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INTRODUCTION 
Nearest neighbor searching is considered first for 

one main reason: its utility for the clustering 

algorithms reviewed later. They are the building 

blocks for the most efficient implementations of 

hierarchical clustering algorithms, and they can be 

used to speed up other families of clustering 

algorithms. We will then deal with facets of visual 

or image representations of data sets.  

The best match or nearest neighbor problem is 

important in many disciplines. In statistics, k-

nearest neighbors, where k can be 1, 2, etc., is a 

method of non-parametric discriminant analysis. In 

pattern recognition, this is a widely used method for 

unsupervised classification (see [1]).  

Nearest neighbor algorithms are the building block 

of clustering algorithms based on nearest neighbor 

chains; or of effective heuristic solutions for 

combinatorial optimization algorithms such as the 

traveling salesman problem, which is a 

paradigmatic problem in many areas. In the 

We review the time and storage costs of search and c
studies in astronomy, information retrieval, visual user
describe nearest neighbor searching, an elemental for
follow. Next we review a number of families of clu
representations of data sets, from which a number of int
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database and more particularly data mining fields, 

NN searching is called similarity query, or 

similarity join. [2] 

In the next section, we begin with data structures 

where the objective is to break the O(n) barrier for 

determining the nearest neighbor (NN) of a point. A 

database record or tuple may be taken as a point in 

a space of dimensionality m, the latter being the 

associated number of fields or attributes. These 

approaches have been very successful, but they are 

restricted to low dimensional NN-searching. For 

higher dimensional data, a wide range of bounding 

approaches have been proposed, which remain O(n) 

algorithms but with a low constant of 

proportionality. 

We assume familiarity with basic notions of 

similarity and distance, the triangular inequality, 

ultrametric spaces, Jaccard and other coefficients, 

normalization and standardization. For an implicit 

treatment of data theory and data coding, see [3]. 

Useful background reading can be found in [4]. In 

lustering algorithms. We exemplify these, based on case
 interfaces, chemical databases, and other areas. First we
m of clustering, and a basis for clustering algorithms to
stering algorithms. Finally we discuss visual or image 
eresting algorithmic developments arise.  

aid Rabbit, ‘this is a search, and I've organised it -‘
‘Done what to it?’ said Pooh.

it. Which means - well, it's what you do to a Search,
when you don't all look in the same place at once.’

e, The House at Pooh Corner (1928) –M. S. Zakaria
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particular output representational models include 

discrete structures, e.g. rooted labeled trees or 

dendrograms, and spatial structures, [5] with many 

hybrids.  

 
BINNING OR BUCKETING 

In this approach to NN-searching, a preprocessing 

stage precedes the searching stage. All points are 

mapped onto indexed cellular regions of space, so 

that NNs are found in the same or in closely 

adjacent cells. Taking the plane as as example, and 

considering points (xi, yi), the maximum and 

minimum values on all coordinates are obtained 

(e.g. (xj
min , yj

min )). Consider the mapping (Fig. 1)  

 

 

 

 

where constant r is chosen in terms of the number 

of equally spaced categories into which the interval 

[xj
min, xj

max] is to be divided. This gives to xi an 

integer value between 0 and �(xij
max- xij

min)/r� for 

each attribute j. O(nm) time is required to obtain the 

transformation of all n points, and the result may be 

stored as a linked list with a pointer from each cell 

identifier to the set of points mapped onto that cell. 

NN-searching begins by finding the closest point 

among those that have been mapped onto the same 

grid cell as the target point. This gives a current NN 

point. A closer point may be mapped onto some 

other grid cell if the distance between target point 

and current NN point is greater than the distance 

between the target point and any of the boundaries 

of the cell containing it. Some further 

implementation details can be found in [6]. 

A powerful theoretical result regarding this 

approach is as follows. For uniformly distributed 

points, the NN of a point is found in O(1), or 

constant, expected time (see [7] or [8] for proof). 

Therefore this approach will work well if 
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approximate uniformity can be assumed or if the 

data can be broken down into regions of 

approximately uniformly distributed points. 

Simple Fortran code for this approach is listed, and 

discussed, in [9]. The search through adjacent cells 

requires time that increases exponentially with 

dimensionality (if it is assumed that the number of 

points assigned to each cell is approximately equal). 

As a result, this approach is suitable for low 

dimensions only. Rohlf [10] reports on work in 

dimensions 2, 3, and 4; and Murtagh [11] in the 

plane. Rohlf also mentions the use of the first 3 

principal components to approximate a set of points 

in 15-dimensional space. 

From the constant expected time NN search result, 

particular hierarchical agglomerative clustering 

methods can be shown to be of linear expected 

time, O(n). [11] The expected time complexity for 

Ward's minimum variance method is given as   O(n 

log n). Results on the hierarchical clustering of up 

to 12,000 points are discussed. 

xmin, ymin = 0,0, xmax, ymax = 50,40, r = 10 
 

 
Point (22,32) is mapped onto cell (2,3); 
point (8,13) is mapped onto cell (0,1). 
 
Figure 1: Example of simple binning in the plane. 
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The limitation on these very appealing 

computational complexity results is that they are 

only really feasible for data in the plane. Bellman's 

curse of dimensionality manifests itself here as 

always. For dimensions greater than 2 or 3 we 

proceed to the situation where a binary search tree 

can provide us with a good preprocessing of our 

data. 

 
MULTIDIMENSIONAL BINARY SEARCH OR 

KD TREE 
A binary search tree preprocesses the data to be 

searched through by two-way subdivision, and 

subdivisions continue until some prespecified 

number of data points is arrived at. See example in 

Fig. 2. We associate with each node of the decision 

tree the definition of a subdivision of the data only, 

and we associate with each terminal node a pointer 

to the stored coordinates of the points. Using the 

approximate median of projections keeps the tree 

balanced, and consequently O(log n) levels, at each 

of which O(n) processing is required. Hence the 

construction of the tree takes O(n log n) time. 

The search for a NN then proceeds by a top-down 

traversal of the tree. The target point is transmitted 

through successive levels of the tree using the 

defined separation of the two child nodes at each 

node. On arrival at a terminal node, all associated 

points are examined and a current NN selected. The 

tree is then backtracked: if the points associated 

with any node could furnish a closer point, then 

subnodes must be checked out. 

The approximately constant number of points 

associated with terminal nodes (hyper-rectangular 

cells in the space of points) should be greater than 1 

in order that some NNs may be obtained without 

requiring a search of adjacent cells (other terminal 

nodes). Friedman et al. [12] suggest a value of the 

number of points per bin between 4 and 32 based 

on empirical study. 

 

The MDBST approach only works well with small 

dimensions. To see this, consider each coordinate 

being used once and once only for the subdivision 

of points, i.e. each attribute is considered equally 

useful. Let there be p levels in the tree, i.e. 2p 

terminal nodes. Each terminal node contains 

approximately c points by construction and so c2p = 

n. Therefore p = log2n/c. As sample values, if n = 

32768; c = 32; then p = 10. That is in 10-

dimensional space, using a large number of points 

associated with terminal nodes, more than 30000 

points will need to be considered. For high 

dimensional spaces, two alternative MDBST 

specifications are as follows. 

All attributes need not be considered for splitting 

the data if it is known that some are of greater 

interest than others. Linearity present in the data 

may manifest itself via the variance of projections 

of points on the coordinates; choosing the 

coordinate with greatest variance as the 

discriminator coordinate at each node may therefore 

allow repeated use of certain attributes. This has the 

added effect that the hyper-rectangular cells into 

which the terminal nodes divide the space will be 

approximately cubic in shape. In this case, 

Friedman et al. [12] show that search time is  O(log 

n) on average for the finding of a NN. Results 

 
Figure 2: A MDBST using planar data 
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obtained for dimensionalities of between 2 and 8 

are reported in [12], and in the application of this 

approach to minimal spanning tree construction in 

Bentley and Friedman. [13] LISP code for the 

MDBST is discussed in [14]. 

The MDBST has also been proposed for very high 

dimensionality spaces, i.e. where the dimensionality 

may be greater than the number of points, as could 

be the case in a keyword-based system. Keywords 

(coordinates) are batched, and the following 

decision rule is used: if some one of a given batch 

of node-defining discriminating attributes is 

present, then take the left subtree, else take the right 

subtree. Large n, well in excess of 1400, was stated 

as necessary for good results. [15, 16] General 

guidelines for the attributes that define the direction 

of search at each level are that they be related, and 

the number chosen should keep the tree balanced. 

On intuitive grounds, our opinion is that this 

approach will work well if the clusters of attributes, 

defining the tree nodes, are mutually well 

separated. 

An MDBST approach is used by Moore [17] in the 

case of Gaussian mixture clustering. Over and 

above the search for nearest neighbors based on 

Euclidean distance, Moore allows for the 

Mahalanobis metric, i.e. distance to cluster centers 

that are “corrected” for the (Gaussian) spread or 

morphology of clusters. The information stored at 

each node of the tree includes covariances. 

Moore [17] reports results on numbers of objects of 

around 160,000, dimensionalities of between 2 and 

6, and speedups of 8-fold to 1000-fold. Pelleg and 

Moore [18] discuss results on some 430,000 two-

dimensional objects from the Sloan Digital Sky 

Survey (see the section “k-Means and Family” 

below). 

 
PROJECTIONS AND OTHER BOUNDS 

Bounding using Projection or Properties 

of Metrics 
Making use of bounds is a versatile approach, 

which may be less restricted by dimensionality. 

Some lower bound on the dissimilarity is efficiently 

calculated in order to dispense with the full 

calculation in many instances. 

Using projections on a coordinate axis allows the 

exclusion of points in the search for the NN of point 

xi. Points xk, only, are considered such that (xij - xkj)2 

≤ c2 where xij is the jth coordinate of xi, and where c 

is some prespecified distance (see Fig. 3). 

Alternatively, more than one coordinate may be 

used. The prior sorting of coordinate values on the 

chosen axis or axes expedites the finding of points 

whose full distance calculation is necessitated. The 

preprocessing required with this approach involves 

the sorting of up to m sets of coordinates, i.e.  O(mn 

log n) time. 

Using one axis, it is evident that many points may 

be excluded if the dimensionality is very small, but 

that the approach will worsen as the latter grows. 

Friedman et al. [19] give the expected NN search 

time, under the assumption that the points are 

uniformly distributed, as O(mn1-1/n). This 

approaches the brute force O(nm) as n gets large. 

Reported empirical results are for dimensions 2 to 

8. 

Figure 3: Two-dimensional example of projection-based
bound. Points with projections within distance c of given
point's (*) projection, alone, are searched. Distance c is
defined with reference to a candidate or current nearest
neighbor. 
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Marimont and Shapiro [20] extend this approach by 

the use of projections in subspaces of dimension 

greater than 1 (usually about m=2 is suggested). 

This can be further improved if the subspace of the 

principal components is used. Dimensions up to 40 

are examined. The Euclidean distance is very 

widely used. Two other members of a family of 

Minkowski metric measures require less 

computation time to calculate, and they can be used 

to provide bounds on the Euclidean distance. We 

have: 

 

where d1 is the Hamming distance defined as Σjxj-

x´j, the Euclidean distance is given by the square 

root of Σj (xj -x´j)2; and the Chebyshev distance is 

defined as maxj xj-x´j. 

Kittler [21] makes use of the following bounding 

strategy: reject all points y such that d1(x,y)≥√(m)δ 

where δ is the current NN d2-distance. The more 

efficiently calculated d1-distance may thus allow 

the rejection of many points (90% in 10-

dimensional space is reported by Kittler). Kittler's 

rule is obtained by noting that the greatest d1-

distance between x and x´ is attained when 

 

 

 

for all coordinates, j. Hence d1(x,x´) = d2(x,x´)≥√m 

is the greatest d1-distance between x and x´. In the 

case of the rejection of point y, we then have: 

 

 

and since, by virtue of the rejection 

 

 

it follows that δ ≤ d2(x,y). 

Yunck [22] presents a theoretical analysis for the 

similar use of the Chebyshev metric. Richetin et al. 

[23] propose the use of both bounds. Using 

uniformly distributed points in dimensions 2 to 5, 

the latter reference reports the best outcome when 

the rule: reject all y such that d∞(x,y) ≥ δ precedes 

the rule based on the d1-distance. Up to 80% 

reduction in CPU time is reported. 

 

Bounding using the Triangular 

Inequality 
The triangular inequality is satisfied by distances: 

d(x,y) ≤ d(x,z) + d(z,y), where x, y and z are any 

three points. The use of a reference point, z, allows 

a full distance calculation between point x, whose 

NN is sought, and y to be avoided if 

 

 

where δ is the current NN distance. The set of all 

distances to the reference point are calculated and 

stored in a preprocessing step requiring O(n) time 

and O(n) space. The above cut-off rule is obtained 

by noting that if 

 

 

then, necessarily, d(x,y) ≥ δ. The former inequality 

above reduces to the triangular inequality 

irrespective of which of d(y,z) or d(x,z) is the 

greater.  

The set of distances to the reference point, 

{d(x,z)�x}, may be sorted in the preprocessing 

stage. Since d(x,z) is fixed during the search for the 

NN of x, it follows that the cut-off rule will not then 

need to be applied in all cases. 

Shapiro [25] generalized the single reference point 

approach, due to Burkhard and Keller, [24] to 

multiple reference points. The sorted list of 

distances to the first reference point, {d(x,z1)�x}, is 

used as described above as a preliminary bound. 

Then the subsequent bounds are similarly employed 

to further reduce the points requiring a full distance 

calculation. The number and the choice of reference 

d x x d x x d x x1 2( , ) ( , ) ( , )′ ≥ ′ ≥ ′∞

x x d x x mj j− ′ = ′
2

2

2 ( , ) /

d x y d x y m1 2( , ) ( , ) /≤

d x y m1 ( , ) ≥ δ

d y z d x z( , ) ( , )− ≥ δ

d x y d x y d y z( , ) ( , ) ( , )≥ −
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points to be used is dependent on the distributional 

characteristics of the data. Shapiro [25] finds that 

reference points ought to be located away from 

groups of points. In 10-dimensional simulations, it 

was found that at best only 20% of full distance 

calculations were required (although this was very 

dependent on the choice of reference points). 

Hodgson [26] proposes the following bound, 

related to the training set of points, y, among which 

the NN of point x is sought. Determine in advance 

the NNs and their distances, d(y,NN(y)) for all 

points in the training set. For point y, then consider 

δy = ½ d(y,NN(y)). In seeking NN(x), and having at 

some time in the processing a candidate NN, y´, we 

can exclude all y from consideration if we find that 

d(x,y´) ≤ δy´. In this case, we know that we are 

sufficiently close to y´ that we cannot improve on it. 

We return now to the choice of reference points: 

Vidal Ruiz [27] proposes the storing of inter-point 

distances between the members of the training set. 

Given x, whose NN we require, some member of 

the training set is used as a reference point. Using 

the bounding approach based on the triangular 

inequality, described above, allows other training 

set members to be excluded from any possibility of 

being NN(x). Micó et al. [28] and 

Ramasubramanian and Paliwal [29] discuss further 

enhancements to this approach, focused especially 

on the storage requirements. Fukunaga and 

Narendra [30] make use of both a hierarchical 

decomposition of the data set (they employ 

repeatedly the k-means partitioning technique), and 

bounds based on the triangular inequality. For each 

node in the decomposition tree, the center and 

maximum distance to the center of associated 

points (the “radius”) are determined. For 1000 

points, 3 levels were used, with a division into 3 

classes at each node. All points associated with a 

non-terminal node can be rejected in the search for 

the NN of point x if the following rule (Rule 1) is 

not verified: 

 

 

where δ is the current NN distance, g is the center 

of the cluster of points associated with the node, 

and rg is the radius of this cluster. For a terminal 

node, which cannot be rejected on the basis of this 

rule, each associated point, y, can be tested for 

rejection using the following rule (Rule 2): 

 

 

These two rules are direct consequences of the 

triangular inequality. 

A branch and bound algorithm can be implemented 

using these two rules. This involves determining 

some current NN (the bound) and subsequently 

branching out of a traversal path whenever the 

current NN cannot be bettered. Not being inherently 

limited by dimensionality, this approach appears 

particularly attractive for general purpose 

applications. 

Other rejection rules are considered by Kamgar-

Parsi and Kanal. [31] A simpler form of clustering 

is used in the variant of this algorithm proposed by 

Niemann and Goppert. [32] A shallow MDBST is 

used, followed by a variant on the branching and 

bounding described above.  

Bennett et al. [2] use the nearest neighbor problem 

as a means towards solving the Gaussian 

distribution mixture problem. They consider a 

preprocessing approach similar to Fukunaga and 

Narendra [30] but with an important difference: to 

take better account of cluster structure in the data, 

the clusters are multivariate normal but not 

necessarily of diagonal covariance structure. 

Therefore very elliptical clusters are allowed. This 

in turn implies that a cluster radius is not of great 

benefit for establishing a bound on whether or not 

distances need to be calculated Bennett et al. [2] 

address this problem by seeking a stochastic 

d x g rg( , ) − < δ

d x g d y g( , ) ( , ) .− ≥ δ
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guarantee on whether or not calculations can be 

excluded. Technically, however, such stochastic 

bounds are not easy to determine in a high 

dimensional space. 

An interesting issue raised in Beyer et al. [33] is 

also discussed by Bennett et al. [2] if the ratio of 

the nearest and furthest neighbor distances 

converges in probability to 1 as the dimensionality 

increases, then is it meaningful to search for nearest 

neighbors? This issue is not all that different from 

saying that neighbors in an increasingly high 

dimensional space tend towards being equidistant. 

In section 5, we will look at approaches for 

handling particular classes of data of this type. 

 

Fast Approximate Nearest Neighbor 

Finding 
Kushilevitz et al., [34] working in Euclidean and L1 

spaces, propose fast approximate nearest neighbor 

searching, on the grounds that in systems for 

content-based image retrieval, approximate results 

are adequate. Projections are used to bound the 

search. Probability of successfully finding the 

nearest neighbor is traded off against time and 

space requirements. 

 
THE SPECIAL CASE OF SPARSE BINARY 

DATA 

“High-dimensional”, “sparse” and “binary” are the 

characteristics of keyword-based bibliographic 

data, with values possibly in excess of 10000 for 

both n and m. Such data is usually stored as list data 

structures, representing the mapping of documents 

onto index terms, or vice versa. Commercial 

document collections are usually searched using a 

Boolean search environment. Documents associated 

with particular terms are retrieved, and the 

intersection (AND), union (OR) or other operations 

on such sets of documents are obtained. For 

efficiency, an inverted file, which maps terms onto 

documents, must be available for Boolean retrieval. 

The efficient NN algorithms, to be discussed, make 

use of both the document-term and the term-

document files.  

The usual algorithm for NN-searching considers 

each document in turn, calculates the distance with 

the given document, and updates the NN if 

appropriate. This algorithm is shown schematically 

in Fig. 4 (top). The inner loop is simply an 

expression of the fact that the distance or similarity 

will, in general, require O(m) calculation: examples 

of commonly used coefficients are the Jaccard 

similarity, and the Hamming (L1 Minkowski) 

distance. 

If m  and n  are, respectively, the average numbers 

of terms associated with a document, and the 

average number of documents associated with a 

term, then an average complexity measure, over n 

searches, of this usual algorithm is O( nm ). It is 

assumed that advantage is taken of some packed 

form of storage in the inner loop (e.g. using linked 

lists). 

Croft's algorithm (see [35] and Fig. 4) is of worst 

case complexity O(nm2). However, the number of 

terms associated with the document whose NN is 

required will often be quite small. The National 

Physical Laboratory test collection, for example, 

which was used by Murtagh [36] has the following 

characteristics: n = 11429, m = 7491, m  = 19.9, 

and n  = 30.4. The outermost and innermost loops 

in Croft's algorithm use the document-term file. The 

center loop uses the term-document inverted file. 

An average complexity measure (more strictly, the 

time taken for best match search based on an 

average document with associated average terms) is 

seen to be O( nm 2 ). 
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In the outermost loop of Croft's algorithm there will 

eventually come about a situation where – if a 

document has not been thus far examined - the 

number of terms remaining for the given document 

do not permit the current NN document to be 

bettered. In this case we can cut short the iterations 

of the outermost loop. The calculation of a bound 

using the greatest possible number of terms that 

could be shared with a so-far unexamined 

document has been exploited by Smeaton and van 

Rijsbergen [37] and by Murtagh [36] in successive 

improvements on Croft's algorithm. 

The complexity of all the above algorithms has 

been measured in terms of operations to be 

performed. In practice, however, the actual 

accessing of term or document information may be 

of far greater cost. The document-term and term-

document files are ordinarily stored on direct access 

file storage because of their large sizes. The 

strategy used in Croft's algorithm, and in 

improvements on it, does not allow any viable 

approaches to batching together the records which 

are to be read successively, in order to improve 

accessing-related performance. 

The Perry-Willett algorithm (see Perry and Willett, 

[38]) presents a simple but effective solution to the 

problem of costly I/O. It focuses on the calculation 

of the number of terms common to the given 

document x and each other document, y, in the 

document collection. This set of values is built up 

in a computationally efficient fashion. O(n) 

operations are subsequently required to determine 

the (dis)similarity, using another vector comprising 

the total numbers of terms associated with each 

document. Computation time (the same “average" 

measure as that used above) is O( nm n+ ). We now 

turn our attention to numbers of direct-access reads 

required. 

In Croft's algorithm, all terms associated with the 

document whose NN is desired may be read in one 

Usual algorithm:
Initialize current NN
For all documents in turn do:
... For all terms associated with the document do:
... ... Determine (dis)similarity
... Endfor
... Test against current NN
Endfor

Croft's algorithm:
Initialize current NN
For all terms associated with the given document do:
... For all documents associated with each term do:
... ... For all terms associated with a document do:
... ... ... Determine (dis)similarity
... ... Endfor
... ... Test against current NN
... Endfor
Endfor

Perry-Willett algorithm:
Initialize current NN
For all terms associated with the given document, i, do:
... For all documents, i', associated with each term, do:
... ... Increment location i' of counter vector
... Endfor
Endfor

 
Figure 4: Algorithms for NN-searching using high-dimensional sparse binary data. 
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read operation. Subsequently, we require nm  

reads, giving in all 1+ nm . In the Perry-Willett 

algorithm, the outer loop again pertains to the one 

(given) document, and so all terms associated with 

this document can be read and stored. 

Subsequently, m  reads, i.e. the average number of 

terms, each of which demands a read of a set of 

documents, are required. This gives, in all, 1 + m . 

Since these reads are very much the costliest 

operation in practice, the Perry-Willett algorithm 

can be recommended for large values of n and m. 

Its general characteristics are that it requires, (i) as 

do all the algorithms discussed in this section, the 

availability of the inverted term-document file; and 

(ii) in-memory storage of two vectors containing n 

integer values. 

 
HIERARCHICAL AGGLOMERATIVE 

CLUSTERING 

The algorithms discussed in this section can be 

characterized as greedy. [39] A sequence of 

irreversible algorithm steps is used to construct the 

desired data structure.  

We will not review hierarchical agglomerative 

clustering here. For essential background, the 

reader is referred to Murtagh and Heck, [3] Gordon, 

[40] or Jain and Dubes. [41] This section borrows 

on Murtagh. [42] 

One could practically say that Sibson [43] and 

Defays [44] are part of the prehistory of clustering. 

Their O(n2) implementations of the single link 

method and of a (non-unique) complete link 

method, respectively, have been widely cited. 

 In the early 1980s a range of significant 

improvements were made to the Lance-Williams, or 

related, dissimilarity update schema, [45, 46] which 

had been in wide use since the mid-1960s. Murtagh 

[47] presents a survey of these algorithmic 

improvements. We will briefly describe them here. 

The new algorithms, which have the potential for 

exactly replicating results found in the classical but 

more computationally expensive approach, are 

based on the construction of nearest neighbor 

chains and reciprocal or mutual NNs (NN-chains 

and RNNs). 

A NN-chain consists of an arbitrary point (a in Fig. 

5); followed by its NN (b in Fig. 5); followed by the 

NN from among the remaining points (c, d, and e in 

Fig. 5) of this second point; and so on until we 

necessarily have some pair of points which can be 

termed reciprocal or mutual NNs. (Such a pair of 

RNNs may be the first two points in the chain; we 

have assumed that no two dissimilarities are equal.) 

 

 In constructing a NN-chain, irrespective of the 

starting point, we may agglomerate a pair of RNNs 

as soon as they are found. What guarantees that we 

can arrive at the same hierarchy as we would if we 

used traditional “stored dissimilarities” or “stored 

data” algorithms? Essentially this is the same 

condition as that under which no inversions or 

reversals are produced by the clustering method. 

Fig. 6 gives an example of this, where s is 

agglomerated at a lower criterion value (i.e. 

dissimilarity) than was the case at the previous 

agglomeration between q and r.  

 

q      r   s   q      r   s  
Figure 6: Alternative representations of a hierarchy with an 
inversion. Assuming dissimilarities, as we go vertically up, 
criterion values (d1, d2) decrease. But here, undesirably, d2 > d1. 

 

a b c d e 
Figure 5: Five points, showing NNs and RNNs. 

d1

d2 d1

d2
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Our ambient space has thus contracted because of 

the agglomeration. This is due to the algorithm used 

- in particular the agglomeration criterion - and it is 

something we would normally wish to avoid. 

This is formulated as: 
 
Inversion impossible if  

 
This is essentially Bruynooghe's reducibility 

property [48] (see also [49]). Using the Lance-

Williams dissimilarity update formula, it can be 

shown that the minimum variance method does not 

give rise to inversions; neither do the linkage 

methods; but the median and centroid methods 

cannot be guaranteed not to have inversions. 

To return to Fig. 5, if we are dealing with a 

clustering criterion that precludes inversions, then c 

and d can justifiably be agglomerated, since no 

other point (for example, b or e) could have been 

agglomerated to either of these. 

The processing required, following an 

agglomeration, is to update the NNs of points such 

as b in Fig. 5 (and on account of such points, this 

algorithm was dubbed algorithme des célibataires 

in [45]). The following is a summary of the 

algorithm: 

NN-chain algorithm 

Step 1 Select a point arbitrarily. 

Step 2 Grow the NN-chain from this point 

until a pair of RNNs is obtained. 

Step 3 Agglomerate these points 

(replacing with a cluster point, or updating 

the dissimilarity matrix). 

Step 4 From the point which preceded the 

RNNs (or from any other arbitrary point if 

the first two points chosen in Steps 1 and 2 

constituted a pair of RNNs), return to Step 

2 until only one point remains. 

In Murtagh [11, 47, 49] and Day and Edelsbrunner, 

[50] one finds discussions of O(n2) time and O(n) 

space implementations of Ward's minimum 

variance (or error sum of squares) method and of 

the centroid and median methods. The latter two 

methods are termed the UPGMC and WPGMC 

criteria by Sneath and Sokal. [51] Now, a problem 

with the cluster criteria used by these latter two 

methods is that the reducibility property is not 

satisfied by them. This means that the hierarchy 

constructed may not be unique as a result of 

inversions or reversals (non-monotonic variation) in 

the clustering criterion value determined in the 

sequence of agglomerations. Murtagh [49] 

describes O(n2) time and space implementations for 

the single link method, the complete link method 

and for the weighted and unweighted group average 

methods (WPGMA and UPGMA). This approach is 

quite general vis á vis the dissimilarity used and can 

also be used for hierarchical clustering methods 

other than those mentioned. 

Day and Edelsbrunner [50] prove the exact O(n2) 

time complexity of the centroid and median 

methods using an argument related to the 

combinatorial problem of optimally packing 

hyperspheres into an m-dimensional volume. They 

also address the question of metrics: results are 

valid in a wide class of distances including those 

associated with the Minkowski metrics. 

The construction and maintenance of the nearest 

neighbor chain as well as the carrying out of 

agglomerations whenever reciprocal nearest 

neighbors meet, both offer possibilities for 

parallelization. Willet described implementations 

on an SIMD machine. [52] 

Evidently both coordinate data and graph (e.g., 

dissimilarity) data can be input to these 

agglomerative methods. Gillet et. al. [53] in the 

context of clustering chemical structure databases 

refer to the common use of the Ward method, based 

on the reciprocal nearest neighbors algorithm, on 

d i j d i k d j k d i j d i j k( , ) ( , ) ( , ) ( , ) ( , )< � < ∪ or 
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data sets of a few hundred thousand molecules. 

Applications of hierarchical clustering to 

bibliographic information retrieval are assessed in 

Griffiths et al. [54] Ward's minimum variance 

criterion is favored. 

From details in White and McCain, [55] the 

Institute of Scientific Information (ISI) clusters 

citations (science, and social science) by first 

clustering highly cited documents based on a single 

linkage criterion, and then four more passes are 

made through the data to create a subset of a single 

linkage hierarchical clustering. 

 
GRAPH CLUSTERING 

Hierarchical clustering methods are closely related 

to graph-based clustering. Firstly, a dendrogram is a 

rooted labeled tree. Secondly, and more 

importantly, some methods like the single and 

complete link methods can be displayed as graphs, 

and are very closely related to mainstream graph 

data structures. 

An example of the increasing prevalence of graph 

clustering in the context of data mining on the web 

is presented in Fig. 7: Amazon.com provides 

information on what other books were purchased by 

like-minded individuals. 

The single link method was referred to in the 

previous section, as a widely used agglomerative, 

hence hierarchical, clustering method. Rohlf [56] 

reviews algorithms for the single link method with 

complexities ranging from O(n log n) to O(n5). The 

criterion used by the single link method for cluster 

formation is weak, meaning that noisy data in 

particular give rise to results that are not robust. 

The minimal spanning tree (MST) and the single 

link agglomerative clustering method are closely 

related: the MST can be transformed irreversibly 

into the single link hierarchy. [57] The MST is 

defined as of minimal total weight, it spans all 

nodes (vertices) and is an unrooted tree. The MST 

has been a method of choice for at least four 

decades now either in its own right for data 

analysis, [58] as a data structure to be approximated 

(e.g. using shortest spanning paths, see Murtagh, 

[47], p. 96), or as a basis for clustering. We will 

look at some fast algorithms for the MST in the 

remainder of this section. 

Perhaps the most basic MST algorithm, due to Prim 

and Dijkstra, grows a single fragment through n-1 

steps. We find the closest vertex to an arbitrary 

vertex, calling these a fragment of the MST. We 

determine the closest vertex, not in the fragment, to 

any vertex in the fragment, and add this new vertex 

into the fragment. While there are fewer than n 

vertices in the fragment, we continue to grow it. 

This algorithm leads to a unique solution. A default 

O(n3) implementation is clear, and O(n2) 

computational cost is possible ([47], p. 98). 

Sollin's algorithm constructs the fragments in 

parallel. For each fragment in turn, at any stage of 

the construction of the MST, determine its closest 

Figure 7: Example of a graph clustering in a data mining 
perspective at Amazon.com: “Customers who bought this 
book also bought …” 
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fragment. Merge these fragments, and update the 

list of fragments. A tree can be guaranteed in this 

algorithm (although care must be taken in cases of 

equal similarity) and our other requirements (all 

vertices included, minimal total edge weight) are 

very straightforward. Given the potential for 

roughly halving the data remaining to be processed 

at each step, not surprisingly the computational cost 

reduces from O(n3) to O(n2 log n). 

The real interest of Sollin's algorithm arises when 

we are clustering on a graph and do not have all 

n(n-1)/2 edges present. Sollin's algorithm can be 

shown to have computational cost m log n, where m 

is the number of edges. When m « n(n-1)/2 then we 

have the potential for appreciable gains. 

The MST in feature spaces can of course make use 

of the fast nearest neighbor finding methods studied 

earlier in this article. See [47], (section 4.4) for 

various examples. 

Other graph data structures that have been proposed 

for data analysis are related to the MST. We know, 

for example, that the following subset relationship 

holds: 

 

 

 

where RNG is the relative neighborhood graph, GG 

is the Gabriel graph, and DT is the Delaunay 

triangulation. The latter, in the form of its dual, the 

Voronoi diagram, has been used for analyzing the 

clustering of galaxy locations. References to these 

and related methods can be found in Murtagh. [59] 

 
NEAREST NEIGHBOR FINDING ON GRAPHS 

Clustering on graphs may be required because we 

are working with (perhaps complex non-Euclidean) 

dissimilarities. In such cases where we must take 

into account an edge between each and every pair 

of vertices, we will generally have an O(m) 

computational cost where m is the number of edges. 

In a metric space we have seen that we can look for 

various possible ways to expedite the nearest 

neighbor search. An approach based on 

visualization - turning our data into an image - will 

be looked at below. However, there is another 

aspect of our similarity (or other) graph that we 

may be able to turn to our advantage. Efficient 

algorithms for sparse graphs are available. Sparsity 

can be arranged - we can threshold our edges if the 

sparsity does not suggest itself more naturally. 

A special type of sparse graph is a planar graph, i.e. 

a graph capable of being represented in the plane 

without any crossovers of edges. For sparse graphs, 

algorithms with O(m log log n) computational cost 

were described by Yao [60] and Cheriton and 

Tarjan. [61] A short algorithmic description can be 

found in Murtagh [47] (pp. 107-108) and we refer 

in particular to the latter. The basic idea is to 

preprocess the graph, in order to expedite the 

sorting of edge weights (why sorting? - simply 

because we must repeatedly find smallest links, and 

maintaining a sorted list of edges is a good basis for 

doing this). If we were to sort all edges, the 

computational requirement would be O(m log m). 

Instead of doing that, we take the edge set 

associated with each and every vertex. We divide 

each such edge set into groups of size k. (The fact 

that the last such group will usually be of size < k is 

taken into account when programming.) 

Let nv be the number of incident edges at vertex v, 

such that Σv nv = 2m. The sorting operation for each 

vertex now takes O(k log k) operations for each 

group, and we have nv/k groups. For all vertices the 

sorting requires a number of operations which is of 

the order of Σv nv log k = 2mlog k. This looks like a 

questionable - or small - improvement over O(m log 

m). Determining the lightest edge incident on a 

vertex requires O(nv/k) comparisons since we have 

to check all groups. Therefore the lightest edges 

incident on all vertices are found with O(m/k) 

MST RNG GG GT⊆ ⊆ ⊆
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operations.  

When two vertices, and later fragments, are 

merged, their associated groups of edges are simply 

collected together, therefore keeping the total 

number of groups of edges that we started out with. 

We will bypass the issue of edges which, over time, 

are to be avoided because they connect vertices in 

the same fragment: given the fact that we are 

building an MST, the total number of such edges-

to-be-avoided cannot surpass 2m. To find what to 

merge next, again O(m/k) processing is required. 

Using Sollin's algorithm, the total processing 

required in finding what to merge next is O(m/k log 

n). The total processing required for grouping the 

edges, and sorting within the edge-groups, is O(m 

log k), i.e. it is one-off and accomplished at the start 

of the MST-building process. 

The total time is O(m/k log n)+O(m log k). If we fix 

k = log n, the second term dominates and gives 

overall computational complexity as O(m log log 

n). This result has been further improved to near 

linearity in m by Gabow et al., [62] who develop an 

algorithm with complexity O(m log log log … n) 

where the number of iterated log terms is bounded 

by m/n. 

Motwani and Raghavan [63] (chapter 10) base a 

stochastic O(m) algorithm for the MST on random 

sampling to identify and eliminate edges that are 

guaranteed not to belong to the MST. 

Let us turn our attention now to the case of a planar 

graph. For a planar graph we know that m ≤ 3n-6 

for m >1. (For proof, see for example Tucker, [64] 

or any book on graph theory). 

Referring to Sollin's algorithm, described above, 

O(n) operations are needed to establish a least cost 

edge from each vertex, since there are only O(n) 

edges present. On the next round, following 

fragment-creation, there will be at most ceil(n/2) 

new vertices, implying of the order of n/2 

processing to find the least cost edge. The total 

computational cost is seen to be proportional to: n + 

n/2 + n/4 +…=O(n). 

So determining the MST of a planar graph is linear 

in numbers of either vertices or edges. Before 

ending this review of very efficient clustering 

algorithms for graphs, we note that algorithms 

discussed so far have assumed that the similarity 

graph was undirected. For modeling transport 

flows, or economic transfers, the graph could well 

be directed. Components can be defined, 

generalizing the clusters of the single link method, 

or the complete link method. [65] provides an 

algorithm for the latter agglomerative criterion 

which is of computational cost O(m log n).  

 
K-MEANS AND FAMILY 

The non-technical person more often than not 

understands clustering as a partition. K-means 

looked at in this section, or the distribution mixture 

approach looked at in the section on fast model-

based clustering, provide solutions. A mathematical 

definition of a partition implies no multiple 

assignments of observations to clusters, i.e. no 

overlapping clusters. Overlapping clusters may be 

faster to determine in practice, and a case in point is 

the one-pass algorithm described in Salton and 

McGill. [66] The general principle followed is: 

make one pass through the data, assigning each 

object to the first cluster which is close enough, and 

making a new cluster for objects that are not close 

enough to any existing cluster. 

Broder et al. [67] use this algorithm for clustering 

the web. A feature vector is determined for each 

HTML document considered, based on sequences 

of words. Similarity between documents is based on 

an inverted list, using an approach like those 

described for the special case of binary data above. 

The similarity graph is thresholded, and 

components sought. 

Broder [68] solves the same clustering objective 
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using a thresholding and overlapping clustering 

method similar to the Salton and McGill one. The 

application described is that of clustering the 

Altavista repository in April 1996, consisting of 30 

million HTML and text documents, comprising 150 

GBytes of data. The number of serviceable clusters 

found was 1.5 million, containing 7 million 

documents. Processing time was about 10.5 days. 

An analysis of the clustering algorithm used by 

Broder can be found in Borodin et al., [69] who 

also consider the use of approximate minimal 

spanning trees. 

The threshold-based pass of the data, in its basic 

state, is susceptible to lack of robustness. A bad 

choice of threshold leads to too many clusters or 

two few. To remedy this, we can work on a well-

defined data structure such as the minimal spanning 

tree. Or, alternatively, we can iteratively refine the 

clustering. Partitioning methods, such as k-means, 

use iterative improvement of an initial estimation of 

a targeted clustering. 

A very widely used family of methods for inducing 

a partition on a data set is called k-means, c-means 

(in the fuzzy case), Isodata, competitive learning, 

vector quantization and other more general names 

(non-overlapping non-hierarchical clustering) or 

more specific names (minimal distance or exchange 

algorithms). 

The usual criterion to be optimized is: 
 
 
 
 
where I is the object set, . denotes cardinality, q 

is some cluster, Q is the partition, and q denotes a 

set in the summation, whereas 
�q denotes some 

associated vector in the error term, or metric norm. 

This criterion ensures that clusters found are 

compact, and therefore assumed homogeneous. The 

optimization criterion, by a small abuse of 

terminology, is more often referred to as a 

minimum variance one. A necessary condition that 

this criterion be optimized is that vector 
�q  be a 

cluster mean, which for the Euclidean metric case 

is:  

 
�

�

q
q

i
i q

=
∈
�

1
 

 

A batch update algorithm, due to Lloyd, [70] Forgy, 

[71] and others, makes assignments to a set of 

initially randomly chosen vectors, 
�q , as step 1. 

Step 2 updates the cluster vectors, 
�q . This is 

iterated. The distortion error, equation 1, is non-

increasing, and a local minimum is achieved in a 

finite number of iterations. 

An online update algorithm is due to MacQueen. 

[72] After each presentation of an observation 

vector, 
�
i , the closest cluster vector, 

�q , is updated 

to take account of it. Such an approach is well-

suited for a continuous input data stream (implying 

“online” learning of cluster vectors). 

Both algorithms are gradient descent ones. In the 

online case, much attention has been devoted to 

best learning rate schedules in the neural network 

(competitive learning) literature: Darken and 

Moody [73, 74], Darken et al., [75] Fritzke. [76] 

A difficulty, less controllable in the case of the 

batch algorithm, is that clusters may become (and 

stay) empty. This may be acceptable, but also may 

be in breach of our original problem formulation. 

An alternative to the batch update algorithm is 

Späth's exchange algorithm. [77] Each observation 

is considered for possible assignment into any of 

the other clusters. Späth gives updating and 

“downdating” formulae. This exchange algorithm is 

stated to be faster to converge and to produce better 

(smaller) values of the objective function. Over 

decades of use, we have also verified that it is a 

superior algorithm to the minimal distance one. 

K-means is very closely related to Voronoi 

1 2

I
i q

i qq Q

�
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(Dirichlet) tesselations, to Kohonen self-organizing  

feature-maps, and various other methods. The 

batch-learning algorithm above may be viewed as 

1. An assignment step, which we will term 

the E (estimation) step: estimate the 

posteriors,  

P(observationscluster centers) 

 
2. A cluster update step, the M 

(maximization) step, which maximizes a 

cluster center likelihood. 

Neal and Hinton [78] cast the k-means optimization 

problem in such away that the both E- and M-steps 

monotonically increase the maximand's values. The 

EM algorithm may, too, be enhanced to allow for 

online as well as batch learning. [79] 

In Thiesson et al., [80] k-means is implemented (i) 

by traversing blocks of data, cyclically, and 

incrementally updating the sufficient statistics and 

parameters, and (ii) instead of cyclic traversal, 

sampling from subsets of the data is used. Such an 

approach is admirably suited for very large data 

sets, where in-memory storage is not feasible. 

Examples used by Thiesson et al. [80] include the 

clustering of a half million 300-dimensional 

records.  

 
FAST MODEL BASED CLUSTERING 

It is traditional to note that models and 

(computational) speed do not mix. We review 

recent progress in this section. 

 

Modeling of Signal and Noise 
A simple and applicable model is a distribution 

mixture, with the signal modeled by Gaussians, in 

the presence of Poisson background noise. 

Consider data which are generated by a mixture of 

(G-1) bivariate Gaussian densities, 

fk(x;θ)∼N(µk;Σk), for clusters k = 2; … ; G, and with 

Poisson background noise corresponding to k = 1. 

The overall population thus has the mixture density 

 

 

where the mixing or prior probabilities, πk, sum to 

1, and f1(x;θ) = A-1, where A is the area of the data 

region. This is the basis for model-based clustering. 

[81-84]  

The parameters, θ and π, can be estimated 

efficiently by maximizing the mixture likelihood 

 

 

with respect to θ and π, where xi is the ith 

observation. 

Now let us assume the presence of two clusters, one 

of which is Poisson noise, the other Gaussian. This 

yields the mixture likelihood 
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where π1 + π2 = 1. 

An iterative solution is provided by the expectation-

maximization (EM) algorithm of Dempster et al. 

[85] We have already noted this algorithm in 

informal terms in the last section, dealing with k-

means. Let the “complete” (or “clean” or “output”) 

data be yi = (xi, zi) with indicator set zi = (zi1, zi2) 

given by (1,0) or (0,1). Vector zi has a multinomial 

distribution with parameters (1;π1,π2). This leads to 

the complete data log-likelihood: 

[ ]l y z z f xik k k kki
n( , ; , ) log log ( ;θ π π θ= +== �� 1

2
1  

The E-step then computes 

� ( ,..., , )z E z x xik ik n= 1 θ , i.e. the posterior 

probability that xi is in cluster k. The M-step 

involves maximization of the expected complete 

data log-likelihood: 

[ ]l y z f xik k k iki
n*( ; , ) � log log ( ; ) .θ π π θ= +== �� 1

2
1  

The E- and M-steps are iterated until convergence. 

f x f xk k
k

G
( ; ) ( ; )θ π θ= �
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For the 2-class case (Poisson noise and a Gaussian 

cluster), the complete-data likelihood is 

L y z
A

x x
zi

i
T

i
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The corresponding expected log-likelihood is then 

used in the EM algorithm. This formulation of the 

problem generalizes to the case of G clusters, of 

arbitrary distributions and dimensions. 

Fraley [86] discusses implementation of model-

based clustering, including publicly available 

software. 

In order to assess the evidence for the presence of a 

signal-cluster, we use the Bayes factor for the 

mixture model, M2 that includes a Gaussian density 

as well as background noise, against the “null” 

model, M1, that contains only background noise. 

The Bayes factor is the posterior odds for the 

mixture model against the pure noise model, when 

neither is favored a priori. It is defined as B = 

p(xM2)/p(xM1), where p(xM2) is the integrated 

likelihood of the mixture model M2, obtained by 

integrating over the parameter space. For a general 

review of Bayes factors, their use in applied 

statistics, and how to approximate and compute 

them, see Kass and Raftery. [87] 

We approximate the Bayes factor using the 

Bayesian Information Criterion (BIC). [88] For a 

Gaussian cluster and Poisson noise, this takes the 

form: 

2 2 2 6log log ( �, �) log log ,B BIC L n A n≈ = + −θ π  

where �θ  and �π  are the maximum likelihood 

estimators of θ and π, and L( �, �)θ π  is the 

maximized mixture likelihood. 

A review of the use of the BIC criterion for model 

selection - and more specifically for choosing the 

number of clusters in a data set - can be found in 

Fraley and Raftery. [89] 

An application of mixture modeling and the BIC 

criterion to gamma-ray burst data can be found in 

Mukherjee et al. [90] So far around 800 

observations have been assessed, but as greater 

numbers become available we will find the inherent 

number of clusters in a similar way, in order to try 

to understand more about the complex phenomenon 

of gamma-ray bursts. 

 

Application to Thresholding 
Consider an image or a planar or 3-dimensional set 

of object positions. For simplicity we consider the 

case of setting a single threshold in the image 

intensities, or the point set's spatial density. 

We deal with a combined mixture density of two 

univariate Gaussian distributions fk(x,θ) ~ N(µk,σk). 

The overall population thus has the mixture density 

 

 

where the mixing or prior probabilities, πk, sum to 

1. 

When the mixing proportions are assumed equal, 

the log-likelihood takes the form 
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The EM algorithm is then used to iteratively solve 

this (see Celeux and Govaert, [91]). This method is 

used for appraisals of textile (jeans and other 

fabrics) fault detection in Campbell et al. [92]. 

Industrial vision inspection systems potentially 

produce large data streams, and fault detection can 

be a good application for fast clustering methods. 

We are currently using a mixture model of this sort 

on SEM (scanning electron microscope) images of 

cross-sections of concrete to allow for subsequent 

characterization of physical properties. 

Image segmentation, per se, is a relatively 

straightforward application, but there are novel and 

interesting aspects to the two studies mentioned. In 

the textile case, the faults are very often perceptual 

and relative, rather than “absolute" or capable of 
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being analyzed in isolation. In the SEM imaging 

case, a first phase of processing is applied to de-

speckle the images, using multiple resolution noise 

filtering. 

Turning from concrete to cosmology, the Sloan 

Digital Sky Survey [92] is producing a sky map of 

more than 100 million objects, together with 3-

dimensional information (redshifts) for a million 

galaxies. Pelleg and Moore [18] describe mixture 

modeling, using a k-D tree preprocessing to 

expedite the finding of the class (mixture) 

parameters, e.g. means, covariances. 

 
NOISE MODELING 

In Starck et al. [93] and in a wide range of papers, 

we have pursued an approach for the noise 

modeling of observed data. A multiple resolution 

scale vision model or data generation process is 

used, to allow for the phenomenon being observed 

on different scales. In addition, a wide range of 

options are permitted for the data generation 

transfer path, including additive and multiplicative, 

stationary and non-stationary, Gaussian (“read out” 

noise), Poisson (random shot noise), and so on. 

Given point pattern clustering in two- or three-

dimensional spaces, we will limit our overview here 

to the Poisson noise case. 

 

Poisson Noise with Few Events Using the 

à trous Transform 
If a wavelet coefficient wj(x,y) is due to noise, it can 

be considered as a realization of the sum nkk K∈�  

of independent random variables with the same 

distribution as that of the wavelet function (nk being 

the number of events used for the calculation of wj 

(x,y)). This allows comparison of the wavelet 

coefficients of the data with the values that can 

be taken by the sum of n independent variables. 

The distribution of one event in wavelet space is 

then directly given by the histogram H1 of the 

wavelet ψ. As we consider independent events, 

the distribution of a coefficient wn (note the 

changed subscripting for w, for convenience) 

related to n events is given by n 

autoconvolutions of H1 : 

 

 

For a large number of events, Hn converges to a 

Gaussian. Fig. 8 shows an example of where 

point pattern clusters - density bumps in this 

case – are sought, with a great amount of 

background clutter. Murtagh and Starck [94] refer 

to the fact that there is no computational 

dependence on the number of points (signal or 

noise) in such a problem, when using a wavelet 

transform with noise modeling. 

Some other alternative approaches will be briefly 

noted. The Haar transform presents the advantage 

of its simplicity for modeling Poisson noise. 

Analytic formulae for wavelet coefficient 

distributions have been derived by Kolaczyk, [96] 

and Jammal and Bijaoui. [97] Using a new wavelet 

transform, the Haar à trous transform, Zheng et al. 

[98] appraise a denoising approach for financial 

data streams, - an important preliminary step for 

H H H Hn = ⊗ ⊗ ⊗1 1 1...

Figure 8: Data in the plane. The 256 × 256 image shows 
550 “signal” points – two Gaussian-shaped clusters in the 
lower left and in the upper right – with in addition 40,000 
Poisson noise points added. Details of recovery of the 
clusters are discussed in [95]. 
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subsequent clustering, forecasting, or other 

processing. 

 

Poisson Noise with Nearest Neighbor 

Clutter Removal 
The wavelet approach is certainly appropriate when 

the wavelet function reflects the type of object 

sought (e.g. isotropic), and when superimposed 

point patterns are to be analyzed. However, non- 

superimposed point patterns of complex shape are 

very well treated by the approach described in 

Byers and Raftery. [99] Using a homogeneous 

Poisson noise model, they derive the distribution of 

the distance of a point to its kth nearest neighbor. 

Next, Byers and Raftery [99] consider the case of a 

Poisson process which is signal, superimposed on a 

Poisson process which is clutter. The kth nearest 

neighbor distances are modeled as a mixture 

distribution: a histogram of these, for given k, will 

yield a bimodal distribution if our assumption is 

correct. This mixture distribution problem is solved 

using the EM algorithm. Generalization to higher 

dimensions, e.g. 10, is also discussed.  

Similar data were analyzed by noise modeling and a 

Voronoi tesselation preprocessing of the data in 

Allard and Fraley. [100] It is pointed out there how 

this can be a very useful approach with the Voronoi 

tiles have meaning in relation to the morphology of 

the point patterns. However, it does not scale well 

to higher dimensions, and the statistical noise 

modeling is approximate. 

Ebeling and Wiedenmann, [101] reproduced in 

Dobrzycki et al., [102] propose the use of a 

Voronoi tesselation for astronomical X-ray object 

detection and characterization. 

 
CLUSTER-BASED USER INTERFACES 

Doyle first described Information retrieval by 

means of “semantic road maps” in detail. [103] The 

spatial metaphor is a powerful one in human 

information processing. The spatial metaphor also 

lends itself well to modern distributed computing 

environments such as the web. The Kohonen self-

organizing feature map (SOM) method is an 

effective means towards this end of a visual 

information retrieval user interface. We will also 

provide an illustration of web-based semantic maps 

based on hyperlink clustering. 

The Kohonen map is, at heart, k-means clustering 

with the additional constraint that cluster centers be 

located on a regular grid (or some other topographic 

structure) and furthermore their location on the grid 

be monotonically related to pairwise proximity. 

[104] The nice thing about a regular grid output 

representation space is that it lends itself well as a 

visual user interface. 

 

Fig. 9 shows a visual and interactive user interface 

map, using a Kohonen self-organizing feature map 

(SOM). Color is related to density of document 

clusters located at regularly-spaced nodes of the 

map, and some of these nodes/clusters are 

annotated. The map is installed as a clickable 

Figure 9: Visual interactive user interface to the journal 
Astronomy and Astrophysics. 
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image-map, with CGI programs accessing lists of 

documents and - through further links - in many 

cases, the full documents. In the example shown, 

the user has queried a node and results are seen in 

the right-hand panel. Such maps are maintained for 

(currently) 12000 articles from the Astrophysical 

Journal, 7000 from Astronomy and Astrophysics, 

over 2000 astronomical catalogs, and other data 

holdings. More information on the design of this 

visual interface and user assessment can be found in 

Poinçot et al. [105, 106] 

Guillaume [107] developed a Java-based 

visualization tool for hyperlink-based data, 

consisting of astronomers’ names, astronomical 

object names, article titles, and with the possibility 

of other objects (images, tables, etc.). Through 

weighting, the various types of links could be 

prioritized. An iterative refinement algorithm was 

developed to map the nodes (objects) to a regular 

grid of cells, which as for the Kohonen SOM map, 

are clickable and provide access to the data 

represented by the cluster. Fig. 10 shows an 

example for an astronomer (Prof. Jean Heyvaerts, 

Strasbourg Astronomical Observatory). 

These new cluster-based visual user interfaces are 

not computationally demanding. They are not 

however, scalable in their current implementation. 

Document management (see e.g. Cartia, [108]) is 

not so much the motivation, but rather the 

interactive user interface. 

 
IMAGES FROM DATA 

It is quite impressive how 2D (or 3D) image signals 

can handle with ease the scalability limitations of 

clustering and many other data processing 

operations. The contiguity imposed on adjacent 

pixels bypasses the need for nearest neighbor 

finding. It is very interesting therefore to consider 

the feasibility of taking problems of clustering 

massive data sets into the 2D image domain. We 

will look at a few recent examples of work in this 

direction. 

Church and Helfman [109] address the problem of 

visualizing possibly millions of lines of computer 

program code, or text. They consider an approach 

borrowed from DNA sequence analysis. The data 

sequence is tokenized by splitting it into its atoms 

(line, word, character, etc.) and then placing a dot at 

position i,j if the ith input token is the same as the 

jth. The resulting dotplot, it is argued, is not limited 

by the available display screen space, and can lead 

to discovery of large-scale structure in the data. 

When data do not have a sequence we have an 

invariance problem that can be resolved by finding 

some row and column permutation which pulls 

large array values together, and perhaps 

furthermore into proximity to an array diagonal. 

Berry et al. [110] have studied the case of large 

sparse arrays. Gathering larger (or nonzero) array 

elements to the diagonal can be viewed in terms of 

minimizing the envelope of nonzero values relative 

to the diagonal. This can be formulated and solved 

in purely symbolic terms by reordering vertices in a 

suitable graph representation of the matrix. A 

widely used method for symmetric sparse matrices 

is the Reverse Cuthill-McKee (RCM) method. 

The complexity of the RCM method for ordering 

rows or columns is proportional to the product of 

the maximum degree of any vertex in the graph 

Figure 10: Visual interactive user interfaces, based on graph 
edges. Map for astronomer Jean Heyvaerts. Original in color. 
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representing the array values and the total number 

of edges (nonzeroes in the matrix). For hypertext 

matrices with small maximum degree, the method 

would be extremely fast. The strength of the 

method is its low time complexity but it does suffer 

from certain drawbacks. The heuristic for finding 

the starting vertex is influenced by the initial 

numbering of vertices and so the quality of the 

reordering can vary slightly for the same problem 

for different initial numberings. Next, the overall 

method does not accommodate dense rows (e.g., a 

common link used in every document), and if a row 

has a significantly large number of nonzeroes it 

might be best to process it separately; i.e., extract 

the dense rows, reorder the remaining matrix and 

augment fit by the dense rows (or common links) 

numbered last. Elapsed CPU times for a range of 

arrays and permuting methods are given in Berry et 

al., [110] and as an indication show performances 

between 0.025 to 3.18 seconds for permuting a 

4000 x 400 array. 

A review of public domain software for carrying 

out SVD and other linear algebra operations on 

large sparse data sets can be found in Berry et al. 

([111], section 8.3). 

Once we have a sequence-respecting array, we can 

immediately apply efficient visualization 

techniques from image analysis. Murtagh et al. 

[112] investigate the use of noise filtering (i.e. to 

remove less useful array entries) using a multiscale 

wavelet transform approach. 

An example follows. From the Concise Columbia 

Encyclopedia (1989 2nd ed., online version) a set of 

data relating to 12025 encyclopedia entries and to 

9778 cross-references or links was used. 

Fig. 11 shows a 500 x 450 subarray, based on a 

correspondence analysis (i.e. ordering of 

projections on the first factor). 

This part of the encyclopedia data was filtered 

using the wavelet and noise-modeling methodology 

described in Murtagh et al. [112] and the outcome 

is shown in Fig. 12. Overall the recovery of the 

more apparent alignments, and hence visually 

stronger clusters, is excellent. The first relatively 

long “horizontal bar” was selected - it corresponds 

to column index (link) 1733 = geological era. 

The corresponding row indices (articles) are, in 

sequence: 

SILURIAN PERIOD 
PLEISTOCENE EPOCH 
HOLOCENE EPOCH 
PRECAMBRIAN TIME 
CARBONIFEROUS PERIOD 
OLIGOCENE EPOCH 

Figure 11: Part (500 × 450) of original encyclopaedia 
incidence data array. 

Figure 12: End-product of the filtering of the array shown 
in Figure 11. 
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ORDOVICIAN PERIOD 
TRIASSIC PERIOD 
CENOZOIC ERA 
PALEOCENE EPOCH 
MIOCENE EPOCH 
DEVONIAN PERIOD 
PALEOZOIC ERA 
JURASSIC PERIOD 
MESOZOIC ERA 
CAMBRIAN PERIOD 
PLIOCENE EPOCH 
CRETACEOUS PERIOD 
 
The work described here is based on a number of 

technologies: (i) data visualization techniques; (ii) 

the wavelet transform for data analysis; and (iii) 

data matrix permuting techniques. The wavelet 

transform has linear computational cost in terms of 

image row and column dimensions, and is 

independent of the pixel values. 

 
CONCLUSIONS 

Viewed from a commercial or managerial 

perspective, one could justifiably ask where we are 

now in our understanding of problems in this area 

relative to where we were back in the 1960s? 

Depending on our answer to this, we may well 

proceed to a second question: Why have all 

important problems not been solved by now in this 

area - are there major outstanding problems to be 

solved? 

As described in this chapter, a solid body of 

experimental and theoretical results has been built 

up over the last few decades. Clustering remains a 

requirement that is a central infrastructural element 

of very many application fields. 

There is continual renewal of the essential 

questions and problems of clustering, relating to 

new data, new information, and new environments. 

There is no logjam in clustering research and 

development simply because the rivers of problems 

continue to broaden and deepen. Clustering and 

classification remain quintessential issues in our 

computing and information technology 

environments. [113] 
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