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ABSTRACT 

INTRODUCTION 

Production of Data 
 
The typical scenario of data generation starts from a 

device or automaton producing data (production), 

which will be recorded using some representation 

characteristic for the data and, of course, 

characteristic for the production itself. Based on 

this representation, data will be processed to extract 

the related information. In addition, the data may be 

transferred into a repository for later use. 

Whenever the original production is deterministic, a 

faithful model of the original data production can 

be found, at least in principle. In such cases there is 

a unique data scheme and, furthermore, a well-

defined analytical data representation. Usually, 

such models are given by a system of differential 

equations, the solutions of which define the data 

scheme. The way in which these solutions are 

determined also defines options of data 

representation. Extraction of information is then 

straightforward (Figure 1). 

The advantage of the correspondence between 

original production and model production is that 

data scheme and data representation of the model 

Support of industrial research and development activities by computing and information technologies
today is coupled to huge amounts of data. Therefore, data management is a very crucial aspect of
successful application of information technologies. Various strategies are used to handle the situation, each
of which has its merits depending on the type of data, the context, and the usage.  
Apart from the very straightforward approach to distribute data on appropriate storage media of sufficient
volume, there are three different ‘philosophies’ of data compression.  

1. Non-lossy data compression 
2. Lossy data compression 
3. Model-based data compression 

Types 1 and 2 are probably the most widely used because they do not necessarily introduce a bias into the
compressed data. There are a number of methods known today that are fully reversible, or at least
reversible to a large extent.  
This is different for model-based data compression. The idea is useful for data being produced by
dynamic, deterministic systems. Important is the existence of a model with well-defined data scheme and
data structure. These model features can be used to condense the corresponding original data. Two
examples from industrial research are presented.  
First example is the representation of computer simulations of molecular ensembles by correlation
functions. The second example is the representation of microbiological studies on pathogenicity by kinetic
constants. In both cases, the underlying model together with methods to generate compressed data
representations allows efficient interpretation of simulations or experiments, respectively.  
High levels of data condensation provide a variety of opportunities to link results from research and
development to auxiliary information from many different sources. Thus, powerful infrastructures for
decision support can be created. 
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can be used to generate a condensed representation 

of the original data. The information behind model 

data can usually be represented by few parameters.  

The way in which this works will be shown by two 

examples. The first example is the computer 

simulation of molecular structures to analyze the 

stability of biomolecular complexes. In the second 

example, it will be shown how microbiological 

experiments with pathogenic bacteria can be 

analyzed in a very efficient way. 

 

Representation and Condensation of 

Data 
Extracting and condensing information from data 

means creating a specific representation of the 

information. Basically, there are two different 

approaches to representing information. On the one 

hand, information can be mapped using predefined 

descriptor sets, thus creating specific profiles. On 

the other hand, information can be mapped in terms 

of relationships of the given object to known 

objects, which results, at least, in a delimiting view 

of the information. Genealogic aspects can be taken 

into account quite easily on a class and instance 

basis.  

Both approaches offer several ways to condense 

information. Descriptor sets and profiles, for 

example can be handled using statistical methods 

such as clustering and classification, which also 

suggest strategies of visualization familiar from 

statistics and data mining.  

Representing information by specifying 

relationships is first of all a simple and direct way 

of classifying objects based on similarity. In 

addition, this concept directly leads into the world 

of semantic networks. 

 
AN EXAMPLE FROM MOLECULAR 

MODELING 
Molecular modeling can be very useful to assess 

questions regarding, very generally speaking, 

stability and affinity of molecular systems. A very 

powerful, even though ‘expensive’ tool is the 

simulation of the dynamics of molecular systems. 

The underlying paradigm is based on perturbation 

theory. Simulations can be considered as computer 

experiments that allow the study of the response of 

a given system (molecular model) to some defined 

perturbation. The perturbation applied most 

frequently is just the kinetic energy of the N 

particles associated with a given temperature T 

according to [1] 

E m NkTkin i i
i

N
= ⋅ =�1

2
2 3

2
�

ν  (1) 

Such simulations show the time evolution of the 

given system under the thermodynamic conditions 

specified and allow us to judge the stability of the 

given structural alignment, constitution, or 

conformation relative to some reference state. For 

Figure 1: Data production and representation 
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this reason, simulation of molecular dynamics is a 

quite popular way of performing conformation-

searches, especially for large molecular systems. By 

extending the analysis to the various aspects of 

entropy, affinity can also be estimated, at least on a 

molecular level. 

  

A Model for Dynamical Affinity of 

Molecular Systems 
In practice, molecular dynamics simulations are 

performed by discretized integration of the 

respective equations of motion. [2] Since the 

characteristic frequencies of all relevant degrees of 

freedom must be resolved by the integration step-

size, simulations of molecular dynamics are usually 

very lengthy and produce huge data sets 

(trajectories) if applied to large systems.  

There is, however, a way to avoid very long 

simulations. The idea is based on the concept of 

collective modes of oscillation, which exist in 

stable molecular alignments. Indeed, the existence 

of such collective modes can be taken as a criterion 

for stability, because they make the difference 

between an unstable scattering state and a stable 

bound state of a molecular aggregate. According to 

quantum mechanics, their respective 

Eigenfrequency can identify such modes. Using a 

so-called Drude model, [3] which was originally 

developed for the electronic dispersion interaction 

of atoms and molecules by London, [4] this can be 

shown quite easily. Interacting molecules are 

represented by pairs of coupled harmonic 

oscillators (Figure 2). For simplicity, we take a pair 

of one-dimensional, coupled, identical harmonic 

oscillators positioned on the z-axis. The 

corresponding Hamiltonian is given by 

[ ] [ ]H T V m z z K z z a z zi j i j i j= + = + + + + ⋅ ⋅1
2

2 2 1
4

2 2 2� �
 

(2) 

 where m is the mass of each oscillator, K the force 

constant and a the coupling constant, which is a 

function of the distance between the equilibrium 

positions of the oscillators. After separation of 

variables one has 

( ) ( )( ) ( )
( )( )

( ) ( )
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K a z z
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.
 

(3) 

The first term represents the coherent motion of the 

center of gravity of the pair of oscillators and the 

second term the relative ‘breathing’ motion. Since 

both oscillators have a ground state frequency ω0, 

coupling results in a symmetric split of energy 

levels as shown in the following scheme (for a > 0) 

 

ω ω+ = ⋅ +0 1 a  
 

ω 0 = K m  
 

ω ω− = ⋅ −0 1 a  

 
(for a < 0 in reversed order) 

The energy of an oscillator is ε ω= ⋅
1
2
� , so that 

the splitting is given by  

 

 
Figure 2: Coupled oscillators 
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For small |a| one has 

ε ε ω− ≈ − ⋅0 0
2

� a    (5) 

 which is a typical second order, resonance-like 

effect.  

Coming back to classical mechanics, one can 

calculate the sum over states (|a|<<ω0) of the 

system 

Q kT kT
kT

a
= ⋅ =

�

�
�

�

�
�

−+ −� �

�

ω ω
ω0

2

21
      (6) 

 

The Helmholtz free energy is 

( )A kT Q A kT a= − ⋅ = + −ln ln0
2

2
1         (7) 

and since 

S dA
dT

k Q kT d Q
dT

= −�
�
�

�
�
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�
�

�
�
�

v v
ln ln ,  

and 

( )S S k a= − ⋅ −0
1
2

21ln ,  

it is clear that 

( ) ( )A A T S S T a kT ak− = − ⋅ − = ⋅ − ≈0 0 2
2 21

2
ln     (8) 

Therefore, in terms of thermodynamics, coupling of 

oscillators adds a contribution to the energy of the 

overall system, which is mainly an entropy effect. It 

should be noted that the difference of the energy 

levels is independent of the sign of the coupling 

constant, since it is proportional to a2. The energetic 

order of ω+ and ω-, however, is a function of the 

sign of the coupling constant. By analogy to the 

analysis of the (electronic) dispersion interaction by 

London, [4] this contribution to the entropy of 

molecular complexes can be called mechanical 

dispersion or, because of its stabilizing effect, 

dynamical affinity. 

 

Tracing Dynamical Affinity in 

Molecular Dynamics Simulations 
In a molecular dynamics simulation dynamical 

affinity can be traced, mapping coherent and 

breathing motion by correlation functions. 

 

 

For harmonic oscillators, one can define the 

autocorrelation functions for coherent and breathing 

motion 

(9) 
 

(10) 

Now, it can be shown that the second derivative of 

these correlation functions is -ω2 for zero 

correlation time (δ =0). This means that the whole 

simulation can be condensed to just two 

independent numbers, ω+, ω-, and perhaps ∆ω = ω+-

ω-.  

G+ and G- are determined by selecting two centers 

(atoms or groups of atoms) i and j. The only 

condition to meet, is that i and j should be 

 

: position correlation function 
g ={ 

: velocity correlation function 

i, j : centers of correlation 

δ : correlation time 
T-t0 : time of measurement (simulation time) 
i = j : autocorrelation 
i ≠ j : cross-correlation 
Gij(0) = 1 : normalization 

( ) ( ) ( )[ ]
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influenced in their dynamics by both, the coherent 

and the breathing mode. 

Since ω+ and ω- are determined from the trajectories 

of the full simulation ensemble, they are 

frequencies from the phonon spectrum of the whole 

system and not just frequencies of local molecular 

vibrations. In fact, splitting into ω+
 and ω- is a 

sensitive indication of the existence of a common, 

non-local mode of vibration for both oscillators. 

This of course shows that the interaction between 

the molecules has lead to a stable bound state and 

not an unstable scattering state. 

 

Streptavidin and Biotin 
The example given below is a complex of two 

biomolecules, the protein Streptavidin and the 

vitamin Biotin. They form a specific complex with 

the largest binding constant known between 

biomolecules in nature. Therefore, this system is 

frequently used for immobilization of biomolecules. 

Surprisingly, experimental studies with molecules 

slightly different from Biotin show significant loss 

of stability and document the high specificity of the 

Biotin/Streptavidin complex.  

For example, 2-(4’-hydroxyphenylazo)-benzoic 

acid (HABA) also binds to streptavidin, but with a 

binding constant which is 9 (!) orders of magnitude 

lower.  

The thermochemical data measured for these 

complexes are given in Table 1. [5] 

Apart from the remarkable values of the binding 

constants, it should be noted that the sign of the 

entropy contribution to the free binding energy 

changes going from Biotin to HABA. This is an 

indication of a change in the role of entropy.  

 

NN

S

O

O

O
Biotin

N

N

O

O

O

2-(4'-hydroxyphenylazo)-benzoic acid

 

[ ]
[ ][ ]K

Streptavidin Biotin
Streptavidin Biotin

Mbinding
Biotin = ≅ −:

1013 1 

[ ]
[ ][ ]K

Streptavidin HABA
Streptavidin HABA

Mbinding
HABA = ≅ −:

104 1 

From the theoretical point of view, it is of course a 

challenge to model such a system. Fortunately, 

crystal structures of both complexes have been 

published. [6] Molecular dynamics simulations 

starting from these crystal structures have been run 

using the AMBER 3.0 [7] force field in NVT 

ensembles with water and counterions at 300 K. 

The ensembles have been thermalized during 30 

psec simulations. Subsequently, another 15 psec 

were used to sample the trajectories from which 

oscillator correlation functions have been estimated. 

Table 2 summarizes the results of the simulations. 

For Biotin, four different orientations of the ligand 

in the binding pocket of Streptavidin have been 

simulated, for two HABA (Table 3). Columns 2 and 

3 show the frequencies of the coupled oscillator 

motions derived from the autocorrelation functions 

G+ and G-. For the crystal structure orientation of 

Biotin (1) the coherent motion has the lower 

frequency and the breathing motion is significantly 

faster. In the first row of Table 2 the Biotin-results 

of a simulation without water and counterions are  

Molecule ∆∆∆∆G 
kcal mol-1 

∆∆∆∆H 
kcal mol-1

T∆∆∆∆S  
(297 K) 

kcal mol-1 

Kbinding 
(M-1) 

∆∆∆∆GBiotin / 
∆∆∆∆GHABA 

T∆∆∆∆SBiotin / 
T∆∆∆∆SHABA 

Biotin -18,3 -32,0 -13,7 2,5x1013 3,5 -2,0 
HABA -5,27 1,70 6,97 104 1 1 

Table 1: Thermochemical data of Streptavidin complexes with Biotin and HABA. 
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given. The values do not differ very much from the 

results for the solvated system, which indicates the 

robustness of the method. 

The interesting result is that the entropy 

contribution from oscillator coupling found in the 

molecular dynamics simulations shows the same 

relationship between Biotin and HABA as does the 

experimentally determined quantity T⋅∆S. The 

agreement is 13% with respect to the experimental 

value, which is adequate for the force field chosen, 

the size of the simulation ensembles, and the 

simulation time.  

 

This underlines the role of oscillator coupling as 

indicator for stability of a given molecular 

alignment. At the same time it demonstrates the 

potential of data reduction that is given by this 

approach. 

In terms of model-based data compression, we have 

the following situation. The original data 

production is the molecular dynamics algorithm in 

combination with the force field model of the 

system. The trajectories are the original data. Now, 

the model production is given by the coupled 

oscillators, the corresponding data scheme by the 

oscillator correlation functions, and the data 

representation by the oscillator frequencies. The 

representation of the information, i.e. the descriptor 

of stability, is given by the level splitting, 

calculated from the frequencies. 

 
AN EXAMPLE FROM BIOMETRY 
Quite a different approach to model based data 

compression is possible in the area of kinetic 

studies of bacterial pathogenicity. Such studies are 

very important in infectious disease research. In a 

very general view, the key issue is the interaction 

between pathogens and the hosts they infect. 

System / 
binding mode 

ωωωω+ 
(GHz) 

ωωωω- 
(GHz) 

∆∆∆∆ωωωω 
(GHz) 

Type of 
coupling 

Splitting 
kcal.mol-1 

T∆∆∆∆S 
 (297 K) [6] 
kcal.mol-1 

1STP [8]/ 1[9] 
5.4 14.6 -9.1 a<0 -0.87  

1STP / 1 
2.9 12.4 -9.6 a<0 -0.91 -13.70 

1STP / 2 
6.1 0.76 5.4 a>0 0.51  

1STP / 3 
13.5 6.9 6.6 a>0 0.63  

1STP / 4 10.7 2.2 8.4 a>0 0.80  
       

1HBA [8] / 1 8.7 4.7 4.0 a>0 0.38 6.97 
1HBA / 2 8.6 13.8 -5.3 a<0 -0.50  

Table 2: Results of molecular dynamics simulations of Streptavidin complexes with Biotin and HABA. Starting from the crystal structures 
published, different orientations of the ligands have been studied. See text for further details. 
 

Experiment 
297 K 

MD Simulation
300 K 

 

η =
T ⋅ ∆SBiotin

T ⋅ ∆SHABA

 -1.97 
 

-2.27 

Ligand  

orientation 

Description System 

1 crystal structure Biotin, 
HABA 

2 upside down Biotin, 
HABA 

3 reversed Biotin 

4 upside down and 
reversed 

Biotin 

Table 3: Orientations of the ligands Biotin and HABA bound to 
Streptavidin 



58 
                                  

                                           Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
                                                                                                                                                     
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 
http://www.beilstein-institut.de/bozen2000/proceedings/wallmeier/wallmeier.pdf 

Besides the medicinal aspects of infection, 

pathogen-host interactions are the primary focus of 

target and lead compound search in the 

pharmaceutical industry. It is a complex 

phenomenon with several degrees of freedom. 

 

Dynamics of Infectious Disease 

Progression 
Progression of an infectious disease is, in a 

generalized sense, always the result of several types 

of growth processes, which are characteristic for 

different phases of disease progression. [10] If one 

wants to identify targets for anti-infective drugs, the 

early phases of disease progression are of special 

interest.  

The first phase is the invasion of the pathogen. This 

is some kind of transport phenomenon, which often 

is coupled to specific surface interactions and 

recognition steps.  

What follows is a phase of establishment that 

usually results in a growth of the pathogen 

population. In this phase chemical communication 

between pathogen and host may occur, which can 

facilitate the pathogen’s establishment significantly. 

The chemical ‘messages’ pathogens send to the 

host are called virulence factors. Typically, they 

serve to subvert normal functions of the host cells. 

Sometimes they have an immuno-suppressive 

effect. [11] 

Next is the formation or enrichment of so-called 

pathogenicity factors. Very often they are toxins 

secreted by the pathogen. But also bacterial 

enzymes, which, for example cause necrotic 

degradation of host tissue belong to this class of 

factors. 

Last but not least, the development of disease 

symptoms is related to the amount of pathogenicity 

factors formed. In all theses phases, however, there 

is some kind of host response to defend against the 

pathogen. For more complex host organisms it is an 

immune response.  

The scenario described above can be summarized in 

terms of the categories pathogenicity, virulence, 

and susceptibilty. Even though in literature 

pathogenicity and virulence are often used 

synonymously, a distinction based on genomical 

and disease progression considerations is possible. 

Pathogenicity is first of all a property of a pathogen 

that manifests in the formation of pathogenic 

factors like, for example toxins. [12] This, of 

course, depends on genotypic, as well as 

phenotypic conditioning of the pathogen. To be 

specific, what matters is type and amount of 

pathogenicity factors produced by the pathogen 

inside, or in contact with the host. The amount of 

factors formed, however, also depends on the size 

Figure 3: Phases of infectious disease progression. See text 
for details. 

Pathogen
invasion

Pathogen
multiplication

Enrichment
of toxins

Host response

Host response

Host response

Development
of symptoms Host response

Phase 1

Phase 2

Phase 3

Phase 4

Figure 4: Pathogenicity, virulence, susceptibility, genotypic, and 
phenotypic conditioning. 
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of the pathogen population inside the host, which, 

in turn, depends on genotypic and phenotypic 

conditioning of the pathogen.  

Due to host response, however, pathogen 

multiplication also depends on genotypic and 

phenotypic conditioning of the host. In principle, 

there are two degrees of freedom for the pathogen. 

These are, on the one hand its ability to produce 

pathogenicity factors, and on the other hand the size 

of population of pathogenicity factor producing 

pathogens inside the host.  

Since virulence factors are often host specific, 

many authors refer the notion virulence to the 

combined effect of pathogenicity factor formation 

and population growth.  

The third degree of freedom (see Figure 5) is the 

host’s susceptibility to infection by the pathogen. 

Here, genotypic and phenotypic conditioning of the 

host are the important features. 

Any research in the field of infectious diseases 

aimed at understanding the large variety of 

strategies pathogens have developed during 

evolution must analyze the kinetics related to the 

different phases. First of all, descriptors have to be 

identified that allow us to follow the individual 

processes by experimental measurements (see 

Table 4). 

A key problem in handling living organisms is 

reproducibility. Usually, this is taken care of by 

running replicate experiments and forming 

averages. In addition, time-resolved measurements 

are necessary to analyze the associated kinetics. To 

do so, the following model assumptions are useful. 

 

A Model for Infectious Disease 

Dynamics 
The normal way to measure pathogenicity starts 

from a set of N0 host organisms, which are infected. 

In the course of the experiment, decrease of the host 

population is measured. Typically, one obtains a 

sigmoid curve (Figure 6), which can be represented 

by the solutions of the following differential 

equation (DE). It is called the logistic, autocatalytic, 

or autokatakinetic differential equation [14] 

( ) ( )[ ]dN t
dt

k g N t N t= − ⋅ ⋅ ( )     (11) 

describing growth processes with feedback. It is the 

equation of an exponential growth, which is 

modified by the second term in the square brackets. 

This second term depends on the population N at 

time t and constitutes the feedback. It can be 

agonistic (g<0), as well as antagonistic (g>0). The 

Phase Type of process Descriptors 
Invasion - transport 

phenomenon, 
first/zeroth 
order kinetics; 

- target 
recognition, 
signal 
transduction 

invasive pathogen 
count, [13] optical 
densities of culture 
media 
specific 
interactions 

Pathogen 
multiplication 

- free pathogen 
population 
growth 

- invaded 
pathogen 
population 
growth 
(dependent on 
host response) 

pathogen count, 
[13] optical 
densities 
pathogen count, 
[13] disease 
marker 
concentration, 
antibody titer 

Toxin 
enrichment 

- secretion of 
toxins and 
other 
pathogenicity 
factors 

- pathogen 
population 
growth 

toxin 
concentration, 
antibody titer, 
disease marker 
concentration 
pathogen count 
[13] 

Development 
of symptoms 

- host 
population 
decrease 

disease marker 
concentration, 
antibody titer 

Table 4: Processes in disease progression 

Figure 5: Genetic degrees of freedom in infectious diseases

toxin
formation

pathogen population growth

host response
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general form of the solution is 

( )N t k N e
k g N e

k t

k t
( ) = ⋅ ⋅

+ ⋅ ⋅ −

⋅

⋅
0

0 1
  (12) 

With the integration constant N0, the initial size of 

the population, plus the rate constant k, and the 

feedback constant g there are three independent 

parameters. The combination of N0>0 and a 

negative value of k describes the decrease of a 

population (Figure 6). 

In contrast, vanishing N0 together with a positive 

value of k describes a population that grows into a 

saturation state. With such parameters a growing 

pathogen population can be described (Figure 7).  

Applying this equation to infection experiments, 

one has, first of all, equation (11) for the decrease 

of the host population. According to the 

considerations outlined above, it is easy to imagine 

that the kinetic constant k in fact depends on the 

growing pathogen population P(t) and is thus a 

pseudo-constant. Therefore, 

[ ]k k P t= ( )                  (13) 

The growth of the pathogen population may either 

be unrestricted (free exponential growth) 

dP t
dT

P t P(t) P e t( )
( ),= ⋅ = ⋅ ⋅κ κwhere 0 (14) 

or restricted, 

[ ]dP t
dT

P t P t

P(t)
P e
P e

t

t

( )
( ) ( ),

( )

= − ⋅ ⋅

=
⋅ ⋅

+ ⋅ −

⋅

⋅

κ λ

κ
κ λ

κ

κwhere 0

0 1

    (15) 

reaching a saturation level due to host response. As 
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Figure 8: Decrease of host population coupled to growing pathogen population.  

Figure 6: Decrease of a host population after infection. The 
time of the population’s half-life is indicated. 
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Figure 7: Increase of a pathogen population after infection.
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mentioned above, P0 is small, and κ is positive. 

The simplest form of combining the two processes 

is to set 

k P t= −η ( ),    (16) 

which, for example results in the situation shown in 

Figure 8.  

It is obvious that the effect of the growing (not 

constant) pathogen population can be seen as a 

deformation of the host population curve. The 

degree of deformation increases with η. There is, 

however, a further type of deformation of the host 

population curve. It comes from the feedback term 

and can be seen in Figures 9 and 10. This certainly 

reflects host conditioning. 

 

Practical Applications 
In experiments with time-resolved measurements, 

one usually has data reflecting the decrease of a 

host population that consists of test organisms such 

as, for example insects, mice, rats, or nematodes 

[15] (Figure 11). 

Traditionally, the simplest way to measure 

pathogenicity is to count the host population after 

some predefined time tscoring, which gives an ad hoc 

score as a percentage. 
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Figure 9: Decrease of host population coupled to growing pathogen population. A clear modulation of the host curve by the 
feed-back term can be seen 
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Figure 10: Decrease of host population coupled to growing pathogen population. Feed-back overrides the effect of the pathogen 
population 
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S
N N

Nadhoc
tscoring=

−
⋅

0

0
100%  (17) 

Unfortunately, this way of measuring pathogenicity 

depends very much on the choice of tscoring. 

Standardization is accomplished by normalization 

with the wild type of the pathogen: 

S

N N

N
N N

N

normalized

tscoring

wildtype
tscoring
wildtype

wildtype

=

−

−
⋅

0

0

0

0

100%  

(18) 

Very often, time series are run until the host 

population has reached half its original size and 

( )t t N
1

2
0

2=    (19) 

is taken as the measure of pathogenicity. This 

condenses the whole series of measurements to one 

single value. For a given host organism those 

pathogens with a low t½ are more pathogenic than 

those with a higher value. 

 

Further Developments 
In general, however, this is not sufficient to 

distinguish all possible effects that may modulate 

the interactions between a host and a pathogen. 

Coming back to the solutions of the logistic 

equation, steepness of the population curve at t½ can 

tell a lot about pathogens, as well as hosts. [15] To 

improve the analysis, one has to fit solutions of the 

logistic equation (12) to the experimental data. This 

can be done, for example using the method by 

Marquardt and Levenberg. [16] The set of 

parameters k, g, and eventually κ, λ, or even η 

allow the identification of those bacterial mutants 

that show extraordinary behavior. This allows 

scanning the genome for so-called pathogenicity 

and virulence genes. Furthermore, different 

mechanisms of infection can be distinguished.  

Together with the huge amount of genomic 

bacterial information available in the near future, 

such methods can be used to look for entirely new 

ways of fighting infectious diseases. One can, for 

example try to target genes or gene products 

involved in the very first step of an infection. This 

would not kill a pathogen, but disable its 

establishment and later on multiplication in the 

host. Such a ‘gentle’ way of infectious disease 

prevention is very likely not to trigger the 

development of resistances. Since the pathogens 

can survive ‘outside’ the host, there is only little 
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Figure 11: Time-resolved measurements of a C. elegans population infected by P. aeruginosa. 
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selective pressure.  

Based on the situation described above, strategies 

for fighting infectious diseases must be defined. 

This also defines the type of targets to be searched 

and later on has an impact on the assays used for 

identification of active substances (lead 

compounds).  

The normal strategy in target finding is to 

deactivate (knock out) genes systematically and to 

check by suitable assays with model organisms, to 

what extent pathogenicity, virulence, and, perhaps 

susceptibility are affected. Both steps are rather 

critical and need careful evaluation of the data 

generated and a very critical assessment of the 

results obtained. 

 
SUMMARY 
Whenever it is possible, model-based data 

compression serves two purposes. First of all it can 

be a great help to condense even huge data sets to 

very few numbers. Furthermore, the definition of 

the model necessary for compression is a very 

challenging step that often helps to gain deeper 

insights into the matter. It can reveal 

inconsistencies and facilitate the recognition of 

unknown phenomena. Together with the condensed 

data it offers possibilities to represent the 

information behind the data in a very efficient way.  

However, any kind of modeling is an abstraction 

and idealization. A model always has to skip part of 

the reality. This of course limits the applicability of 

model-based data compression and defines the due 

diligence that must be applied using it.  
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