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ABSTRACT 
 

 
 
 
 
 
  
 
 
 

INTRODUCTION 
Enormous numbers of compounds are now 

available for screening. Large companies will have 

over five hundred thousand compounds in 

inventory; over one million compounds are 

available commercially; library synthesis offers 

many millions of possible compounds. It is not 

feasible to screen all available compounds in all 

screens. Indeed, with the ongoing genetics efforts 

there will be an explosion of drug targets over the 

next several years, increasing the number of 

available screens.  

There is a need to be able to examine screening data 

and make recommendations on how to proceed. 

Which compounds should be screened next? Which 

compounds acquired for screening? When to stop 

screening and move to lead optimization? For lead 

compounds, what are the important features? 

Statistical analysis of large screening sets can help 

with all of these questions. In this paper we 

describe the use of recursive partitioning for the 

analysis of large chemistry data sets. 

 
METHODS 
We use rather simple compound descriptors. See 

Figure 1 for examples of atom pairs, [1] atom 

triples, and topological torsions. [2] For 

pharmacophore identification we use standard 

pharmacophore features. [3]  

Recursively splitting a data set into homogeneous 

subsets was first proposed by Morgan, and 

Sonquest. [4] Statistical methods for univariate 

recursive partitioning are described by Hawkins and 

Kass, [5] Hawkins et al. [6] and Rusinko et al. [7] 

Basically, all potential variables are examined and 

the single variable that will best split the entire data 

set into two daughter data sets is selected and the 

split made; those compounds with the feature go to 

the right daughter node and those without the 

feature go to the left. See Figure 2.  

Very large screening data sets are becoming available; hundreds of thousands of compounds are screened
against panels of biological assays. There is a need to make sense out of the data; screeners need to know 
which compounds to screen next and medicinal chemists need to know which series of compounds are
active and what features are associated with activity. We use the statistical technique recursive
partitioning and simple molecular descriptors, atom pairs and topological torsions, to analyze these data
sets based upon the 2D representation of the compounds. We use more general features and a special 3D
representation of the compounds for pharmacophore identification. The benefit of this work is that we 
can rapidly evaluate screening data and make sound recommendations for additional screening work or
how to proceed with lead optimization. 

mailto:ssy0487@glaxowellcome.com
mailto:genetree@bellsouth.net


                                   
 

Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
                                                                                                                                                     
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 
 

___

 
 

ht

79

   n = 1650 
ave = 0.34 
sd = 0.81 

   

        

        

n = 1614 
ave = 0.29 
sd = 0.73 

TT: NN-CC 
RP = 2.03E-70 

AP = 1.30E-66 

n = 36 
ave = 2.60 
sd = 0.9 

E

w

re

w

[8

R
R
R

m

data set, and is thus a method for deconvoluting 

mixtures. [7] Figure 3 gives a skeleton of the 

recursive partitioning tree. 
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Figure 1. Atom pair, atom triple and topological torsion molecular descriptors. 
Figure 2: The data set is split using a t-test. 
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ach daughter node is split in turn. Splitting stops 

hen there are no statistically significant splits 

maining. For multivariate recursive partitioning 

e replace the Student t-test with the Hotelling T2. 

] 

ESULTS 
ESULTS 
ecursive partitioning is capable of identifying    

ultiple chemical classes of compounds from a 

 

Also given are representative compounds from two 

of the terminal nodes. These compounds act 

through different mechanisms to block the MAO 

enzyme, see references in Rusinko et al. [7] 

A data set of 20989 compounds with 4 tumor 

responses was obtained from the NCI website. 

 

Figure 3: Tree and active compound classes identified.
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Multivariate recursive partitioning was run. Figure 

4 gives a skeleton tree with blowups of two of the 

terminal nodes. Terminal node N0101 has a 

relatively high incidence of the first and last tumor 

types, Lung and Melanoma, and a relatively low 

incidence of the second and third tumor types, 

Colon and Breast. Terminal node N001 has a high 

incidence of the first and third tumor types. The bits 

in the node names note the absence, 0, or presence, 

1, of chemical features characteristic of compounds 

in the terminal nodes. 

An internal data set of 1444 compounds with IC50 

values for the kinase CDK2 was analyzed using 

typical pharmacophoric features, H-bond donor, H-

bond acceptor, etc. [3] Multiple conformations were 

computed and distance between features were 

binned. After each split, constrained conformations 

were computed. A total of about 1.4M 

conformations were computed and the analysis took 

about 14 hr. CPU time. The resulting recursive 

partitioning tree is given in Figure 5. The resulting 

3D pharmacophore was comparable to crystal 

structure results, Figure 6.  

 

Figure 4: Multivariate recursive partitioning tree, NCI 
data. 

Figure 5: 3D recursive partitioning tree for CDK2 data set. 
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CDK2-purvalanol B interactions determined by 
X-ray (Science 1998, 281, 533) 

Key interaction features of CDK2 inhibitors  
determined by 3DSCAM. 

Figure 6: Node N111 in CDK2 Tree 

 
DISCUSSION 
The key problem to be overcome in the analysis of 

HTS data sets is that there are likely to be multiple, 

biological mechanisms. Some molecules may act 

through one mechanism and others by another. 

Some might bind in one orientation, others in a 

different orientation or even at a different location. 

In the case of the Abbott MAO data set, two 

mechanisms are known and compounds following 

each mechanism are found by recursive 

partitioning. For a large HTS data set there are 

likely to be multiple mechanisms and even for a 

single binding pocket, different compounds might 

bind in different orientations. Most statistical 

methods assume that there is one underlying model 

of a single process. If there are two processes, e.g. 

regular binding site and alosteric binding site, then 

the features important for one process are very 

unlikely to be important for the other. Most 

statistical methods, e.g. linear regression, will 

average the effect for each feature over the two 

processes. Results are likely to be bad and could be 

entirely misleading. Recursive partitioning is a 

simple statistical method that can deal with multiple 

mechanisms. A feature is identified and the data 

split based upon this feature. If the feature is 

important for a specific mechanism, then 

compounds with that feature (and binding by that 

mechanism) are separated out from the main body 

of the data. Following this set of compounds, the 

analysis is limited to just these compounds; other 

compounds in the data set have no affect on the 

subsequent analysis. In this manner, multiple 

mechanisms can be identified. 

A second important problem with HTS data is that 

assay results for individual compounds are often 

only crudely determined. Speed and cost are 

important aspects of HTS. The main goal is to 

rapidly eliminate the vast majority of compounds 
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from further consideration. Recursive partitioning 

does not depend upon a single assay value. 

Recursive partitioning is driven by averages of 

compounds with a specific feature and averages are 

much more stable than single assay values. The 

node average is the average of all the compounds 

that have the features that lead compounds into that 

node. Because the recursive partitioning process is 

driven by averages, the derived structure-activity 

rules can have great statistical validity; p-values 

less than 10-100 are common even if the measured 

effects, increases in binding of less that five 

percent, are small.  

A great deal of effort has been expended 

implementing these algorithms to make these codes 

fast. Univariate recursive partitioning runs in 

seconds for modest data sets, twenty five thousand 

compounds and ten thousand descriptors. 

Multivariate recursive partitioning is also fast. This 

speed has proven to be very useful. Obviously, time 

is money so completing an analysis quickly can 

help speed a drug to market. Just as important is 

that the speed can be used to explore alternative 

analyses. Medicinal chemists and biologists can 

interact with the data in real time increasing the 

likelihood that alternatives are considered and good 

decisions are made. The statistical methods are 

rigorous, e.g. p-values are adjusted for multiple 

testing, [9] and help keep the exploratory analysis 

soundly based. 

Atom pairs and topological torsions could be 

criticized as too simple to be of use for structure 

activity determination. It is clear that binding into a 

protein is a three dimensional process; optical 

isomers often have very different effects. 

Knowledge of the binding conformation would 

seem to be essential for good SAR determination. It 

is clear both theoretically and empirically that these 

descriptors do capture some structural information. 

Our empirical results demonstrate that these simple 

descriptors, coupled with recursive partitioning, are 

effective in building simple, but useful, structure-

activity models. 

Building three dimensional pharmacophore models 

from large data sets is a challenge. We report here 

on modestly sized data sets, less than 2,000 

compounds, where IC50 data is available. 

Computational speed for 3D recursive partitioning 

is good relative to commercial codes, but it would 

be helpful to increase speed. We are working on 

methods to increase speed with the goal of real-time 

analysis. In theory, 3D pharmacophore models 

should be better than 2D methods, but the 

superiority of 3D over 2D is largely 

undemonstrated. We plan benchmarking studies to 

address this question.  
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