not absolutely clear. 

We note here that for many applications it may be 

preferable to calculate the free base, or even both 

the base and its conjugate acid. 

The 2D to 3D conversion process has been 

discussed in detail before [19] and will therefore 
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not be treated here. We used CORINA [15] for the 

Maybridge run, which resulted in only 41 failures. 

The optimization of the molecular geometries with 

AM1 or PM3 is the most time-consuming step in 

the entire process. This was performed in parallel 

(one molecule per processor) on a 128-processor 

Silicon Graphics Origin 2000. At the time of the 

run, two processors were defective, giving a total 

number of processors used of 126. The details of 

this run have been published, but the essence is that 

the molecules in the database were optimized 

within 14 hours elapsed time with only 68 failures. 

[2] We have since repeated this run several times 

on distributed moderately parallel machines and on 

heterogeneous UNIX/Windows NT clusters with 

excellent results. Using a Compaq-Alpha two-

processor server, a Hewlett-Packard four-processor 

server and two Intel-based two-processor 

Windows-NT machines, for instance, Maybridge 

can be processed in a weekend. [20] 

The descriptors necessary to calculate physical 

properties can be calculated from the complete 

electrostatic information stored in the database in a 

relatively fast step (the most time-consuming task is 

to generate the potential-derived charges using the 

VESPA-technique [20]). Finally, the descriptors 

generated, which are added to the molecular 

description in the database, are used to calculate 

properties such as logP [21], the vapor pressure at 

25° [22] or the aqueous solubility. [23] 

 
 WHAT FACTORS ARE IMPORTANT IN 

QSPR-MODELS? 
Figure 5 shows an overview of typical QSPR-

techniques. 

The yellow boxes indicate the descriptors used to 

characterize the molecule. These may be atoms or 

groups, in which case the interpolation technique 

used (colored light blue) consists of a set of 

increments. Such atom- or group-additive methods 

assume that such increments are transferable and 

are best suited for properties where this is most 

likely to be true, such as heats of formation [24] or 
13C-chemical shifts. [25] There are a large variety 

of 2D-descriptors such as, for instance, the range of 

Kier and Hall indices, [26] although there are very 

many others. These indices are remarkably 

successful in treating a large number of properties. 

They have the advantage that they treat the 

molecular conformation, if at all, implicitly, so that 

there is no requirement to locate the most stable 

conformation or even perform a Boltzmann 

averaging over a number of conformations. 3D-

descriptors, which will be used in the work 

described here, are derived from the molecule at a 

given geometry. They are often calculated from the 

electron density given by quantum mechanical 

calculations, but this must not be the case. Many 

descriptors, such as those introduced by Politzer 

and Murray, [27] describe a property such as the 

electrostatic potential at the molecular surface. 3D-

descriptors are, however, conformationally 

dependent. This is in principle an advantage, but in 

practice practically always a disadvantage. This is 

because the search for the global conformational 

minimum or a representative set of stable 

conformations is an extremely compute-intensive 

task for molecules with a large number of rotatable 

bonds. Thus, many QSPR-models based on 3D-

descriptors actually only use one conformation. 

This point will be discussed below. Table 2 shows 

Atoms  
or Groups

2D-
Descriptors

3D-
Descriptors

Incre- 
ments 

Inter-
polation 

Property

Figure 5: The typical features of QSPR models 
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the main characteristics of the different types of 

descriptors: 

Table 2: The principal characteristics of different types 

of molecular descriptors. 

Increments 2D- 
descriptors 

3D-descriptors 

 
Fast 

 
fast 

 
can be slow 

 
not universally 

applicable 

 
general 

 
General 

 
best for 
additive 

properties 
(heats of 

formation, 
chemical shifts) 

 
good for many 

properties 

 
good for 

properties 
involving 

intermolecular 
interactions 

 
no 

conformational 
information 

 
treats 

conformation 
implicitly (?) 

 

 
conformationally 

dependent 

 

The most traditional interpolation technique is a 

regression analysis in some form. Alternatives 

include nearest neighbor techniques, in which the 

property in question is estimated from those of the 

most similar known molecules, and artificial neural 

nets. When used carefully, the latter are extremely 

powerful but, like all interpolation techniques, they 

are open to misuse and can simulate a far better 

performance than they can actually deliver. This 

leads to a set of requirements for the interpolation 

used in a QSPR model: 

The model should be well validated. This is 

typically done by some sort of cross-validation 

procedure in which the predictive ability of the 

technique, rather than its ability to reproduce 

known results, is assessed. 

The second requirement is that the technique should 

be as robust as possible. This requirement is often 

translated as meaning that the model should give a 

small standard deviation from experimental values 

for a wide variety of compounds. I suggest, 

however, that the largest observed error is the most 

indicative variable for a the robustness of a QSPR-

model. The largest likely error is a quantity that 

defines the reliability of the model for many 

experimentalists.  

Leading from the requirement for robustness is the 

further desirable feature that the QSPR-model 

should be able to assess the likely reliability of its 

prediction for each individual compound. Clearly, 

the properties of s compound that is similar to many 

in the training set will be predicted more reliability 

than for one that lies outside its range. The ideal 

model should not only give its predicted value, but 

also its estimated error limits.  

 
QUANTUM MECHANICAL/NEURAL NET 

QSPR-MODELS 
We have in recent years developed a series of 

QSPR-models based on 3D-descriptors derived 

from semiempirical MO-calculations and using 

simple feedforward neural nets with one hidden 

layer as the extrapolation technique. The general 

scheme of such techniques is shown schematically 

in Figure 6. 

However, such simple models do not usually satisfy 

the general conditions for a good QSPR-model 

given above. We must therefore address the 

questions of cross-validation and individual error 

estimates. 

Figure 6: Schematic view of a typical QM/NN-
QSPR-model. 

VAMP

(AM1/PM3)
Physical

property

Back-propagation
neural net in
recall mode

DATA



94 
                                  

                                                        Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

http://www.beilstein-institut.de/bozen2000/proceedings/clark/clark.pdf                   

We [22] have approached cross-validation by 

dividing the dataset into about 10 equal, random 

portions and training 10 separate nets, each using 

one of the random portions as a test set. This results 

in 10 different nets, all of which use the same 

descriptors but which all have different test and 

training sets. The mean of the results of the 10 nets 

is used as the predicted value for the model as a 

whole and the results of the nets for which the 

compound in question was in the test set are used 

for cross-validation. In this way, cross-validated 

results are obtained for each compound in the 

dataset for a neural net in which it was a part of the 

test set.  

The descriptors used for the QM/NN-models are 

often those introduced by Politzer and Murray for 

density functional calculations using the isodensity 

molecular surface. [27] We use semiempirical MO-

theory with the NAO-PC model [28] for the 

molecular electrostatic potential at the solvent-

excluded surface [6] of the molecule. Briefly, 

Politzer and Murray descriptors describe the 

statistics of the electrostatic potential distribution at 

the surface of the molecule. Figure 7 shows some 

illustrative examples. Methane is essentially 

nonpolar with very little variation of the 

electrostatic potential. This leads to a very low 

variance (5.4). Trimethylamine exhibits an area of 

negative potential due to the lone pair. This results 

in a higher variance (446.6) but, because there is no 

equivalent positive area, a very low balance 

parameter (0.009). The far more polar bis-

(trifluoromethyl)phosphinic acid, with both positive 

and negative areas on the electrostatic potential 

surface, has an even higher total variance (651.0) 

and also a high balance parameter (0.246). Such 

descriptors were designed to describe the 

intermolecular electrostatic interactions. They have 

been used in all our QSPR models that estimate 

physical properties that depend on intermolecular 

forces. Table 3 shows the parameters used for our 

published logP model. [21]  

These descriptors, of which the sums of the ESP-

derived charges probably function as extended 

atom-counts, can all be linked to logP conceptually.  

It is noteworthy that the molecular polarizability 

and the molecular volume, parameters that are 

generally very strongly correlated, are both 

necessary in order to generate a reliable model. 

Figure 8 shows the results obtained using the cross-

Figure 7: Molecular electrostatic potential surfaces for (from left to right) methane (total variance =5.4, balance 
parameter = 0.144), trimethylamine (total variance = 446.6, balance parameter = 0.009) and bis-
(trifluoromethyl)phosphinic acid (total variance = 651.0, balance parameter = 0.246) 
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validation technique described above. 

Table 3: Descriptors used for logP. 

[21]

The above model appears to be robust as the cross-

validation results are comparable to those of the 

mean of the ten nets. It does not yet, however, give 

error estimates for individual compounds. 

In order to be able to assess individual errors, we 

[22] calculated the standard deviations of the 10 net 

predictions for each compound. In principle, the 

larger the disagreement among the 10 nets, the less 

reliable should be the predicted value. If now the 

absolute difference between the calculated (mean 

model) and experimental value for each compound 

is divided by the standard deviation of the 10 net 

predictions for that compound, we obtain the 

histogram shown in Figure 9.  

120

140

160

Descriptor Definition 

αααα Molecular 
polarizability 

µµµµ Dipole moment 

A Molecular surface area (SES) 

V Molecular volume 

Nsum Sum of ESP-derived charges on N-
atoms 

Osum Sum of ESP-derived charges on O-
atoms 

Psum Sum of ESP-derived charges on P-
atoms 

Ssum Sum of ESP-derived charges on S-
atoms 

Xsum Sum of ESP-derived charges on 
halogens 

Vmax Maximum MEP at the SES 

Vmin Minimum MEP at the SES 

+ Mean positive MEP at the SES 
M
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 Table 4 gives the performance of the mean model 

and the cross-validation. 
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 Table 4: Analysis of the mean model and the cross-

validation results for the logP model. 

M- Mean negative MEP at the SES 

σσσσ2
tot Total variance of the MEP 

νννν Politzer/Murray balance parameter 

G Globularity [29] 

Parameter Mean 
model 

Cross-
validation 

Std. dev 
 

0.47 0.56 

Max. error 1.21 2.15 

r2 0.91 0.87 

slope 1.01 0.97 
intersect 0.01 0.06 

Figure 8: Mean and cross-validated results
for the logP model. [21] 

Figure 9: Histogram of the experimental
errors in units of the standard deviations of
the predictions of the 10 nets for the logP
model. [21, 22] 
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The mean absolute value of the deviation in units of 

the individual standard deviation for each 

compound is 3.58. We therefore suggest that an 

intuitively reasonable error estimate for each 

compound is simply the product of the standard 

deviation of the net predictions times this mean 

deviation for the training dataset. [22] If we 

calculate the error bars in this way for the logP 

model, we obtain the data shown in Figure 10. 
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Table 5: Performance of three QM/NN-QSPR models. 

 Aqueous 

solubilty 

Vapor 

pressure 

Boiling 

point 

Reference 
 

[23] [22] [31] 

Units Log 
(solubility) 

Log 
(vapor 

pressure) 
 

°C 

Number of 
compounds 
 

559 551 6,000 

Std. dev.  0.51 0.29 16.5 

mean 
unsigned 
error  

0.40 0.22 11.8 

maximum 
error  

1.67 1.00 -119 

r2 0.90 0.94 0.96 

slope  1.03 1.01 1.01 

intersect 0.08 -0.01 -4.6 

mean ∆∆∆∆  2.11 2.98 2.15 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
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This results in 408 compounds (37%) with errors 

outside the error bars, which corresponds fairly 

closely to an error estimate of ± one standard 

deviation. Two questions remain. Is this behavior 

general for all models and how appropriate are the 

error bars for completely unseen data? 

In order to answer the latter question, we 

investigated the dataset of nucleotides published 

bay ACD-labs. [30] These data are not only outside 

our dataset, but also apply to a class of models 

explicitly excluded from our data because of the 

ambiguity of the exact form of the compounds in 

different media. The results obtained are shown in 

Figure 11.  

compounds 
outside the 
error bar 

201  

(35%) 

199  

(36%) 

2244 

(37%) 
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In this case only 8 compounds (20%) are outside 

the error bars. This, however, is an anomalous 

result probably caused by the very low diversity of 

the dataset, as will be seen in the following 

Figure 10: Performance of the logP model
with error bars. [21, 22]

Figure 11: LogP results obtained for the
nucleotide dataset. [22, 30] 
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examples. Table 5 shows the statistics of the results 

obtained for three further models, aqueous 

solubility [23], vapor pressure at 25° [22] and 

boiling points at atmospheric pressure. [31] In all 

cases, the error estimates given by the multi-net 

technique described above are close to those 

expected from error bars of ± one standard 

deviation, confirming the hypothesis that the multi-

net technique as described gives reliable error 

estimates. 

Thus, the purely empirical technique of error 

estimation appears to give reliable results for a 

variety of QSPR-models and can help to point to 

compounds for which the neural nets are attempting 

to extrapolate outside the range of their training 

sets. 

 
THE EFFECT OF CONFORMATIONAL 
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The above models used only one molecular 

conformation per molecule – that obtained from the 

Corina-calculated structure after AM1-optimization 

with VAMP. In principle, models based on 3D-

descriptors such as these should be able to describe 

conformational effects on the property. However, 

the available data, most of which is for flexible 

compounds, does not provide us with the necessary 

experimental resolution to be able to produce a 

conformationally dependent model. We thus rely on 

the standard computational protocol to provide us 

with reasonable conformations. How does this 

affect the results, however? In order to investigate 

this effect, we [31] calculated all the minimum 

energy conformations of bis-(2-aminoethyl)amine 

using the systematic torsional search facility in 

VAMP. The boiling point model was then applied 

to each of these conformations, some of which, for 

instance, contain internal hydrogen-bonds. The 

results are shown in Figure 12.  

In general, the fluctuations in the calculated boiling 

point are of the same order as the error estimate. 

The Boltzmann-averaged calculated boiling point is 

444�36°, compared with an experimental value of 

480°. We therefore feel justified in using the 

present single conformation approach. 

 
SUMMARY AND CONCLUSIONS 
The techniques described here have demonstrated 

the applicability of quantum mechanical techniques 

to cheminformatics. Surprisingly for some, the 

CPU-requirements are not the major disadvantage 

of such techniques, but rather the lack of reliable 

and consistent experimental data and, to some 

extent, the limitations of current semiempirical 

methods. For some properties such as aqueous 

solubility, the published experimental data is too 

sparse and too noisy to produce a first class QSPR-

model. In any case, the available data do not 

usually allow us to produce a conformationally-

dependent model, although normal boiling points 

may be an exception to this rule. Modern 

techniques allow us to store essentially the entire 

electrostatic and polarizability information about a 

molecule as well as a host of other quantum 

mechanically derived parameters, so that an 

Figure 12: Calculated boiling points for
different conformations of bis-(2-
aminoethyl)amine plotted against the heat of
formation of the individual conformers. 
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amazingly complete description of the molecules is 

now available form databases of this type.  

Just as the work reported here was impossible at the 

time of the first Beilstein Workshop (1988), so will 

the techniques described here be superseded in ten 

years time? A prime requirement is a semiempirical 

MO-method that does not suffer the weaknesses of 

the current techniques for heavy atoms, hydrogen 

bonds, branching errors and weak interactions. We 

are currently developing such a technique, which 

should then provide an even better description of 

the molecules. However, the “magic limit” of about 

�0.5 log units mean error for QSPR-models of 

physical properties is only likely to be lifted when 

large (103-104) numbers of consistent and accurate 

datapoints become available.  
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