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INTRODUCTION 
Combinatorial chemistry is the process whereby 

large numbers of compounds are synthesized 

simultaneously in what are known as combinatorial 

libraries. The technique, together with the related 

technology of high-throughput screening, is now 

used routinely in programs for the discovery of 

novel bioactive compounds in the pharmaceutical 

and agrochemical industries. In contrast, traditional 

approaches to medicinal chemistry involved 

synthesizing one compound at a time, testing or 

screening that compound for activity, and then 

iteratively designing and testing new compounds 

based on the results. Using traditional methods, a 

medicinal chemist can synthesize approximately 50 

compounds per year. The new technologies, which 

were introduced in the late eighties and early 

nineties, have vastly increased throughput so that 

tens of thousands of compounds can now be made 

in a single cycle. 
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The techniques of combinatorial chemistry and high throug
pharmaceutical and agrochemical industries. During the last few
have been developed to select compounds for screening and
approaches are reviewed in the first half of this paper. In the s
program SELECT has be used to demonstrate that significant 
basing library design in product space rather than in reactan
involving two combinatorial libraries, three different descriptors
further significant advantage of performing library design in p
properties simultaneously. Thus, SELECT can be used to desig
like physiochemical properties. 
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virtual library to a practical size for combinatorial 

synthesis and high-throughput screening. Virtual 

screening techniques can also be used to select 

compounds for screening from in-house databases 

and to determine which compounds should be 

purchased from external suppliers in compound 

acquisition programs. 

 
DIVERSITY ANALYSIS AND COMPOUND 

SELECTION STRATEGIES 
Virtual screening, or compound selection, 

techniques build on the similar property principle, 

which states that structurally similar molecules are 

likely to have similar properties. [2] The converse 

of this suggests that dissimilar molecules will tend 

to have different properties. This is illustrated in 

Figure 1, which represents a structure space based 

on two orthogonal properties. Assuming that the 

properties are relevant to biological activity, then 

molecules that are close in the space will tend to 

have similar biological activity. [3] In terms of a 

screening experiment, the molecules convey 

redundant SAR information: they have similar 

structure and similar activity. In library design and 

HTS, usually the aim is to screen compounds 

against a number of different biological targets and 

a subset of compounds that is evenly spread 

throughout structure space is likely to maximize 

coverage of biological activity space. Therefore, 

there has been a great deal of interest in selecting 

diverse subsets of compounds that cover as much of 

the structure space as possible without including 

redundancy.  

Many diversity measures and subset selection 

procedures are based on calculations of similarities 

or dissimilarities between molecules. [4] 

Consequently, there has been a great deal of interest 

in measuring structural similarity and dissimilarity 

[5] and in applying the measures to analyze the 

diversity of sets compounds [6] and to design 

diverse combinatorial libraries. Measuring the 

similarity between two compounds requires that the 

molecules are described using some numerical 

descriptors and a coefficient that is used to quantify 

the degree of similarity between the two sets of 

descriptors associated with the molecules. [5] The 

design of diverse libraries requires three major 

components: the descriptors used to characterize the 

molecules; a subset selection procedure; and a 

diversity index that quantifies the degree of 

diversity in the resulting library. 

 
DESCRIPTORS 
Many different descriptors have been developed for 

both similarity and diversity analyses. They have 

been reviewed extensively (see, for example, [7]) 

and will be described briefly here. For use in library 

design, descriptors should have the following 

characteristics: they should be relevant, that is they 

should capture structural properties that influence 

the biological activity of interest; they should be 

rapid to calculate to enable them to be applied to 

large datasets; and ideally they should also be 

chemically interpretable. Descriptors can be 

categorized as one-, two- or three-dimensional. 

One-dimensional descriptors are single valued 

integers or real numbers and they include 

physicochemical properties, such as molecular 
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Figure 1: Given an active molecule (red) in a 
property space that is relevant to biological activity, 
then according to the similar property principle 
molecules that are close to it (green) are also likely to 
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weight, molar refractivity etc., and topological 

indices, which are indices calculated from the 2D 

representation of a molecule as a graph. There can 

be a large number of such descriptors, for example, 

the Molconn-Z program [8] generates several 

hundreds of indices, and typically in diversity 

analyses the number of variables is reduced to a 

small number that contains most of the information 

using a technique such as principal components 

analysis. Two-dimensional fingerprints are 

probably the most commonly used descriptors in 

diversity analyses. Three- and four-point 

pharmacophores are represented as binary vectors 

or bitstrings, where each bit is set to 0 or 1, 

depending on whether a particular substructural 

feature is present or absent from a molecule. 

Examples include, UNITY [9] and Daylight [10] 

fingerprints and MACCS screens. [11] Three-

dimensional descriptors are also used in diversity 

analyses, for example, three- and four-point 

pharmacophores. [12] A pharmacophore point is a 

substructural feature that is thought likely to 

influence binding to a receptor, for example, a 

hydrogen bond donor. They are represented as 

binary vectors with each bit corresponding to a 

particular arrangement of pharmacophore points in 

3D space. Although they are appealing as 

descriptors of bioactivity since receptor binding is a 

3D event, the calculation of the descriptors is a non-

trivial task due to the fact that molecules in general 

are flexible. 

Given a set of molecular descriptors, the similarity 

(and hence dissimilarity) between two molecules 

can be calculated using an association coefficient 

such as the Tanimoto coefficient, which is typically 

used with binary data such as fingerprints, or a 

distance measure such as Euclidean distance, which 

is typically used with physicochemical property 

data. Association coefficients and distance 

measures are reviewed by Willett et al. [5]  

Currently, there is no clear picture as to which 

descriptors are best. A number of evaluation studies 

have been performed that tend to suggest that 2D 

fingerprints are most effective (see, for example, 

[13] and [14]), however, there is a need for further 

studies of this kind. 

 
SUBSET SELECTION  
Given a set of molecular descriptors and assuming 

we have some way of measuring diversity via a 

diversity index, then, in theory, the most diverse 

subset of a given size can be found by generating 

all possible subsets and calculating the diversity of 

each one. However, exploring all possible subsets 

of size n within a dataset of size N requires 

evaluation of: 

)!nN(!n
!N
−

 

 

subsets. This is not computationally feasible for 

typical values of n and N encountered in library 

design. Therefore, computationally efficient 

methods are required to find subsets that are 

approximate solutions. The subset selection 

methods that have been applied to selecting diverse 

subsets can be divided into four different 

categories: [15] dissimilarity-based compound 

selection methods; clustering; partitioning and 

optimization techniques. Each of these methods 

will be described briefly. 

In Dissimilarity-Based Compound Selection 

(DBCS), [16] heuristics are used to provide good, 

although non-optimal, solutions to the subset 

problem. The basic algorithm involves initially 

selecting the first compound and placing it in the 

subset and then an iterative loop is entered where in 

each iteration the compound remaining in the 

dataset that is most dissimilar to those already in 

the subset is selected and added to the subset. The 

algorithm terminates when the required number of 

compounds has been selected. The various 
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algorithms developed for DBCS differ in the way 

the first compound is selected and in the way the 

dissimilarity between one compound and a group of 

compounds is measured. For example, the first 

compound may be selected at random, as the one 

that is in the center of the dataset, or as the one that 

is most dissimilar to all the others. The most 

common ways in which the dissimilarity between 

one compound and a set of compounds is measured 

are known as MaxMin and MaxSum. MaxMin 

selects the compound that has maximum distance to 

its closest neighbor and MaxSum selects the 

compound whose average distance to all the 

compounds in the subset is a maximum. The 

algorithms are typically used with 2D fingerprints 

or topological indices as descriptors and the 

distance coefficients for measuring pairwise 

dissimilarities are usually the complements of the 

Tanimoto coefficient and the cosine coefficient. 

Clustering [17] is the process of dividing objects 

into groups, or clusters, so that the objects within a 

cluster are similar and objects from different 

clusters are dissimilar. A representative subset can 

then be chosen by selecting one or more 

compounds from each cluster. Thus, clustering is an 

indirect way of selecting a subset since the 

molecules must first be clustered. The clustering 

process itself is computationally expensive whereas 

the subsequent selection process is trivial. As with 

DBCS, clustering also requires the ability to 

measure similarities or distances between objects 

and in subset selection it is most often used with 2D 

fingerprints. There are many different approaches 

to clustering but the method that has been found to 

be most effective is Ward's clustering [13] which is 

a hierarchical agglomerative method. The 

computational expense of clustering means that the 

size of datasets that can be handled is limited. 

Partitioning, or cell-based, approaches [12] to 

subset selection involve firstly defining a low 

dimensional chemistry space, for example, one that 

is based on molecular properties such as molecular 

weight, lipophilicity etc. The range of values 

associated with each property is then divided into a 

series of bins and the combinatorial product of all 

bins defines a set of cells that cover the entire 

space. The molecules are then positioned within the 

space according to their particular properties. A 

subset can be chosen by selecting one molecule 

from each cell. Partitioning methods are sometimes 

referred to as absolute diversity measures, rather 

than relative measures since the space is defined 

independently of the molecules that are positioned 

within it, unlike clustering, where the clusters are 

determined by the intermolecular distances 

themselves. This characteristic of partitioning 

methods means that it is easy to perform database 

comparisons, which can be a very useful procedure 

in library design. Partitioning schemes have been 

developed for low-dimensional data such as 

physicochemical properties and also for a new type 

of descriptor called BCUT descriptors. [12] 

Partitioning schemes are also used with the vector 

based, one-dimensional, three- and four-point 

pharmacophores described earlier. One difference 

with pharmacophore data compared to 

physicochemical property data is that a single 

molecule will typically occupy more than one cell 

and in some cases an individual molecule can 

occupy a large number of cells, such molecules are 

sometimes called promiscuous. 

The final category of subset selection algorithms is 

that of optimization techniques. Several methods 

have been developed that fall into this category. 

The methods require definition of a function or 

diversity index that is to be optimized. Examples of 

algorithms that have been applied to subset 

selection include genetic algorithms [18,19,20], 

simulated annealing, [21] and experimental design 

techniques. [22] In these algorithms, the function is 
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calculated many times and hence the complexity of 

the calculation is restricted. Diversity indices that 

are used with optimization techniques include 

distance based indices such as the sum of pairwise 

dissimilarities [18] and the number of distinct 

pharmacophores [19] covered by a subset of 

compounds. 

COMBINATORIAL LIBRARY DESIGN 
The discussion so far has concentrated on strategies 

for the selection of subsets of compounds with 

particular reference to the selection of HTS sets 

from, for example, in-house databases, and the 

selection of compounds to purchase from external 

suppliers. In combinatorial library design, any of 

the techniques already described can be applied 

directly to choose subsets of reactants from those 

that are available for use in a combinatorial 

synthesis. The subsets of reactants are then used to 

build a combinatorial library in a process known as 

reactant-based selection. This approach is shown 

schematically in the top-half of Figure 2. Indeed, 

most combinatorial library design efforts to date 

have been based on reactant-based selection. The 

methods assume that by maximizing diversity in the 

reactants, maximum diversity in the product 

molecules will be achieved. However, recent 

evidence suggests that significantly more diverse 

libraries can be achieved if selection is performed 

in product space [18,23,24,25]. 

In product-based library design a virtual library is 

enumerated using all available reactants, as shown 

in the bottom-half of Figure 2. The simplest way of 

performing product-based selection is to apply any 

of the techniques described previously in a process 

known as cherry-picking. This approach, however, 

is synthetically inefficient as far as combinatorial 

chemistry is concerned since it does not take into 

account the combinatorial constraint and hence is 

highly unlikely to result in a combinatorial library. 

The synthetic inefficiency of cherry-picking is 

shown in Figure 3, where a two-component 

combinatorial reaction is represented by a two-

dimensional array. The rows represent the reactants 

Subset 
Selection

Subset Subset 
Reactant PoolsReactant Pools

nn11 nn22

r1 r2

nn1 1 nn22
Combinatorial 
Library

Synthesis

NN11 NN22

R1 R2

Reactant Pools

NN1 1 NN22

nn1 1 nn22

Enumerate

Virtual Library

Combinatorial 
Library

Combinatorial
Subset 
Selection

nn1 1 nn22
Cherry Picking

Library

Figure 2: Three different strategies are available for designing diverse combinatorial libraries. They are reactant-based selection, shown in 
the top half of the figure; cherry-picking in product space; and combinatorial subset selection in product space, known as product-based 
selection. 
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in one pool, the columns represent the reactants in 

the second pool and the elements represent the full 

virtual library. A cherry-picked subset is equivalent 

to picking compounds from anywhere in the array, 

for example the subset of four compounds that are 

highlighted. Synthesizing these four compounds 

combinatorially would require synthesis of 12 

products in a 4 × 3 library. 

A combinatorial subset can be selected by 

intersecting the rows and columns of the matrix, as 

shown in Figure 4 where the products of a 2 × 2 

combinatorial subset library are highlighted. 

Generating all possible combinatorial subsets in 

order to find the most diverse is then equivalent to 

permuting the rows and columns of the matrix in all 

possible ways. However, matrix manipulation of 

this sort represents an enormous search space and, 

in practice, investigating all possible combinatorial 

subsets is infeasible for real library design 

problems. Once again, an approximate solution can 

be found by using an optimization technique. We 

have implemented a genetic algorithm (GA) that is 

able to select a combinatorial subset from a full 

virtual library of products, within the program 

called SELECT. [24] In SELECT, each 

chromosome of the GA encodes a combinatorial 

subset in the form of lists of the reactants that make 

up the library. The fitness function of the GA 

involves enumerating the sub-library and measuring 

its diversity. The GA iterates through generations 

using crossover, mutation and roulette wheel 

selection until it converges on an optimally diverse 

library. Diversity can be measured using a number 

of different molecular descriptors and diversity 

indices, for example, Daylight fingerprints and the 

sum-of-pairwise dissimilarities using the cosine 

coefficient. 

SELECT has been used to compare the diversity 

that can be achieved with reactant-based selection 

relative to product-based selection. [18,23] The 

libraries that were examined are a two-component 

amide library (Figure 5) where the virtual library of 

10,000 products is built from 100 amides and 100 

carboxylic acids, and a three-component thiazoline-

2-imine library (Figure 6), also of 10,000 products, 

which is built from 10 isothiocyanates, 40 amines 

and 25 haloketones. 

 

Y1 Y2 Y3 Y4 Y5

X1 X1Y1 X1Y2 X1Y3 X1Y4 X1Y5

X2 X2Y1 X2Y2 X2Y3 X2Y4 X2Y5

X3 X3Y1 X3Y2 X3Y3 X3Y4 X3Y5

X4 X4Y1 X4Y2 X4Y3 X4Y4 X4Y5

X5 X5Y1 X5Y2 X5Y3 X5Y4 X5Y5

Figure 4: A combinatorial subset can be selected by intersecting 
the rows and columns of the matrix. 

Figure 5: The amide library.

R1 N
H

H
+ R2

O

OH R2

O

N
H

R1

Figure 3: A two component combinatorial library is 
represented as a two-dimensional array with the 
reactants in one pool represented by the rows and the 
reactants in the second pool represented by the 
columns. A cherry-picked library consisting of four 
molecules is shown highlighted in red. The 4 × 3 
combinatorial library that contains these four 
molecules is shown in blue. 

Y1 Y2 Y3 Y4 Y5

X1 X1Y1 X1Y2 X1Y3 X1Y4 X1Y5

X2 X2Y1 X2Y2 X2Y3 X2Y4 X2Y5

X3 X3Y1 X3Y2 X3Y3 X3Y4 X3Y5

X4 X4Y1 X4Y2 X4Y3 X4Y4 X4Y5

X5 X5Y1 X5Y2 X5Y3 X5Y4 X5Y5



 
Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 
http://www.beilstein-institut.de/bozen2000/proceedings/gillet/gillet.pdf                             

23

Index Descriptors Reactants Products Min %∆

SUMCOS Daylight 0.565 
(0.002) 

0.586 
(0.002) 

0.356 9.4 

SUMTAN  0.715 
(0.002) 

0.744 
(0.002) 

0.522 12.5 

NN  0.253 
(0.003) 

0.305 
(0.001) 

0.045 20.1 

SUMCOS UNITY 0.552 
(0.002) 

0.566 
(0.002) 

0.339 5.9 

SUMTAN  0.715 0.727 0.507 5.5 

NN  0.243 0.294 0.045 20.5 

SUMCOS Molconn-Z 0.278 
(0.001) 

0.288 
(0.000) 

0.121 6.5 

SUMTAN  0.451 0.470 0.217 7.5 

NN  0.107 0.150 0.036 37.7 

Table 1: Reactant-based versus product-based diversities for 30 
× 30 amide libraries selected from a full virtual library of 100 
× 100. The column headed Min gives the diversity calculated 
when SELECT was run to find combinatorial subsets with 
minimum diversity. The final column, %∆, gives the percentage 
difference in diversity between product-based and reactant-based 
selection relative to the range of values possible (calculated by 
subtracting the Min diversity from the Product diversity). 
 
In both cases the reactants were selected at random 

from the SPRESI database. [26] The experiments 

were performed for three different types of 

descriptors, namely 1024 bit Daylight fingerprints, 

992 bit UNITY fingerprints, and 538 Molconn-Z 

parameters that were standardized in the range 0-1. 

Three different diversity indices were used, namely, 

the sum-of-pairwise dissimilarities using the cosine 

coefficient, the sum-of-pairwise dissimilarities 

using the Tanimoto coefficient, and the average 

nearest neighbor distance using the Tanimoto 

coefficient. The results are shown in Tables 1 and 2 

for the amide library and the thiazoline-2-imine 

library, respectively. In all cases it can be seen that 

product-based designs result in more diverse 

libraries than do reactant-based designs. 

The effect is more pronounced over all the 

descriptors and metrics for the three-component 

thiazoline-2-imine library. Unlike reactant-based 

selection, product-based selection takes into 

account the relationships between reactants in 

different pools and hence it is reasonable to expect 

that the relative effectiveness of product-based 

selection should increase with the number of 

reactant pools. 

 
Index Descriptor % ∆ 

SUMCOS Daylight 24.8 

SUMTAN  22.3 

NN  34.6 

SUMCOS UNITY 12.9 

SUMTAN  8.0 

NN  35.6 

SUMCOS Molconn-Z 12.6 

SUMTAN  11.4 

NN  49.2 

Table 2: The percentage difference between reactant-based and 
product-based diversities is reported for 6 × 10 × 15 thiazoline-
2-imine libraries selected from a full virtual library of 10 
× 40 × 25. 
 

The effectiveness of product-based selection versus 

reactant-based selection using SUMCOS or SUMTAN 

as the diversity index is more pronounced for 

Daylight fingerprints than for UNITY fingerprints 

or Molconn-Z parameters. Daylight fingerprints are 

based on calculating the paths of up to 7 atoms 

within a molecule. When they are calculated for a 

product molecule there are likely to be several paths 

that span reactants that originate in different pools, 

thus there will be parts of the fingerprint that are 

unique to the product molecule and that are not 

found in its constituent reactants. This is especially 

the case for the three-component library. Thus it is 

not surprising that better results can be achieved by 

R2 N
H

H
+ R3

O
X+SNR1

N

SN

R3R2

R1

Figure 6: The thiazoline-2-imine library. 
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performing the analysis in product-space. UNITY 

fingerprints, however, also include some structural 

keys that record the presence or absence of 

particular fragments. The structural keys tend to be 

more localized than the path-based fragments and 

hence there will be fewer bits that arise in the 

product molecules only. It is more difficult to 

explain the performance seen with the Molconn-Z 

parameters since they encompass a huge range of 

types of molecular descriptor. 

The difference between product-based and reactant-

based selection is most marked for the NN diversity 

index. Combinatorial libraries tend to contain 

clusters of closely related compounds since each 

reactant in a reactant pool exists in a product 

molecule with every reactant in the other pools. The 

presence of closely related compounds can still 

result in relatively high diversity values using both 

the SUMCOS and SUMTAN indices. [27] However, 

the presence of clusters of compounds will result in 

low diversity values according to the NN index, 

which prefers an even distribution of compounds. 

Thus, maximizing the NN index in product space is 

likely to produce a better spread of compounds 

throughout the space than can be achieved by just 

considering the reactants alone. 

  
DRUG-SPACE 
Early libraries designed on the basis of diversity did 

show increased rates of finding hits. However, 

inspection of the hits revealed that they tended to 

have undesirable properties as far as potential drug 

candidates are concerned. For example, they tended 

to have high molecular weights, to be too lipophilic, 

or to be insoluble. [28] In fact, it appears that 

maximizing diversity tends to bias the molecules in 

libraries away from desired ranges of these 

properties. Thus, the emphasis in library design has 

now shifted towards designing libraries that, while 

still diverse, contain compounds constrained to 

have drug-like physicochemical properties. 

One way in which this is attempted is by applying 

preliminary filters to eliminate non-drug-like 

molecules from the reactant pools, for example, 

removing toxic and reactive groups; compounds 

with a large number of rotatable bonds; and 

compounds with high molecular weights. Some 

subset selection techniques now use additional 

properties within the design, for example, tailored 

D-optimal design [28] and the use of secondary 

properties to select compounds from cells in a 

Figure 7: Drug-like weights are used to discriminate 
between compounds in WDI and compounds in the SPRESI 
database. 
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Figure 8: Weights have been derived to discriminate between 
compounds having antibiotic activity from non-drug-like 
molecules as found in SPRESI 
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partitioning procedure.  

Recently, several more sophisticated approaches 

have been described that attempt to predict drug-

likeness. [29-32] These methods have their basis in 

the fact that physicochemical properties are 

distributed differently in databases of drug-like 

molecules relative to non-drug-like molecules. [29] 

An example of this type of approach is the 

bioactivity profiles approach we have developed, 

[29] where a series of weights is derived that 

represent different values of physicochemical 

properties. The weights can be used to score and 

rank molecules according to their ability to 

discriminate between active and inactive 

compounds. Optimum weights are found using a 

GA. Figure 7 shows the results of applying drug-

like weights to discriminate between molecules in 

the World Drugs Index, [33] which represents drug-

like molecules, from molecules in SPRESI which 

represents non-drug-like molecules. The method 

can be tailored for different classes of activity, for 

example, in Figure 8, weights have been derived to 

discriminate antibiotics from non-drugs. This 

method, and similar methods, can be used to rank 

datasets for screening so that the compounds that 

are predicted to be drug-like are screened first, and 

they can also be used to choose compounds from 

external suppliers in compound acquisition 

programs. In the library design context they could 

be used to choose drug-like reactants, however, 

they are less suited to product-based design since 

they do not take account of the combinatorial 

constraint. 

 
DESIGNING DRUG-LIKE COMBINATORIAL 

LIBRARIES 
We have extended the SELECT program to 

perform multi-objective optimization in product-

space in order that libraries can be designed on 

multiple properties simultaneously. The fitness 

function of the GA now consists of a weighted sum 

as shown: 

The objectives on library design would typically 

include diversity along with a number of other 

properties. The complementarity term can be used 

to design a library that is complementary to an 

existing library by maximizing the diversity that 

would result if the two libraries were merged. The 

third term represents the cost of synthesizing a 

library which can be estimated from the cost of the 

individual reactants that constitute the library. The 

remaining terms can be used to tailor the 

physicochemical property profiles of a library. The 

properties of a library are optimized by comparing 

the distribution of the property within a library with 

the distribution of the same property in some 

reference collection, for example, this could be a 

collection of drug-like molecules such as those 

found in the WDI. The weights are user-definable 

and are usually set to maximize diversity and 

complementarity while minimizing normalized 

values of cost and the RMSD between the profile of 

the properties within the library and the reference 

profiles. 

f(n) =w1.diversity + w2.complementarity + 
w3.cost + w4.property1 + w5.property2 … 

Figure 9: The molecular weight profiles of amide libraries designed 
using reactant-based selection (in yellow) are compared with 
libraries that are optimized in product-space (green) and the profile 
of molecular weights found in WDI (blue).  
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The effect of multi-component optimization can be 

seen in Figure 9 where the molecular weight profile 

of an amide library selected by performing reactant-

based selection on diversity alone is show in 

yellow. The profile of a library selected by 

performing product-based selection based on 

diversity and molecular weight simultaneously is 

shown in green. The molecular weight profile is 

optimized relative to the profile of molecular 

weight found in WDI, which is shown in blue. It 

can be seen that reactant-based selection often 

results in libraries with poor physicochemical 

properties. The product-based selection, conversely, 

has enabled the design of libraries with profiles that 

are much more WDI-like and that are thus more 

likely to contain bioactive compounds. 

 
CONCLUSIONS 
Many different approaches to designing diverse 

libraries have been developed, involving a variety 

of different subset selection techniques and 

molecular descriptors. We have shown that 

product-based selection results in libraries that are 

more diverse than if selection is performed at the 

reactant-level. Experience has shown that libraries 

designed on diversity alone have a tendency to 

contain non-drug-like molecules and it is now 

apparent that other criteria should also be taken into 

account. Product-based designs such as that 

developed in the SELECT program allow for 

multiple properties to be optimized simultaneously. 
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