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PREFACE

Managing and effectively utilizing large collections of highly diverse chemical data – especially when 

chemical structures are involved – is a major challenge for the chemical and pharmaceutical industries 

and universities, as well as for the producers of large publicly available databases. Automated techniques, 

such as, combinatorial chemistry coupled with high throughput screening result in the routine generation 

of enormous amounts of data. Methods of information handling such as knowledge discovery and data 

mining, machine learning, statistical analysis, and visualization, whose origins lie outside chemistry, are 

becoming more and more applicable in the area of chemical sciences. The aim of this workshop was to 

bring together experts from chemical and non-chemical fields to discuss new and better methods for 

handling and analyzing large amounts of data of a chemical nature. 

The remote location of Schloss Korb – set on a hillside overlooking Bozen/Bolzano – provided the ideal 

venue for the participants to spend time discussing issues of interest and to make contact with scientists 

from different disciplines. The format of these workshops, with ample time for discussion between the 

lectures and afterwards at lunch and dinner, provided the participants with something rarely found at 

larger meetings – time to think and time to talk. 

Over three days we heard a series of invited talks, which covered the following areas: 

Knowledge Discovery and Data Mining 

Information Extraction and Text Mining 

Data Compression and Clustering of Large Data Sets 

Chemical Structure Representations 

Structure Browsing and Similarity Indexes 

Virtual Screening and Library Design 

Property Prediction 

Visualization of Data and Physicochemical Properties 

The scientific program was compiled by Martin Hicks (Beilstein-Institut), Gerald Maggiora (Pharmacia) 

and Peter Willett (University of Sheffield). 
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The Beilstein-Institut organizes and sponsors scientific meetings, workshops and seminars, with the aim 

of catalyzing advances in chemical science by facilitating the interdisciplinary exchange and 

communication of ideas amongst the participants. We were very pleased that speakers from both inside 

and outside the mainstream chemical community accepted invitations to speak. The resonance that we 

had both during and after this workshop clearly reflected the attractiveness of the scientific program and 

the format of the workshop. 

We would like to thank particularly the authors who provided us with written versions of the papers that 

they presented. Special thanks go to all those involved with the preparation and organization of the 

workshop, as well as to the speakers and participants for their contributions in making this workshop a 

success.

Werner Brich 

Martin G. Hicks 
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ABSTRACT

INTRODUCTION

Ten years ago, the primary technologies being used 

to construct large information systems were 

database systems, information retrieval systems, 

and information filtering systems. Database systems 

were used to handle large volumes of structured 

data and to provide guarantees of reliability and 

consistency despite systems failures and high 

volumes of update transactions. Information 

retrieval systems were used to search large 

databases of text, such as scientific abstracts, legal 

materials, or newspaper stories. Information 

filtering or “clipping” services provided periodic 

updates in the form of text stories, mostly in the 

business domain, based on user profiles. 

In the relatively short period since, there have been 

many developments that have affected how 

information technology is talked about and used. 

The most important of these have been the growth 

of the Internet and the availability of cheap 

hardware. The technologies for the large 

information systems discussed today include the 

Internet (and intranets and extranets), Web search, 

portals, agents, collaborative filtering, XML and 

metadata, and data mining. 

There are many opinions about the current 

technology for information systems, including that 

everything is different, everything is the same, and 

everything is a mess. What people generally do 

agree on is that there is much more data on-line, 

much of that data is unstructured (i.e. text, image, 

video), and that the data is much more distributed 

than in the past. This statement is usually applied to 

the Web in general, but it also applies, with some 

reservations, to scientific information. 

This paper provides a brief description of some of 

the new technologies and reviews their current 

status and future research directions. 

SEARCH ENGINES

One of the major tools for information access is the 

search engine. Most search engines use information 

Much of the information in science, engineering and business has been recorded in the form of text. 
Traditionally, this information would appear in journals or company reports, but increasingly it can be
found online in the World-Wide Web. Tools to support information access and discovery on the Internet
are proliferating at an astonishing rate. Some of this development reflects real progress but there are also
many exaggerated claims. The focus of this presentation will be to review the important technologies for
text-based information access on the Web and to describe the progress that is being made by researchers 
in these areas. 
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retrieval techniques to rank Web pages in presumed

order of relevance based on a simple query.

Compared to the bibliographic information retrieval

systems of the 70’s and 80’s, the new search 

engines must deal with information that is much 

more heterogeneous, “messy”, more varied in 

quality, and vastly more distributed or “linked”.  

In the current Web environment, queries tend to be 

short (1-2 words) and the potential database is very 

large and growing rapidly. Estimates of the size of 

the Web range from 500 million to a billion pages, 

with many of these pages being portals to other 

databases (the “hidden Web”).  

In response to this huge expansion of potential 

information sources, today’s Web search engines 

have emphasized speed and coverage, with less 

importance attached to effectiveness. With the 

growing number of complaints about “information 

overload”, however, this is beginning to change. 

Similarly, most Web search engines use a 

centralized architecture where “Web crawlers” 

gather Web pages and a single, very large index is 

created. An approach like this has inherent 

scalability problems. 

There has been a growing awareness that effective 

information retrieval is a hard problem. Indeed, in a 

recent Turing Award lecture, it was identified as a 

software “grand challenge”. To address this 

challenge, researchers in information retrieval and 

related areas of computer science are proposing 

new retrieval models and techniques to support 

distributed architectures, summarization, question 

answering, cross-lingual retrieval, better interfaces, 

and multimodal search. 

Retrieval models provide the underlying framework 

for a search engine. In other words, they are the 

basis for the algorithms that score and rank the Web 

pages. Recent developments in this area include 

ranking algorithms based on link structure (e.g. 

www.google.com) and language modeling. The 

algorithms based on link structure analyze link 

patterns to identify sites that are highly linked. This 

is similar to the citation analysis techniques 

developed in the 1970s for scientific articles. 

Probabilistic techniques based on language 

modeling are the basis of effective algorithms for a 

variety of language tasks, such as speech 

recognition and machine translation, and are 

beginning to demonstrate effectiveness 

improvements in large-scale experiments. This 

work is also being used in the development of 

cross-lingual techniques, where queries are given in 

one language and the results are found across a 

variety of other languages. 

There has also been considerably more work 

recently that is applying natural language 

processing techniques to the problem of 

information retrieval. Much of this work is being 

done under the title of “question answering”. The 

goal of this type of information access is to produce 

a concise answer to well-formulated queries. In the 

case of simple queries such as “What is the boiling 

point of water?” both the answer and the task are 

well-defined. For other questions such as “What is 

the best drug for treating high blood pressure?” the 

answer is much less well-defined and will probably 

require combining data from a variety of sources. 

Techniques for distributed retrieval and 

summarization will be part of the solution. 

Researchers in the area of distributed search are 

developing techniques for identifying relevant 

information sources, describing their contents, and 

combining results from multiple searches. 

Summarization researchers are looking at ways of 

generating a variety of different types of summary 

for single documents and groups of documents. The 

summary types include lists of keywords, extracted 

sentences, and generated text. Visualization 

techniques and techniques for automatically 

generating taxonomies are also important. 
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One of the key aspects of improving the 

effectiveness of Web search involves getting better 

descriptions of the user’s information need. A short 

one or two word query is generally not descriptive 

of the actual information need and is not helpful to 

the search engine. Techniques such as automatic 

query expansion and machine learning through 

relevance feedback have been developed to address 

this problem. The growing ubiquity of wireless 

devices is also leading to a new interest in voice 

interfaces, which bring a variety of new challenges 

and opportunities to the designer of Web search 

engines, including dealing with longer queries. 

There has also been considerable research on 

multimedia and multimodal retrieval. Multimedia 

retrieval involves algorithms for representing and 

comparing image and video data. A number of 

promising techniques have been developed, but 

large scale experimentation has not been done 

except for some specialized tasks such as face 

retrieval. Multimodal retrieval involves frameworks 

for combining evidence from multiple sources, such 

as image and text, into overall estimates of 

relevance for complex objects. 

XML/METADATA

XML is a new standard developed for Web page 

markup or, more generally, for describing the 

structure of data that is more loosely formatted than 

a standard database schema instance. It is related to 

the older SGML and HTML markup standards. 

There has been a considerable amount of publicity 

about XML and an increasing number of 

compatible tools are becoming available. The XML 

standards activity has also expanded to include the 

definition of ontologies for the description of 

document content in addition to the structure. 

MPEG7 has related aims for video data. 

There is no doubt that these efforts on standardizing 

format and content through XML and metadata will 

have a large impact on future information systems. 

There is, however, less reason to believe that this 

approach will solve the access problem. Manual 

indexing using controlled vocabularies is one of the 

oldest methods of text representation that has been 

used in information retrieval systems. There is 

abundant evidence that this approach does not scale 

and, in general, is of limited effectiveness when 

used as the only representation. The most effective 

applications of this type of indexing are in limited 

domains with a substantial investment in ontology 

development, such as medicine (MESH) and 

chemistry (Chemical Abstracts). Developing XML-

based ontologies in such domains would be useful 

if done in conjunction with content-based searching 

and categorization. Categorization is a technique 

for automatically assigning labels (or controlled 

vocabulary terms) to new documents. A 

considerable amount of research has been done in 

this area and, with enough training data, good

results can be achieved. As more XML data 

described using ontologies and metadata becomes 

available, categorization techniques will become 

viable. 

INFORMATION FILTERING

Information filtering has been around for some time 

in the form of “current awareness” systems. A 

number of Web tools provide this functionality 

(often under the “agent” label). Most of the 

applications of this technology are in the business 

and news domains. Many of these systems use 

simple Boolean matching techniques, although 

there has been much research and a number of new 

companies applying machine learning techniques to 

this problem. Effective filtering is, however, as 

difficult as effective search, and the problems 

involved with proactively sending too much data 

that is not relevant to the users have resulted in 

varying levels of acceptance. Many of the 

3
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techniques being developed to improve search, 

however, will also result in more effective filtering 

so we can expect to see more applications involving 

this technique in the future. 

Collaborative filtering is a complementary 

technique based on matching user preferences that 

has become popular in e-commerce applications. It 

remains to be seen whether the combination of 

content-based and collaborative filtering will 

improve information access in scientific and 

engineering contexts.  

TEXT DATA MINING

A considerable amount of research is being carried 

out under the heading of text data mining. This 

includes a variety of techniques such as information 

extraction, clustering, and discovery of associations 

or “rules”. All of these techniques combine 

statistical methods with some level of linguistic 

analysis. In contrast to data mining using relational 

database systems, where a number of commercial 

packages are available, text data mining is still an 

open research issue. Evaluation of research in this 

area is also difficult, since many of the results are 

presented with examples instead of statistical data. 

Information extraction techniques are designed to 

extract “facts” from text. In many cases, this means 

very simple facts such as names of companies, 

people, and monetary amounts, but in general this 

technique can be used to extract more complex 

information, such as filling a database according to 

a template or schema. Extraction is a key 

component of text data mining since it provides the 

objects for the statistical analysis. Much of the 

research in this area has been done with newspaper 

text, but results with scientific text are beginning to 

be reported. There has also been recent work 

focusing on information extraction based on the 

structure of Web pages.  

Clustering is used to group related information. 

This technique has been well-studied in information 

retrieval but has recently been the subject of a 

number of new papers. Information extraction and 

clustering can be used with other techniques to 

discover interesting associations in text databases. 

The applications of this type of discovery have been 

mostly based on business information, but it may 

also be useful in scientific and engineering 

contexts. 

“Literature-based discovery” is an interesting area 

of research that has been underway for some time 

and is an early example of text data mining. By 

analyzing the literatures of related fields for topics 

that are related but not connected by direct 

reference, Swanson and his colleagues at the 

University of Chicago have found a number of 

connections in the medical literature (specifically, 

Medline abstracts) that have been the subject of 

follow-up scientific investigations. 

CONCLUSIONS

The Web is a huge, relatively unstructured and 

sometimes unreliable source of information. The 

development of XML and ontology standards for 

metadata will promote sharing and introduce a 

limited amount of structure to the Web, but they are 

not the whole solution to the information problem. 

Many new tools are being developed to exploit 

unstructured information and to make it more 

useful to specific user communities such as 

scientists. These tools can also be used for 

information access and discovery with scientific 

literature and databases. Techniques such as text 

data mining, however, will require considerably 

more research and experimentation before their 

effectiveness can be established. 

Papers describing research in a number of these 

areas and extensive references to other papers can 

be found in [1]. 

4



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/croft/croft.pdf

REFERENCES AND NOTES

[1] Croft, W.B. (editor), Advances in Information 

Retrieval, Kluwer Academic Publishers, 

Boston, 2000.

5



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Published in “Chemical Data Analysis in the Large: The Challenge of the Automation Age”, Martin G. Hicks (Ed.), 
Proceedings of the Beilstein-Institut Workshop, May 22nd – 26th, 2000, Bozen, Italy 

http://www.beilstein-institut.de/bozen2000/proceedings/gaizauskas/gaizauskas.pdf                             

INFORMATION EXTRACTION FROM BIOLOGICAL SCIENCE

JOURNAL ARTICLES: ENZYME INTERACTIONS AND PROTEIN

STRUCTURES

ROBERT GAIZAUSKAS,* KEVIN HUMPHREYS AND GEORGE DEMETRIOU

Department, of Computer Science, University of Sheffield, Regent Court, Portobello Street 
Sheffield, Sl 4DP UK 
E-mail: robertg@shef.ac.uk ; kwh@shef.ac.uk ; demetri@shef.ac.uk

Received: 28th June 2000 / Published 11th May 2001 

ABSTRACT

INTRODUCTION

Information Extraction (IE) may be defined as the 

activity of extracting details of predefined classes 

of entities and relationships from natural language 

texts and placing this information into a structured 

representation called a template. [1, 2] The 

prototypical IE tasks are those defined by the U.S. 

DARPA-sponsored Message Understanding 

Conferences (MUCs), requiring the filling of a 

complex template from newswire texts on subjects 

such as joint venture announcements, management 

succession events, or rocket launchings. [3, 4] 

While the performance of current technology is not 

yet at human levels overall, it is approaching 

human levels for some component tasks (e.g. the 

recognition and classification of named entities in 

text) and is at a level at which comparable 

technologies, such as information retrieval and 

machine translation, have found useful application. 

IE is particularly relevant where large volumes of 

text make human analysis infeasible, where 

template-oriented information seeking is 

appropriate (i.e. where there is a relatively stable 

information need and a set of texts in a relatively 

narrow domain), where conventional information 

retrieval technology is inadequate, and where some 

error can be tolerated. 

One area where we believe these criteria are met, 

and where IE techniques have as yet been applied 

only in a limited way (though see [5-7]), is the 

construction of databases of scientific information 

With the explosive growth of scientific literature in the area of molecular biology, the need to process and
extract, information automatically from on-line text sources has become increasingly important.
Information extraction technology, as defined and developed through the U.S. DARPA Message
Understanding Conferences (MUCs), has proved successful at extracting information primarily from
news-wire texts and primarily in domains concerned with human activity. In this paper we consider the
application of this technology to the extraction of information from scientific journal papers in the area of
molecular biology. We describe how an information extraction system designed to participate in the MUC
exercises has been modified for two bioinformatics applications: EMPathIE, concerned with enzyme and
metabolic pathways; and PASTA, concerned with protein structure. The progress so far provides
convincing grounds for believing that IE techniques will deliver novel and effective ways for the
extraction of information from unstructured text sources in the pursuit of knowledge in the biological
domain. 
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from journal articles for use by researchers in 

molecular biology. The explosive growth of textual 

material in this area means that no one can keep up 

with what is being published. Conventional 

retrieval technology returns both too little, because 

of the complex, non-standardized terminology in 

the area, and too much, because what is sought is 

not whole texts in which key terms appear, but facts 

buried in the texts. Further, useful templates can be 

defined for some scientific tasks. For example, 

scientists working on drug discovery have an 

ongoing interest in reactions catalyzed by enzymes 

in metabolic pathways. These reactions may be 

viewed as a class of events, like corporate 

management succession events, in which various 

classes of entities (enzymes, compounds) with 

attributes (names, concentrations) are related by 

participating in the event in specific roles 

(substrate; catalyst; product). Finally, some error 

can be tolerated in these applications, because 

scientists can verify the information against the 

source texts -the technology serves to assist, not to 

replace, investigation. 

Thus, we believe automatically extracting 

information from scientific journal papers is an 

important and feasible application of IE techniques. 

It is also interesting from the perspective of IE 

research because it extends IE to domains and to 

text genres where it has never been applied before. 

To date most IE applications have been to domains 

of human activity, predominately economic 

activity, and have involved newswire texts that 

have a characteristic lexis, structure and length. 

Applying IE to scientific journal papers in the area 

of molecular biology means a radical shift of 

subject domain away from the world of people, 

companies, products and places that have largely 

figured in previous applications. It also means 

dealing with a text genre in which there is a vast 

and complex technical vocabulary, where the texts 

are structured into subsections dealing with method, 

results, and discussion, and where the texts are 

much longer. These differences pose tough 

challenges for IE techniques as developed so far: 

can they be applied successfully in this area? 

In this paper we describe the use of the technology 

developed through MUC evaluations in two 

bioinformatics applications. The next section 

describes the general functionality of an IE system. 

We then describe the two specific applications on 

which we are working: extraction of information 

about enzymes and metabolic pathways and 

extraction of information about protein structure, in 

both cases from scientific abstracts and journal 

papers. The following section describes the 

principle processing stages and techniques of our 

system, followed by a section that presents 

evaluations of the system's performance. While 

much further refinement of the system for both 

applications is possible, indications are that IE can 

indeed be successfully applied to the task of 

extracting information from scientific journal 

papers. 

INFORMATION EXTRACTION 

TECHNOLOGY

The most recent MUC evaluation (MUC-7, [4]) 

specified five separate component tasks, which 

illustrate the main functional capabilities of current 

IE systems: 

1. Named Entity recognition requires the 

recognition and classification of named 

entities such as organizations, persons, 

locations, dates and monetary amounts. 

2. Coreference resolution requires the 

identification of expressions in the text that 

refer to the same object, set or activity. These 

include variant forms of name expression 

(Ford Motor Company ... Ford), definite 

8
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noun phrases and their antecedents (Ford ... 

the American car manufacturer), and 

pronouns and their antecedents (President 

Clinton .. he). Coreference relations are only 

marked between certain syntactic classes of 

expressions (noun phrases and pronouns) and 

a relatively constrained class of relationships 

to mark is specified, with clarifications 

provided with respect to bound anaphors, 

apposition, predicate nominals, types and 

tokens, functions and function values, and 

metonymy. 

3. Template Element filling requires the filling 

of small scale templates (slot-filler struc-

tures) for specified classes of entity in the 

texts, such as organizations, persons, certain 

artifacts, and locations, with slots such as 

name (plus name variants), description as 

supplied in the text, and subtype. 

4. Template Relation filling requires filling a 

two slot template representing a binary re-

lation with pointers to template elements 

standing in the relation. For example, a 

template relation of employee_of

containing slots for a person and organization 

is filled whenever a text makes clear that a 

particular person is employed by a particular 

organization. Other relations are 

product_of and location_of.

5. Scenario Template filling requires the 

detection of relations between template 

elements as participants in a particular type 

of event, or scenario (rocket launches for 

MUC-7), and the construction of an object-

oriented structure recording the entities and 

various details of the relation. 

Systems are evaluated on each of these tasks as 

follows. Each task is precisely specified by means 

of a task definition document. Human annotators 

are then given these definitions and use them to 

produce by hand the 'correct' results for each of the 

tasks - filled templates or texts tagged with name 

classes or coreference relations (these results are 

called answer keys). The participating systems are 

then run and their results, called system responses,

are automatically scored against the answer keys. 

Chief metrics are precision - percentage of the 

system's output that is correct (i.e. occurs in the 

answer key) - and recall - percentage of the correct 

answer that occurs in the system's output. 

State-of-the-art (MUC-7) results for these five tasks 

are as follows (in the form recall/precision): named 

entity - 92/95; coreference - 56/69; template 

element - 86/87; template relation - 67/86; scenario 

template 42/65. 

TWO BIOINFORMATICS APPLICATIONS OF 

INFORMATION EXTRACTION

We are currently investigating the use of IE for two 

separate bioinformatics research projects. The 

Enzyme and Metabolic Pathways Information 

Extraction (EMPathIE) project aims to extract 

details of enzyme reactions from articles in the 

journals Biochimica et Biophysica Acta and FEMS 

Microbiology Letters. The utility for biological 

researchers of a database of enzyme reactions lies 

in the ability to search for potential sequences of 

reactions, where the products of one reaction match 

the requirements of another. Such sequences form 

metabolic pathways, the identification of which can 

suggest potential sites for the application of drugs 

to affect a particular end result. Typically, journal 

articles in this domain describe details of a single 

enzyme reaction, often with little indication of 

related reactions and which pathways the reaction 

may be part of. Only by combining details from 

several articles can potential pathways be 

identified. 

The Protein Active Site Template Acquisition 
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(PASTA) project aims to extract information 

concerning the roles of amino acids in protein 

molecules, and to create a database of protein active 

sites from both scientific journal abstracts and full 

articles. The motivation for the PASTA project 

stems from the need to extract and rationalize 

information in the protein structure literature. New 

protein structures are being reported at very high 

rates and the number of co-ordinate sets (currently 

about 12000) in the Protein Data Bank (PDB) [8] 

can be expected to increase ten-fold in the next five 

years. The full evaluation of the results of protein 

structure comparisons often requires the 

investigation of extensive literature references, to 

determine, for instance, whether an amino acid has 

been reported as present in a particular region of a 

protein, whether it is highly conserved, implicated 

in catalysis, and so on. When working with several 

different structures, it is frequently necessary to go 

through a large number of scientific articles in order 

to discover any functional or structural 

equivalences between residues or groups of 

residues. Computational methods that can extract 

information directly from these articles would be 

very useful to biologists in comparison 

classification work and to those engaged in 

modeling studies. 

The following section describes the EMPathIE and 

PASTA tasks, including the intended extraction 

results from documents containing text such as that 

shown in Figure 1. 

EMPathIE 

One of the inspirations for the Enzyme and 

Metabolic Pathways application was the existence 

of a manually constructed database for the same 

application. The EMP database [9] contains over 

20,000 records of enzyme reactions, collected from 

journal articles published since 1964. That such a 

database has been constructed and is widely used 

demonstrates the utility of the application. 

EMPathie aims to extract only a key subset of the 

fields found in the EMP database records. 

Figure 1: Sample text fragment from a scientific 
paper in Molecular Biology 

The main fields required in a record of an enzyme 

reaction are: the enzyme name, with an enzyme 

classification (EC) number, if available, the 

organism from which the enzyme was extracted, 

any known pathway in which the reaction occurs, 

compounds involved in the reaction, with their roles 

classified as either substrate (input), product 

(output), activator, inhibitor, cofactor or buffer, and 

any compounds known not to be involved in the 

reaction, with their roles classified as either non-

substrate or non-product. 

The template definitions include three Template 

Elements: enzyme, organism and compound, a 

single Template Relation: source, relating enzyme

and organism elements, and a Scenario Template 

for the specific metabolic pathway task. The 

Scenario Template describes a pathway involving 

one or more interactions, each of which is a 

reaction between an enzyme and one or more 

participants, possibly under certain constraints. A 

manually produced sample Scenario Template is 

shown here, taken from an article on isocitrate 

Results: We have determined the crystal
structure of a triacylglycerol lipase from
Pseudomonas cepacia (Pet) in the absence of a
bound inhibitor using X-ray crystallography.
The structure shows the lipase to contain an
alpha/betahydrolase fold and a catalytic triad
comprising of residues Ser87, His286 and
Asp264. The enzyme shares several structural
features with homologous lipases from
Pseudomonas glumae (PgL) and
Chromobacterium viscosum (CvL), including a
calcium-binding site. The present structure of
Pet reveals a highly open conformation with a
solvent-accessible active site. This is in contrast
to the structures of PgL and Pet in which the
active site is buried under a closed or partially
opened 'lid', respectively.

10



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/gaizauskas/gaizauskas.pdf  

lyase activity in FEMS Microbiology Letters. 

<ENZYME-1> := 
    NAME:  isocitrate lyase 
    EC.CODE:  4.1.3.1 

<ORGANISM-1> := 
    NAME: Haloferax volcanii 
    STRAIN: ATCC 29605 
    GENUS: halophilic Archaea 

<COMPOUND-1> := 
    NAME: phenylhydrazone 

<COMPOUND-2> := 
    NAME: KCl 

<SOURCE-1> := 
    ENZYME: <ENZYME-1> 
    ORGANISM: <ORGANISM-1> 

<PATHWAY-1> := 
    NAME: glyoxylate cycle 
    INTERACTION: <INTERACTION-> 

<INTERACTION-1> := 
    ENZYME: <ENZYME-1> 
    PARTICIPANTS:  <PARTICIPANT-1> 
       <PARTICIPANT-2> 

<PARTICIPANT-1> := 
   COMPOUND: <COMPOUND-1> 
   TYPE: Product 
   TEMPERATURE: 35C 

<PARTICIPANT-2> := 
   COMPOUND: <COMPOUND-2> 
   TYPE: Activator 
   CONCENTRATION: 1.75 M 

This template describes a single interaction found 

to be part of the metabolic pathway known as the 

glyoxylate cycle, where the interaction is between 

the enzyme isocitrate lyase and two other 

participants. The first participant is the compound 

glyoxylate phenylhydrazone, which has the role of 

a product of the interaction at a temperature of 35C. 

The second is the compound KCl, which has the 

role of an activator at a concentration of 1.75M.  

The template design follows closely the MUC-style 

IE template, and is richer than the EMP database 

record format in terms of making relationships 

between entities explicit.

PASTA 

The entities to be identified for the PASTA task 

include proteins, amino acid residues, species, types 

of structural characteristics (secondary structure, 

quaternary structure), active sites, other (probably 

less important) regions, chains and interactions 

(hydrogen bonds, disulphide bonds etc.) In 

collaboration with molecular biologists we have 

designed a template to capture protein structure 

information, a fragment of which, filled with 

information extracted from the text in Figure 1, is 

shown below: 

<RESIDUE-str97-521>:=  
   TYPE:   SERINE  
   NUMBER:     "87" 
   PROTEIN:         <PROTEIN-str97-521> 
   SITE/FUNCTION  "active site" 
   "catalytic" 
   "interfacial activation" 
   "calcium-binding site" 
   SECOND.STRUCT:  alpha-helix 
   REGION:          'lid' 
   ARTICLE:         <ARTICLE-str97-521> 
<PROTEIN-str97-521>:= 
   NAME:            "Triacylglycerol lipase" 
   PDB_CODE:        1LGY 
   SPECIES:         <SPECIES-str97-521> 
<SPECIES-str97-521>:= 
   NAME:            "Pseudomonas cepacia" 

The residue information contains slots that describe 

the structural characteristics of the particular 

protein (e.g. SECONDARY structure, REGION) 

and the importance of the residue in the structure 

(e.g. SITE/FUNCTION). Other slots serve as 

pointers, linking different template objects together 

to represent relational information between entities 

(e.g. the PROTEIN and SPECIES slots). Further 

Template Relations can also be defined to link 

proteins or residues with structural equivalence. 

THE EMPATHIE AND PASTA SYSTEMS

The IE systems developed to carry out the 

EMPathIE and PASTA tasks are both derived from 

the Large Scale Information Extraction (LaSIE) 

system, a general purpose IE system. under 

development at Sheffield since 1994. [10, 11] One 

of several dozen systems designed to take part in 

the MUC evaluations over the years, the LaSIE 

system more or less fits the description of a generic 

IE system. [12]  

11
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LaSIE is neither as 'deep' as some earlier IE 

systems that attempted full syntactic, semantic and 

discourse processing [13] nor as 'shallow' as some 

recent systems that use finite state pattern matching 

techniques to map directly from source texts to 

target templates. [14] The processing modules that 

make up the EMPathIE system are shown in figure 

2, within the GATE development environment. [15] 

The PASTA system is similar and reuses several 

modules, within the same environment. The 

architecture of the original LaSIE system has been 

substantially rearranged for its use in the 

biochemical domain, mainly to allow the reuse of 

general English processing modules, such as the 

part-of-speech tagger and the phrasal parser, 

without special retraining or adaptation to allow for 

the domain-specific terminology. This has resulted 

in an independent terminology identification 

subsystem, postponing general syntactic analysis 

until an attempt to identify terms has been made. In 

general, the original LaSIE system modules, 

developed for news-wire applications, have been 

reused, but with various modifications resulting 

from specific features of the texts, as described in 

the following. Both systems have a pipeline 

architecture consisting of four principal stages, 

described in the following sections: text

preprocessing (SGML/structure analysis, 

tokenization), lexical and terminological 

processing (terminology lexicons; morphological 

analysis, terminology grammars), parsing and 

semantic interpretation (sentence boundary 

detection; part-of-speech tagging, phrasal 

grammars, semantic interpretation), and discourse 

interpretation (coreference resolution, domain 

modeling). 

Text Preprocessing 

Scientific articles typically have a rigid structure, 

including abstract, introduction, method and 

materials, results, and discussion sections; and for 

particular applications certain sections can be 

targeted for detailed analysis while others can be 

skipped completely. Where articles are available in 

SGML with a DTD, an initial module is used to 

identify particular markup, specified in a 

configuration file, for use by subsequent modules. 

Where articles arc in plain text, an initial module 

called 'sectionizer' is used to identify and classify 

significant sections using sets of regular 

expressions. Both the SGML and sectionizer 

modules may specify that certain text regions are to 

be excluded from any subsequent processing; 

avoiding detailed processing of apparently 

irrelevant text, especially within the discourse 

interpretation stage where coreference resolution is 

Figure2: EMPathIE system modules within GATE 
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a relatively expensive operation. 

The tokenization of the input needs to identify 

tokens within compound names, such as 

abbreviations like NaCl, where Na and Cl need to 

be matched separately in the lexical lookup stage to 

avoid listing all possible sequences explicitly. The 

tokenization module must therefore make as few 

assumptions as possible about the input, proposing 

minimal tokens that may be recombined in 

subsequent stages. 

Lexical and Terminological Processing 

The main information sources used for terminology 

identification in the biochemical domain are: case-

insensitive terminology lexicons, listing component 

terms of various categories; morphological cues, 

mainly standard biochemical suffixes; and hand-

constructed grammar rules for each terminology 

class. For example, the enzyme name mannitol-l-

phosphate 5-dehydrogenase would be recognised 

firstly by the classification of mannitol as a 

potential compound modifier, and phosphate as a 

compound, both by being matched in the termino-

logy lexicon. Morphological analysis would then 

suggest dehydrogenase as a potential enzyme head, 

due to its suffix -ase, and then grammar rules would 

apply to combine the enzyme head with a known 

compound and modifier that can play the role of 

enzyme modifier. 

The biochemical terminology lexicons, acquired 

from various publicly available resources, have 

been structured to distinguish various term 

components, rather than complete terms; which are 

then assembled by grammar rules. Resources such 

as the lexicon of enzyme names were manually split 

into separate lists of component terms, based purely 

on their apparent syntactic structure rather than any 

expert knowledge of whatever semantic structure 

the names reflect. Corresponding grammar rules 

were then added to recombine the components. Of 

course, lists of complete multi-word terms can also 

be used directly in the lexicons, but the rule-based 

approach has the advantage of being able to 

recognise novel combinations, not explicitly present 

in the term lists, and avoids reliance on the 

accuracy and completeness of available 

terminology resources. Component terms may also 

play multiple roles in different terminology classes, 

for instance amino acid names may be components 

of both protein and enzyme names, as well as terms 

in their own right, but the rule-based approach to 

terminology recognition means they only need to be 

listed in a single terminology category. The total 

number of terminology lexicon entries for the 

biochemical terms is thus comparable to other 

domains, with approximately 25,000 component 

terms in about 50 categories for each system at 

present. 

Parsing and Semantic Interpretation 

The syntactic processing modules treat any terms 

recognized in the previous stage as non-

decomposable units, with a syntactic role of proper 

noun. The sentence splitting module cannot 

therefore propose sentence boundaries within a 

preclassified term. Similarly, the part-of-speech 

tagger only attempts to assign tags to tokens which 

are not part of proposed terms, and the phrasal 

parser treats terms as preparsed noun phrases. Of 

course, this approach does not necessarily assume 

the terminology recognition subsystem to be fully 

complete and correct, and subsequent syntactic or 

semantic context can still be used to reclassify or 

remove proposed terms. In particular, tokens which 

are constituents of terms proposed but not classified 

by the NE subsystem, i.e. potential but unknown 

NEs, are passed to the tagger and phrasal parser as 

normal, but the potential term is passed to the 

parser in addition, as a proper name, to allow the 
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phrasal grammar to determine the best analysis. If 

the unclassified NE is retained after phrasal parsing, 

it may be classified within the discourse interpreter 

using its semantic context or as a result of being 

coreferred with an entity of a known class. 

The phrasal grammar includes compositional 

semantic rules, which are used to construct a 

semantic representation of the 'best', possibly 

partial, parse of each sentence. This predicate logic-

like representation is passed on as input to the 

discourse interpretation stage. 

Discourse Interpretation 

The discourse interpreter adds the semantic 

representation of each sentence to a predefined 

domain model, made up of an ontology, or concept 

hierarchy, plus inheritable properties and inference 

rules associated with concepts. The domain model 

is gradually populated with instances of concepts 

from the text to become a discourse model. A 

powerful coreference mechanism attempts to merge 

each newly introduced instance with an existing 

one, subject to various syntactic and semantic 

constraints. Inference rules of particular instance 

types may then fire to hypothesize the existence of 

instances required to fill a template (e.g. an 

organism with a source relation to an enzyme), and 

the coreference mechanism will then attempt to 

resolve the hypothesized instances with actual 

instances from the text. 

The template writer module reads off the required 

information from the final discourse model and 

formats it as in the template specification. 

Initial domain models for the EMPathIE and 

PASTA tasks have been manually constructed 

directly from the template definition. This involves 

the addition of concept nodes to the system's 

semantic network for each of the entities required in 

the template, with subhierarchies for possible 

subtypes, as required. Property types are added for 

each of the template slots (e.g. concentration, 

temperature), and consequence rules added to 

hypothesize instances for each slot of a template 

entity; from an appropriate textual trigger. The 

Discourse Interpreter's general coreference 

mechanism is then used to attempt to resolve 

hypothesized instances with instances mentioned in 

the text. Subsequent refinement of these models 

will involve extending the concept subhierarchies 

and the addition of coreference constraints on the 

hypothesized instances, based on available training 

data 

RESULTS AND EVALUATION

Evaluation

So far, a complete EMPathIE system exists which 

has been developed by concentrating on the full 

texts of six journal papers (the development corpus) 

and evaluated against a corpus of a further seven 

journal papers (the evaluation corpus). Filled 

templates for all thirteen of these journal papers 

were produced by trained biochemists highlighting 

key entities on paper copies of the texts and adding 

marginal notes where necessary to specify 

compound roles in interactions and any additional 

slot values such as concentration, temperature, etc. 

The annotations were translated to template format 

by the system developer (with the system frozen 

before evaluation texts were seen), but some degree 

of subjective interpretation was required in this 

process. The annotation would therefore probably 

be difficult to reproduce without a detailed task 

specification document, which would be aided by 

inter-annotator agreement studies to highlight areas 

of ambiguity in the task definition. However, the 

current templates at least have the advantage of 

being produced with some degree of consistency by 

the developer alone, and so do allow a useful 

measure of the system's accuracy. 

14



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/gaizauskas/gaizauskas.pdf  

Overall template-filling results are shown in 

Table 1. The columns show: the number of items 

the system correctly identified (CORrect), the 

number of items where the system response and the 

answer key differed (INCorrect), the number of 

items the system missed (MISsing), the number the 

system spuriously proposed (SPUrious) and the 

standard metrics of RECall and PREcision; 

discussed in section 2 above. Here "items" refers to 

filled slot occurrences in the templates. Scoring 

proceeds by first aligning template objects in the 

system response with objects in the answer key and 

then counting the number of matching slot fills in 

the aligned objects (see [4] for details). 

Test Set COR INC MIS SPU REC PRE 

Dev 150 121 330 61 25 45 

Eval 213 193 518 93 23 43 

In addition to evaluating the template filling 

capabilities of the prototype we have evaluated its 

performance at correctly identifying and classifying 

term classes in the texts (this corresponds to the 

MUC named entity task). To do this six of the 

seven evaluation corpus articles were manually 

annotated for eleven terminology or named entity 

classes. The results are shown in Table 2.¶

Name_Type COR INC MIS SPU REC PRE

compound 538 27 553 39 48 89

element 24 0 19 14 56 63

enzyme 612 0 12 23 98 96

genus 15 0 18 11 45 58

location 33 1 15 24 67 57

measure 566 0 120 81 83 87

organism 188 9 53 64 75 72

organization 35 6 31 8 49 71

pathway 0 0 15 4 0 0

person 17 1 58 9 22 63

TOTALS 2028 44 894 277 68 86

The development of the PASTA system has 

reached the stage where a prototype system exists 

which can produce templates as described above. A 

corpus of 52 abstracts of journal articles has been 

manually annotated with terminology classes, by 

the system developer with the assistance of a  

Name_Type COR INC MIS SPU REC PRE

protein 358 0 52 12 87 97

species 111 0 22 3 83 97

residue 175 0 4 13 98 93

site 53 0 34 10 61 84

region 19 0 24 0 44 100

2_struct 78 0 1 1 99 99

sup_struct 84 0 0 5 100 94

4_struct 115 0 5 3 96 97

chain 27 0 12 0 69 100

base 38 0 0 1 100 97

atom 42 0 2 10 95 81

nonprotein 107 0 0 21 100 84

interaction 10 0 3 1 77 91

TOTALS 1217 0 159 80 88 94

Table 3: Initial Named Entity results for PASTA

molecular biologist, to allow an automatic 

evaluation of the PASTA terminology system using 

the MUC scoring software. Table 3 shows some 

preliminary results for the main terminology 

classes. 

Discussion

It should be stressed that these evaluation results 

are very preliminary, and we would expect them to 

improve substantially with further development. 

The overall EMPathIE template filling precision 

scores for both the development and evaluation sets 

are very close to the score of the LaSIE system in 

the MUC-7 evaluation (42%). Recall is noticeably 

lower however (47% in MUC-7), but this is 

certainly affected by the limited amount of training 

data available, giving a much smaller set of key 

words and phrases to use as cues for template fills. 

Table 1: Initial Template results for EMPathIE

Table 2: Initial Named Entity results for EMPathIE
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It is clear that the EMPathIE task requires much 

more specialist domain-specific knowledge than the 

MUC tasks, which typically require only general 

knowledge of companies and business procedures. 

The EMPathIE task, as the process of manually 

filling the templates has demonstrated, can only be 

performed with the use of detailed domain 

knowledge, very little of which has been 

incorporated into the system. For example, a single 

mention of cyanide in one of the evaluation texts 

causes its entry as an inhibitor in the manually 

filled template, though no explicit information in 

the text would allow it to be classified as such. 

Only domain-specific knowledge that cyanide is 

usually an inhibitor allows it to be classified in this 

case. Such cases are missed completely by the 

system because the specific knowledge required has 

not been entered, mainly due to the fact, that the 

developer is not an expert in the domain. 

Further consultation with experts would allow more 

domain-specific information to be entered, 

improving recall in particular. With this, and a more 

extensive training set, it should be entirely possible 

for system performance on the EMPathIE task to 

equal the best MUC-7 scores (48% recall, 68% 

precision, from different systems). 

The terminology recognition results are more 

encouraging, and compare favorably with MUC 

named entity results, particularly the PASTA 

results. It should be noted that both the EMPathIE 

and PASTA terminology recognition tasks require 

the recognition of a considerably broader class of 

terms than the MUC named entity task and that 

considerably smaller sets of training data were 

available. The discrepancy between the EMPathIE 

and PASTA results on this task can probably be 

explained by the fact that there was in fact no 

training data available specifically for the 

EMPathIE task before the evaluation was carried 

out, only the informal feedback of biologists 

looking at system output. Furthermore, the 

annotation of texts for the EMPathIE terminology 

task was carried out by a larger group of people 

than carried out the PASTA annotation task and 

without a formal annotation specification. Thus, 

this annotated data is almost certainly less 

consistently annotated and the results should 

therefore be interpreted with some caution. 

CONCLUSION

Between these two projects much of the low-level 

work of moving IE systems into the new domain of 

molecular biology and the new text genre of journal 

papers has been carried out. We have generalized 

our software to cope with longer, multi-sectioned 

articles with embedded SGML; we have 

generalized tokenization routines to cope with 

scientific nomenclature and terminology 

recognition procedures to deal with a broad range 

of molecular biological terminology. All of this 

work is reusable by any IE application in the area of 

molecular biology. 

In addition we have made good progress in 

designing template elements, template relations, 

and scenario templates whose utility is attested by 

working molecular biologists and in adapting our 

IE software to fill these templates. Preliminary 

evaluations demonstrate the difficulty of the task, 

but results are encouraging, and the steps to take to 

improve performance straightforward. Thus, we are 

optimistic that IE techniques will deliver novel and 

effective ways for scientists to make use of the core 

literature that defines their disciplines.
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¶

In calculating both EMPathie and PASTA terminology 

results we have used a weak criterion of correctness whereby a 
response is correct if its type matches the type of the answer key 
and its text extent matches a substring of the key's extent. 
Insisting on the stronger matching criterion of strict string 
identity lowers recall and precision scores by approximately 4 % 
overall
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ABSTRACT

INTRODUCTION

Combinatorial chemistry is the process whereby 

large numbers of compounds are synthesized 

simultaneously in what are known as combinatorial 

libraries. The technique, together with the related 

technology of high-throughput screening, is now 

used routinely in programs for the discovery of 

novel bioactive compounds in the pharmaceutical 

and agrochemical industries. In contrast, traditional 

approaches to medicinal chemistry involved 

synthesizing one compound at a time, testing or 

screening that compound for activity, and then 

iteratively designing and testing new compounds 

based on the results. Using traditional methods, a 

medicinal chemist can synthesize approximately 50 

compounds per year. The new technologies, which 

were introduced in the late eighties and early 

nineties, have vastly increased throughput so that 

tens of thousands of compounds can now be made 

in a single cycle. 

Initially the belief was that simply making and 

testing large numbers of compounds would lead to 

increased chances of finding actives. However, it 

soon became apparent that it would not be possible 

to make all potential compounds due to the 

combinatorial effect, and nor, in fact, was this 

desirable. In a typical combinatorial reaction the 

number of suitable reactants that are available just 

from commercial sources would result in billions of 

potential products, which far exceeds the capacity 

of current combinatorial technologies. For example, 

Walters et al. [1] report that if all suitable reactants 

for constructing a benzodiazepine library are 

extracted from the Available Chemicals Directory 

the resulting library would consist of in the order of 

109 compounds. Thus, there is a need to select the 

compounds that are actually made and tested. The 

libraries that could potentially be made using all 

available reactants are referred to as virtual libraries 

and virtual screening is the process of reducing a 

The techniques of combinatorial chemistry and high throughput screening are in widespread use in the
pharmaceutical and agrochemical industries. During the last few years, many different computational approaches
have been developed to select compounds for screening and to design combinatorial libraries. The main
approaches are reviewed in the first half of this paper. In the second half, we describe how the library design
program SELECT has be used to demonstrate that significant improvements in diversity can be achieved by
basing library design in product space rather than in reactant space. A series of experiments are reported
involving two combinatorial libraries, three different descriptors and three different diversity indices. Finally, a
further significant advantage of performing library design in product space is the ability to optimise multiple
properties simultaneously. Thus, SELECT can be used to design libraries that are both diverse and have drug-
like physiochemical properties.
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virtual library to a practical size for combinatorial 

synthesis and high-throughput screening. Virtual 

screening techniques can also be used to select 

compounds for screening from in-house databases 

and to determine which compounds should be 

purchased from external suppliers in compound 

acquisition programs. 

DIVERSITY ANALYSIS AND COMPOUND 

SELECTION STRATEGIES

Virtual screening, or compound selection, 

techniques build on the similar property principle, 

which states that structurally similar molecules are 

likely to have similar properties. [2] The converse 

of this suggests that dissimilar molecules will tend 

to have different properties. This is illustrated in 

Figure 1, which represents a structure space based 

on two orthogonal properties. Assuming that the 

properties are relevant to biological activity, then 

molecules that are close in the space will tend to 

have similar biological activity. [3] In terms of a 

screening experiment, the molecules convey 

redundant SAR information: they have similar 

structure and similar activity. In library design and 

HTS, usually the aim is to screen compounds 

against a number of different biological targets and 

a subset of compounds that is evenly spread 

throughout structure space is likely to maximize 

coverage of biological activity space. Therefore, 

there has been a great deal of interest in selecting 

diverse subsets of compounds that cover as much of 

the structure space as possible without including 

redundancy.  

Many diversity measures and subset selection 

procedures are based on calculations of similarities 

or dissimilarities between molecules. [4] 

Consequently, there has been a great deal of interest 

in measuring structural similarity and dissimilarity 

[5] and in applying the measures to analyze the 

diversity of sets compounds [6] and to design 

diverse combinatorial libraries. Measuring the 

similarity between two compounds requires that the 

molecules are described using some numerical 

descriptors and a coefficient that is used to quantify 

the degree of similarity between the two sets of 

descriptors associated with the molecules. [5] The 

design of diverse libraries requires three major 

components: the descriptors used to characterize the 

molecules; a subset selection procedure; and a 

diversity index that quantifies the degree of 

diversity in the resulting library. 

DESCRIPTORS

Many different descriptors have been developed for 

both similarity and diversity analyses. They have 

been reviewed extensively (see, for example, [7]) 

and will be described briefly here. For use in library 

design, descriptors should have the following 

characteristics: they should be relevant, that is they 

should capture structural properties that influence 

the biological activity of interest; they should be 

rapid to calculate to enable them to be applied to 

large datasets; and ideally they should also be 

chemically interpretable. Descriptors can be 

categorized as one-, two- or three-dimensional. 

One-dimensional descriptors are single valued 

integers or real numbers and they include 

physicochemical properties, such as molecular 

Property P1

P
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p
e
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y
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2

Figure 1: Given an active molecule (red) in a 
property space that is relevant to biological activity, 
then according to the similar property principle 
molecules that are close to it (green) are also likely to 
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weight, molar refractivity etc., and topological 

indices, which are indices calculated from the 2D 

representation of a molecule as a graph. There can 

be a large number of such descriptors, for example, 

the Molconn-Z program [8] generates several 

hundreds of indices, and typically in diversity 

analyses the number of variables is reduced to a 

small number that contains most of the information 

using a technique such as principal components 

analysis. Two-dimensional fingerprints are 

probably the most commonly used descriptors in 

diversity analyses. Three- and four-point 

pharmacophores are represented as binary vectors 

or bitstrings, where each bit is set to 0 or 1, 

depending on whether a particular substructural 

feature is present or absent from a molecule. 

Examples include, UNITY [9] and Daylight [10] 

fingerprints and MACCS screens. [11] Three-

dimensional descriptors are also used in diversity 

analyses, for example, three- and four-point 

pharmacophores. [12] A pharmacophore point is a 

substructural feature that is thought likely to 

influence binding to a receptor, for example, a 

hydrogen bond donor. They are represented as 

binary vectors with each bit corresponding to a 

particular arrangement of pharmacophore points in 

3D space. Although they are appealing as 

descriptors of bioactivity since receptor binding is a 

3D event, the calculation of the descriptors is a non-

trivial task due to the fact that molecules in general 

are flexible. 

Given a set of molecular descriptors, the similarity 

(and hence dissimilarity) between two molecules 

can be calculated using an association coefficient 

such as the Tanimoto coefficient, which is typically 

used with binary data such as fingerprints, or a 

distance measure such as Euclidean distance, which 

is typically used with physicochemical property 

data. Association coefficients and distance 

measures are reviewed by Willett et al. [5]

Currently, there is no clear picture as to which 

descriptors are best. A number of evaluation studies 

have been performed that tend to suggest that 2D 

fingerprints are most effective (see, for example, 

[13] and [14]), however, there is a need for further 

studies of this kind. 

SUBSET SELECTION 

Given a set of molecular descriptors and assuming 

we have some way of measuring diversity via a 

diversity index, then, in theory, the most diverse 

subset of a given size can be found by generating 

all possible subsets and calculating the diversity of 

each one. However, exploring all possible subsets 

of size n within a dataset of size N requires 

evaluation of: 

)!nN(!n
!N
−

subsets. This is not computationally feasible for 

typical values of n and N encountered in library 

design. Therefore, computationally efficient 

methods are required to find subsets that are 

approximate solutions. The subset selection 

methods that have been applied to selecting diverse 

subsets can be divided into four different 

categories: [15] dissimilarity-based compound 

selection methods; clustering; partitioning and 

optimization techniques. Each of these methods 

will be described briefly. 

In Dissimilarity-Based Compound Selection 

(DBCS), [16] heuristics are used to provide good, 

although non-optimal, solutions to the subset 

problem. The basic algorithm involves initially 

selecting the first compound and placing it in the 

subset and then an iterative loop is entered where in 

each iteration the compound remaining in the 

dataset that is most dissimilar to those already in 

the subset is selected and added to the subset. The 

algorithm terminates when the required number of 

compounds has been selected. The various 
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algorithms developed for DBCS differ in the way 

the first compound is selected and in the way the 

dissimilarity between one compound and a group of 

compounds is measured. For example, the first 

compound may be selected at random, as the one 

that is in the center of the dataset, or as the one that 

is most dissimilar to all the others. The most 

common ways in which the dissimilarity between 

one compound and a set of compounds is measured 

are known as MaxMin and MaxSum. MaxMin 

selects the compound that has maximum distance to 

its closest neighbor and MaxSum selects the 

compound whose average distance to all the 

compounds in the subset is a maximum. The 

algorithms are typically used with 2D fingerprints 

or topological indices as descriptors and the 

distance coefficients for measuring pairwise 

dissimilarities are usually the complements of the 

Tanimoto coefficient and the cosine coefficient. 

Clustering [17] is the process of dividing objects 

into groups, or clusters, so that the objects within a 

cluster are similar and objects from different 

clusters are dissimilar. A representative subset can 

then be chosen by selecting one or more 

compounds from each cluster. Thus, clustering is an 

indirect way of selecting a subset since the 

molecules must first be clustered. The clustering 

process itself is computationally expensive whereas 

the subsequent selection process is trivial. As with 

DBCS, clustering also requires the ability to 

measure similarities or distances between objects 

and in subset selection it is most often used with 2D 

fingerprints. There are many different approaches 

to clustering but the method that has been found to 

be most effective is Ward's clustering [13] which is 

a hierarchical agglomerative method. The 

computational expense of clustering means that the 

size of datasets that can be handled is limited. 

Partitioning, or cell-based, approaches [12] to 

subset selection involve firstly defining a low 

dimensional chemistry space, for example, one that 

is based on molecular properties such as molecular 

weight, lipophilicity etc. The range of values 

associated with each property is then divided into a 

series of bins and the combinatorial product of all 

bins defines a set of cells that cover the entire 

space. The molecules are then positioned within the 

space according to their particular properties. A 

subset can be chosen by selecting one molecule 

from each cell. Partitioning methods are sometimes 

referred to as absolute diversity measures, rather 

than relative measures since the space is defined 

independently of the molecules that are positioned 

within it, unlike clustering, where the clusters are 

determined by the intermolecular distances 

themselves. This characteristic of partitioning 

methods means that it is easy to perform database 

comparisons, which can be a very useful procedure 

in library design. Partitioning schemes have been 

developed for low-dimensional data such as 

physicochemical properties and also for a new type 

of descriptor called BCUT descriptors. [12] 

Partitioning schemes are also used with the vector 

based, one-dimensional, three- and four-point 

pharmacophores described earlier. One difference 

with pharmacophore data compared to 

physicochemical property data is that a single 

molecule will typically occupy more than one cell 

and in some cases an individual molecule can 

occupy a large number of cells, such molecules are 

sometimes called promiscuous. 

The final category of subset selection algorithms is 

that of optimization techniques. Several methods 

have been developed that fall into this category. 

The methods require definition of a function or 

diversity index that is to be optimized. Examples of 

algorithms that have been applied to subset 

selection include genetic algorithms [18,19,20], 

simulated annealing, [21] and experimental design 

techniques. [22] In these algorithms, the function is 
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calculated many times and hence the complexity of 

the calculation is restricted. Diversity indices that 

are used with optimization techniques include 

distance based indices such as the sum of pairwise 

dissimilarities [18] and the number of distinct 

pharmacophores [19] covered by a subset of 

compounds. 

COMBINATORIAL LIBRARY DESIGN

The discussion so far has concentrated on strategies 

for the selection of subsets of compounds with 

particular reference to the selection of HTS sets 

from, for example, in-house databases, and the 

selection of compounds to purchase from external 

suppliers. In combinatorial library design, any of 

the techniques already described can be applied 

directly to choose subsets of reactants from those 

that are available for use in a combinatorial 

synthesis. The subsets of reactants are then used to 

build a combinatorial library in a process known as 

reactant-based selection. This approach is shown 

schematically in the top-half of Figure 2. Indeed, 

most combinatorial library design efforts to date 

have been based on reactant-based selection. The 

methods assume that by maximizing diversity in the 

reactants, maximum diversity in the product 

molecules will be achieved. However, recent 

evidence suggests that significantly more diverse 

libraries can be achieved if selection is performed 

in product space [18,23,24,25].

In product-based library design a virtual library is 

enumerated using all available reactants, as shown 

in the bottom-half of Figure 2. The simplest way of 

performing product-based selection is to apply any 

of the techniques described previously in a process 

known as cherry-picking. This approach, however, 

is synthetically inefficient as far as combinatorial 

chemistry is concerned since it does not take into 

account the combinatorial constraint and hence is 

highly unlikely to result in a combinatorial library. 

The synthetic inefficiency of cherry-picking is 

shown in Figure 3, where a two-component 

combinatorial reaction is represented by a two-

dimensional array. The rows represent the reactants 

Subset 
Selection

Subset Subset 
Reactant PoolsReactant Pools

nn11 nn22

r1 r2

nn11 nn22

Combinatorial 
Library

Synthesis

NN11 NN22

R1 R2

Reactant Pools

NN11 NN22

nn11 nn22

Enumerate

Virtual Library

Combinatorial 
Library

Combinatorial
Subset 
Selection

nn11 nn22
Cherry Picking

Library

Figure 2: Three different strategies are available for designing diverse combinatorial libraries. They are reactant-based selection, shown in 
the top half of the figure; cherry-picking in product space; and combinatorial subset selection in product space, known as product-based 
selection. 
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in one pool, the columns represent the reactants in 

the second pool and the elements represent the full 

virtual library. A cherry-picked subset is equivalent 

to picking compounds from anywhere in the array, 

for example the subset of four compounds that are 

highlighted. Synthesizing these four compounds 

combinatorially would require synthesis of 12 

products in a 4 × 3 library.

A combinatorial subset can be selected by 

intersecting the rows and columns of the matrix, as 

shown in Figure 4 where the products of a 2 × 2 

combinatorial subset library are highlighted. 

Generating all possible combinatorial subsets in 

order to find the most diverse is then equivalent to 

permuting the rows and columns of the matrix in all 

possible ways. However, matrix manipulation of 

this sort represents an enormous search space and, 

in practice, investigating all possible combinatorial 

subsets is infeasible for real library design 

problems. Once again, an approximate solution can 

be found by using an optimization technique. We 

have implemented a genetic algorithm (GA) that is 

able to select a combinatorial subset from a full 

virtual library of products, within the program 

called SELECT. [24] In SELECT, each 

chromosome of the GA encodes a combinatorial 

subset in the form of lists of the reactants that make 

up the library. The fitness function of the GA 

involves enumerating the sub-library and measuring 

its diversity. The GA iterates through generations 

using crossover, mutation and roulette wheel 

selection until it converges on an optimally diverse 

library. Diversity can be measured using a number 

of different molecular descriptors and diversity 

indices, for example, Daylight fingerprints and the 

sum-of-pairwise dissimilarities using the cosine 

coefficient. 

SELECT has been used to compare the diversity 

that can be achieved with reactant-based selection 

relative to product-based selection. [18,23] The 

libraries that were examined are a two-component 

amide library (Figure 5) where the virtual library of 

10,000 products is built from 100 amides and 100 

carboxylic acids, and a three-component thiazoline-

2-imine library (Figure 6), also of 10,000 products, 

which is built from 10 isothiocyanates, 40 amines 

and 25 haloketones. 

Y1 Y2 Y3 Y4 Y5

X1 X1Y1 X1Y2 X1Y3 X1Y4 X1Y5

X2 X2Y1 X2Y2 X2Y3 X2Y4 X2Y5

X3 X3Y1 X3Y2 X3Y3 X3Y4 X3Y5

X4 X4Y1 X4Y2 X4Y3 X4Y4 X4Y5

X5 X5Y1 X5Y2 X5Y3 X5Y4 X5Y5

Figure 4: A combinatorial subset can be selected by intersecting 
the rows and columns of the matrix. 

Figure 5: The amide library.
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Figure 3: A two component combinatorial library is 
represented as a two-dimensional array with the 
reactants in one pool represented by the rows and the 
reactants in the second pool represented by the 
columns. A cherry-picked library consisting of four 
molecules is shown highlighted in red. The 4 × 3 
combinatorial library that contains these four 
molecules is shown in blue. 

Y1 Y2 Y3 Y4 Y5

X1 X1Y1 X1Y2 X1Y3 X1Y4 X1Y5

X2 X2Y1 X2Y2 X2Y3 X2Y4 X2Y5

X3 X3Y1 X3Y2 X3Y3 X3Y4 X3Y5

X4 X4Y1 X4Y2 X4Y3 X4Y4 X4Y5

X5 X5Y1 X5Y2 X5Y3 X5Y4 X5Y5
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Index Descriptors Reactants Products Min %∆

SUMCOS Daylight 0.565 
(0.002) 

0.586
(0.002) 

0.356 9.4 

SUMTAN  0.715 
(0.002) 

0.744
(0.002) 

0.522 12.5 

NN  0.253 
(0.003) 

0.305
(0.001) 

0.045 20.1 

SUMCOS UNITY 0.552 
(0.002) 

0.566
(0.002) 

0.339 5.9 

SUMTAN  0.715 0.727 0.507 5.5 

NN  0.243 0.294 0.045 20.5 

SUMCOS Molconn-Z 0.278 
(0.001) 

0.288
(0.000) 

0.121 6.5 

SUMTAN  0.451 0.470 0.217 7.5 

NN  0.107 0.150 0.036 37.7 

Table 1: Reactant-based versus product-based diversities for 30 
× 30 amide libraries selected from a full virtual library of 100 
× 100. The column headed Min gives the diversity calculated 
when SELECT was run to find combinatorial subsets with 
minimum diversity. The final column, %∆, gives the percentage 
difference in diversity between product-based and reactant-based 
selection relative to the range of values possible (calculated by 
subtracting the Min diversity from the Product diversity).

In both cases the reactants were selected at random 

from the SPRESI database. [26] The experiments 

were performed for three different types of 

descriptors, namely 1024 bit Daylight fingerprints, 

992 bit UNITY fingerprints, and 538 Molconn-Z 

parameters that were standardized in the range 0-1. 

Three different diversity indices were used, namely, 

the sum-of-pairwise dissimilarities using the cosine 

coefficient, the sum-of-pairwise dissimilarities 

using the Tanimoto coefficient, and the average 

nearest neighbor distance using the Tanimoto 

coefficient. The results are shown in Tables 1 and 2 

for the amide library and the thiazoline-2-imine 

library, respectively. In all cases it can be seen that 

product-based designs result in more diverse 

libraries than do reactant-based designs. 

The effect is more pronounced over all the 

descriptors and metrics for the three-component 

thiazoline-2-imine library. Unlike reactant-based 

selection, product-based selection takes into 

account the relationships between reactants in 

different pools and hence it is reasonable to expect 

that the relative effectiveness of product-based 

selection should increase with the number of 

reactant pools. 

Index Descriptor % ∆

SUMCOS Daylight 24.8 

SUMTAN  22.3 

NN  34.6 

SUMCOS UNITY 12.9 

SUMTAN  8.0 

NN  35.6 

SUMCOS Molconn-Z 12.6 

SUMTAN  11.4 

NN  49.2 

Table 2: The percentage difference between reactant-based and 
product-based diversities is reported for 6 × 10 × 15 thiazoline-
2-imine libraries selected from a full virtual library of 10 
× 40 × 25.

The effectiveness of product-based selection versus 

reactant-based selection using SUMCOS or SUMTAN

as the diversity index is more pronounced for 

Daylight fingerprints than for UNITY fingerprints 

or Molconn-Z parameters. Daylight fingerprints are 

based on calculating the paths of up to 7 atoms 

within a molecule. When they are calculated for a 

product molecule there are likely to be several paths 

that span reactants that originate in different pools, 

thus there will be parts of the fingerprint that are 

unique to the product molecule and that are not 

found in its constituent reactants. This is especially 

the case for the three-component library. Thus it is 

not surprising that better results can be achieved by 
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+
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Figure 6: The thiazoline-2-imine library.

25



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/gillet/gillet.pdf                            

performing the analysis in product-space. UNITY 

fingerprints, however, also include some structural 

keys that record the presence or absence of 

particular fragments. The structural keys tend to be 

more localized than the path-based fragments and 

hence there will be fewer bits that arise in the 

product molecules only. It is more difficult to 

explain the performance seen with the Molconn-Z 

parameters since they encompass a huge range of 

types of molecular descriptor. 

The difference between product-based and reactant-

based selection is most marked for the NN diversity 

index. Combinatorial libraries tend to contain 

clusters of closely related compounds since each 

reactant in a reactant pool exists in a product 

molecule with every reactant in the other pools. The 

presence of closely related compounds can still 

result in relatively high diversity values using both 

the SUMCOS and SUMTAN indices. [27] However, 

the presence of clusters of compounds will result in 

low diversity values according to the NN index, 

which prefers an even distribution of compounds. 

Thus, maximizing the NN index in product space is 

likely to produce a better spread of compounds 

throughout the space than can be achieved by just 

considering the reactants alone. 

DRUG-SPACE

Early libraries designed on the basis of diversity did 

show increased rates of finding hits. However, 

inspection of the hits revealed that they tended to 

have undesirable properties as far as potential drug 

candidates are concerned. For example, they tended 

to have high molecular weights, to be too lipophilic, 

or to be insoluble. [28] In fact, it appears that 

maximizing diversity tends to bias the molecules in 

libraries away from desired ranges of these 

properties. Thus, the emphasis in library design has 

now shifted towards designing libraries that, while 

still diverse, contain compounds constrained to 

have drug-like physicochemical properties. 

One way in which this is attempted is by applying 

preliminary filters to eliminate non-drug-like 

molecules from the reactant pools, for example, 

removing toxic and reactive groups; compounds 

with a large number of rotatable bonds; and 

compounds with high molecular weights. Some 

subset selection techniques now use additional 

properties within the design, for example, tailored 

D-optimal design [28] and the use of secondary 

properties to select compounds from cells in a 

Figure 7: Drug-like weights are used to discriminate 
between compounds in WDI and compounds in the SPRESI
database.
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Figure 8: Weights have been derived to discriminate between 
compounds having antibiotic activity from non-drug-like 
molecules as found in SPRESI
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partitioning procedure.  

Recently, several more sophisticated approaches 

have been described that attempt to predict drug-

likeness. [29-32] These methods have their basis in 

the fact that physicochemical properties are 

distributed differently in databases of drug-like 

molecules relative to non-drug-like molecules. [29] 

An example of this type of approach is the 

bioactivity profiles approach we have developed, 

[29] where a series of weights is derived that 

represent different values of physicochemical 

properties. The weights can be used to score and 

rank molecules according to their ability to 

discriminate between active and inactive 

compounds. Optimum weights are found using a 

GA. Figure 7 shows the results of applying drug-

like weights to discriminate between molecules in 

the World Drugs Index, [33] which represents drug-

like molecules, from molecules in SPRESI which 

represents non-drug-like molecules. The method 

can be tailored for different classes of activity, for 

example, in Figure 8, weights have been derived to 

discriminate antibiotics from non-drugs. This 

method, and similar methods, can be used to rank 

datasets for screening so that the compounds that 

are predicted to be drug-like are screened first, and 

they can also be used to choose compounds from 

external suppliers in compound acquisition 

programs. In the library design context they could 

be used to choose drug-like reactants, however, 

they are less suited to product-based design since 

they do not take account of the combinatorial 

constraint. 

DESIGNING DRUG-LIKE COMBINATORIAL 

LIBRARIES

We have extended the SELECT program to 

perform multi-objective optimization in product-

space in order that libraries can be designed on 

multiple properties simultaneously. The fitness 

function of the GA now consists of a weighted sum 

as shown: 

The objectives on library design would typically 

include diversity along with a number of other 

properties. The complementarity term can be used 

to design a library that is complementary to an 

existing library by maximizing the diversity that 

would result if the two libraries were merged. The 

third term represents the cost of synthesizing a 

library which can be estimated from the cost of the 

individual reactants that constitute the library. The 

remaining terms can be used to tailor the 

physicochemical property profiles of a library. The 

properties of a library are optimized by comparing 

the distribution of the property within a library with 

the distribution of the same property in some 

reference collection, for example, this could be a 

collection of drug-like molecules such as those 

found in the WDI. The weights are user-definable 

and are usually set to maximize diversity and 

complementarity while minimizing normalized 

values of cost and the RMSD between the profile of 

the properties within the library and the reference 

profiles. 

f(n) =w1.diversity + w2.complementarity + 
w3.cost + w4.property1 + w5.property2 … 

Figure 9: The molecular weight profiles of amide libraries designed 
using reactant-based selection (in yellow) are compared with 
libraries that are optimized in product-space (green) and the profile 
of molecular weights found in WDI (blue). 
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The effect of multi-component optimization can be 

seen in Figure 9 where the molecular weight profile 

of an amide library selected by performing reactant-

based selection on diversity alone is show in 

yellow. The profile of a library selected by 

performing product-based selection based on 

diversity and molecular weight simultaneously is 

shown in green. The molecular weight profile is 

optimized relative to the profile of molecular 

weight found in WDI, which is shown in blue. It 

can be seen that reactant-based selection often 

results in libraries with poor physicochemical 

properties. The product-based selection, conversely, 

has enabled the design of libraries with profiles that 

are much more WDI-like and that are thus more 

likely to contain bioactive compounds. 

CONCLUSIONS

Many different approaches to designing diverse 

libraries have been developed, involving a variety 

of different subset selection techniques and 

molecular descriptors. We have shown that 

product-based selection results in libraries that are 

more diverse than if selection is performed at the 

reactant-level. Experience has shown that libraries 

designed on diversity alone have a tendency to 

contain non-drug-like molecules and it is now 

apparent that other criteria should also be taken into 

account. Product-based designs such as that 

developed in the SELECT program allow for 

multiple properties to be optimized simultaneously. 
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ABSTRACT

INTRODUCTION

Nearest neighbor searching is considered first for 

one main reason: its utility for the clustering 

algorithms reviewed later. They are the building 

blocks for the most efficient implementations of 

hierarchical clustering algorithms, and they can be 

used to speed up other families of clustering 

algorithms. We will then deal with facets of visual 

or image representations of data sets.  

The best match or nearest neighbor problem is 

important in many disciplines. In statistics, k-

nearest neighbors, where k can be 1, 2, etc., is a 

method of non-parametric discriminant analysis. In 

pattern recognition, this is a widely used method for 

unsupervised classification (see [1]).  

Nearest neighbor algorithms are the building block 

of clustering algorithms based on nearest neighbor 

chains; or of effective heuristic solutions for 

combinatorial optimization algorithms such as the 

traveling salesman problem, which is a 

paradigmatic problem in many areas. In the 

database and more particularly data mining fields, 

NN searching is called similarity query, or 

similarity join. [2] 

In the next section, we begin with data structures 

where the objective is to break the O(n) barrier for 

determining the nearest neighbor (NN) of a point. A 

database record or tuple may be taken as a point in 

a space of dimensionality m, the latter being the 

associated number of fields or attributes. These 

approaches have been very successful, but they are 

restricted to low dimensional NN-searching. For 

higher dimensional data, a wide range of bounding 

approaches have been proposed, which remain O(n)

algorithms but with a low constant of 

proportionality. 

We assume familiarity with basic notions of 

similarity and distance, the triangular inequality, 

ultrametric spaces, Jaccard and other coefficients, 

normalization and standardization. For an implicit 

treatment of data theory and data coding, see [3]. 

Useful background reading can be found in [4]. In 

We review the time and storage costs of search and clustering algorithms. We exemplify these, based on case
studies in astronomy, information retrieval, visual user interfaces, chemical databases, and other areas. First we
describe nearest neighbor searching, an elemental form of clustering, and a basis for clustering algorithms to
follow. Next we review a number of families of clustering algorithms. Finally we discuss visual or image 
representations of data sets, from which a number of interesting algorithmic developments arise.

‘Now’, said Rabbit, ‘this is a search, and I've organised it -‘
‘Done what to it?’ said Pooh.

‘Organised it. Which means - well, it's what you do to a Search,
when you don't all look in the same place at once.’

A.A. Milne, The House at Pooh Corner (1928) –M. S. Zakaria
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particular output representational models include 

discrete structures, e.g. rooted labeled trees or 

dendrograms, and spatial structures, [5] with many 

hybrids.  

BINNING OR BUCKETING

In this approach to NN-searching, a preprocessing 

stage precedes the searching stage. All points are 

mapped onto indexed cellular regions of space, so 

that NNs are found in the same or in closely 

adjacent cells. Taking the plane as as example, and 

considering points (xi, yi), the maximum and 

minimum values on all coordinates are obtained 

(e.g. (xj
min , yj

min )). Consider the mapping (Fig. 1)  

where constant r is chosen in terms of the number 

of equally spaced categories into which the interval 

[xj
min, xj

max] is to be divided. This gives to xi an 

integer value between 0 and �(xij
max- xij

min)/r� for 

each attribute j. O(nm) time is required to obtain the 

transformation of all n points, and the result may be 

stored as a linked list with a pointer from each cell 

identifier to the set of points mapped onto that cell. 

NN-searching begins by finding the closest point 

among those that have been mapped onto the same 

grid cell as the target point. This gives a current NN 

point. A closer point may be mapped onto some 

other grid cell if the distance between target point 

and current NN point is greater than the distance 

between the target point and any of the boundaries 

of the cell containing it. Some further 

implementation details can be found in [6]. 

A powerful theoretical result regarding this 

approach is as follows. For uniformly distributed 

points, the NN of a point is found in O(1), or 

constant, expected time (see [7] or [8] for proof). 

Therefore this approach will work well if 

approximate uniformity can be assumed or if the 

data can be broken down into regions of 

approximately uniformly distributed points. 

Simple Fortran code for this approach is listed, and 

discussed, in [9]. The search through adjacent cells 

requires time that increases exponentially with 

dimensionality (if it is assumed that the number of 

points assigned to each cell is approximately equal). 

As a result, this approach is suitable for low 

dimensions only. Rohlf [10] reports on work in 

dimensions 2, 3, and 4; and Murtagh [11] in the 

plane. Rohlf also mentions the use of the first 3 

principal components to approximate a set of points 

in 15-dimensional space. 

From the constant expected time NN search result, 

particular hierarchical agglomerative clustering 

methods can be shown to be of linear expected 

time, O(n). [11] The expected time complexity for 

Ward's minimum variance method is given as   O(n

log n). Results on the hierarchical clustering of up 

to 12,000 points are discussed. 
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xmin, ymin = 0,0, xmax, ymax = 50,40, r = 10 

Point (22,32) is mapped onto cell (2,3); 
point (8,13) is mapped onto cell (0,1). 

Figure 1: Example of simple binning in the plane.
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The limitation on these very appealing 

computational complexity results is that they are 

only really feasible for data in the plane. Bellman's 

curse of dimensionality manifests itself here as 

always. For dimensions greater than 2 or 3 we 

proceed to the situation where a binary search tree 

can provide us with a good preprocessing of our 

data. 

MULTIDIMENSIONAL BINARY SEARCH OR 

KD TREE

A binary search tree preprocesses the data to be 

searched through by two-way subdivision, and 

subdivisions continue until some prespecified 

number of data points is arrived at. See example in 

Fig. 2. We associate with each node of the decision 

tree the definition of a subdivision of the data only, 

and we associate with each terminal node a pointer 

to the stored coordinates of the points. Using the 

approximate median of projections keeps the tree 

balanced, and consequently O(log n) levels, at each 

of which O(n) processing is required. Hence the 

construction of the tree takes O(n log n) time. 

The search for a NN then proceeds by a top-down 

traversal of the tree. The target point is transmitted 

through successive levels of the tree using the 

defined separation of the two child nodes at each 

node. On arrival at a terminal node, all associated 

points are examined and a current NN selected. The 

tree is then backtracked: if the points associated 

with any node could furnish a closer point, then 

subnodes must be checked out. 

The approximately constant number of points 

associated with terminal nodes (hyper-rectangular 

cells in the space of points) should be greater than 1 

in order that some NNs may be obtained without 

requiring a search of adjacent cells (other terminal 

nodes). Friedman et al. [12] suggest a value of the 

number of points per bin between 4 and 32 based 

on empirical study. 

The MDBST approach only works well with small 

dimensions. To see this, consider each coordinate 

being used once and once only for the subdivision 

of points, i.e. each attribute is considered equally 

useful. Let there be p levels in the tree, i.e. 2p

terminal nodes. Each terminal node contains 

approximately c points by construction and so c2p = 

n. Therefore p = log2n/c. As sample values, if n = 

32768; c = 32; then p = 10. That is in 10-

dimensional space, using a large number of points 

associated with terminal nodes, more than 30000 

points will need to be considered. For high 

dimensional spaces, two alternative MDBST 

specifications are as follows. 

All attributes need not be considered for splitting 

the data if it is known that some are of greater 

interest than others. Linearity present in the data 

may manifest itself via the variance of projections 

of points on the coordinates; choosing the 

coordinate with greatest variance as the 

discriminator coordinate at each node may therefore 

allow repeated use of certain attributes. This has the 

added effect that the hyper-rectangular cells into 

which the terminal nodes divide the space will be 

approximately cubic in shape. In this case, 

Friedman et al. [12] show that search time is  O(log 

n) on average for the finding of a NN. Results 

Figure 2: A MDBST using planar data 
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obtained for dimensionalities of between 2 and 8 

are reported in [12], and in the application of this 

approach to minimal spanning tree construction in 

Bentley and Friedman. [13] LISP code for the 

MDBST is discussed in [14]. 

The MDBST has also been proposed for very high 

dimensionality spaces, i.e. where the dimensionality 

may be greater than the number of points, as could 

be the case in a keyword-based system. Keywords 

(coordinates) are batched, and the following 

decision rule is used: if some one of a given batch 

of node-defining discriminating attributes is 

present, then take the left subtree, else take the right 

subtree. Large n, well in excess of 1400, was stated 

as necessary for good results. [15, 16] General 

guidelines for the attributes that define the direction 

of search at each level are that they be related, and 

the number chosen should keep the tree balanced. 

On intuitive grounds, our opinion is that this 

approach will work well if the clusters of attributes, 

defining the tree nodes, are mutually well 

separated. 

An MDBST approach is used by Moore [17] in the 

case of Gaussian mixture clustering. Over and 

above the search for nearest neighbors based on 

Euclidean distance, Moore allows for the 

Mahalanobis metric, i.e. distance to cluster centers 

that are “corrected” for the (Gaussian) spread or 

morphology of clusters. The information stored at 

each node of the tree includes covariances. 

Moore [17] reports results on numbers of objects of 

around 160,000, dimensionalities of between 2 and 

6, and speedups of 8-fold to 1000-fold. Pelleg and 

Moore [18] discuss results on some 430,000 two-

dimensional objects from the Sloan Digital Sky 

Survey (see the section “k-Means and Family” 

below). 

PROJECTIONS AND OTHER BOUNDS

Bounding using Projection or Properties 

of Metrics

Making use of bounds is a versatile approach, 

which may be less restricted by dimensionality. 

Some lower bound on the dissimilarity is efficiently 

calculated in order to dispense with the full 

calculation in many instances. 

Using projections on a coordinate axis allows the 

exclusion of points in the search for the NN of point 

xi. Points xk, only, are considered such that (xij - xkj)
2

≤ c2 where xij is the jth coordinate of xi, and where c

is some prespecified distance (see Fig. 3). 

Alternatively, more than one coordinate may be 

used. The prior sorting of coordinate values on the 

chosen axis or axes expedites the finding of points 

whose full distance calculation is necessitated. The 

preprocessing required with this approach involves 

the sorting of up to m sets of coordinates, i.e. O(mn

log n) time. 

Using one axis, it is evident that many points may 

be excluded if the dimensionality is very small, but 

that the approach will worsen as the latter grows. 

Friedman et al. [19] give the expected NN search 

time, under the assumption that the points are 

uniformly distributed, as O(mn1-1/n). This 

approaches the brute force O(nm) as n gets large. 

Reported empirical results are for dimensions 2 to 

8.

Figure 3: Two-dimensional example of projection-based
bound. Points with projections within distance c of given
point's (*) projection, alone, are searched. Distance c is
defined with reference to a candidate or current nearest
neighbor. 
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Marimont and Shapiro [20] extend this approach by 

the use of projections in subspaces of dimension 

greater than 1 (usually about m=2 is suggested). 

This can be further improved if the subspace of the 

principal components is used. Dimensions up to 40 

are examined. The Euclidean distance is very 

widely used. Two other members of a family of 

Minkowski metric measures require less 

computation time to calculate, and they can be used 

to provide bounds on the Euclidean distance. We 

have: 

where d1 is the Hamming distance defined as Σjxj-

x´j, the Euclidean distance is given by the square 

root of Σj (xj -x´j)
2; and the Chebyshev distance is 

defined as maxj xj-x´j.

Kittler [21] makes use of the following bounding 

strategy: reject all points y such that d1(x,y)≥√(m)δ

where δ is the current NN d2-distance. The more 

efficiently calculated d1-distance may thus allow 

the rejection of many points (90% in 10-

dimensional space is reported by Kittler). Kittler's 

rule is obtained by noting that the greatest d1-

distance between x and x´ is attained when 

for all coordinates, j. Hence d1(x,x´) = d2(x,x´)≥√m

is the greatest d1-distance between x and x´. In the 

case of the rejection of point y, we then have: 

and since, by virtue of the rejection 

it follows that δ ≤ d2(x,y).

Yunck [22] presents a theoretical analysis for the 

similar use of the Chebyshev metric. Richetin et al.

[23] propose the use of both bounds. Using 

uniformly distributed points in dimensions 2 to 5, 

the latter reference reports the best outcome when 

the rule: reject all y such that d∞(x,y) ≥ δ precedes 

the rule based on the d1-distance. Up to 80% 

reduction in CPU time is reported. 

Bounding using the Triangular 

Inequality 

The triangular inequality is satisfied by distances: 

d(x,y) ≤ d(x,z) + d(z,y), where x, y and z are any 

three points. The use of a reference point, z, allows 

a full distance calculation between point x, whose 

NN is sought, and y to be avoided if 

where δ is the current NN distance. The set of all 

distances to the reference point are calculated and 

stored in a preprocessing step requiring O(n) time 

and O(n) space. The above cut-off rule is obtained 

by noting that if 

then, necessarily, d(x,y) ≥ δ. The former inequality 

above reduces to the triangular inequality 

irrespective of which of d(y,z) or d(x,z) is the 

greater.  

The set of distances to the reference point, 

{d(x,z)�x}, may be sorted in the preprocessing 

stage. Since d(x,z) is fixed during the search for the 

NN of x, it follows that the cut-off rule will not then 

need to be applied in all cases. 

Shapiro [25] generalized the single reference point 

approach, due to Burkhard and Keller, [24] to 

multiple reference points. The sorted list of 

distances to the first reference point, {d(x,z1)�x}, is 

used as described above as a preliminary bound. 

Then the subsequent bounds are similarly employed 

to further reduce the points requiring a full distance 

calculation. The number and the choice of reference 

d x x d x x d x x1 2( , ) ( , ) ( , )′ ≥ ′ ≥ ′∞

x x d x x m
j j
− ′ = ′

2

2

2 ( , ) /

d x y d x y m
1 2
( , ) ( , ) /≤

d x y m
1
( , ) ≥ δ

d y z d x z( , ) ( , )− ≥ δ

d x y d x y d y z( , ) ( , ) ( , )≥ −

35



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/murtagh/murtagh.pdf                            

points to be used is dependent on the distributional 

characteristics of the data. Shapiro [25] finds that 

reference points ought to be located away from 

groups of points. In 10-dimensional simulations, it 

was found that at best only 20% of full distance 

calculations were required (although this was very 

dependent on the choice of reference points). 

Hodgson [26] proposes the following bound, 

related to the training set of points, y, among which 

the NN of point x is sought. Determine in advance 

the NNs and their distances, d(y,NN(y)) for all 

points in the training set. For point y, then consider 

δy = ½ d(y,NN(y)). In seeking NN(x), and having at 

some time in the processing a candidate NN, y´, we 

can exclude all y from consideration if we find that 

d(x,y´) ≤ δy´. In this case, we know that we are 

sufficiently close to y´ that we cannot improve on it. 

We return now to the choice of reference points: 

Vidal Ruiz [27] proposes the storing of inter-point 

distances between the members of the training set. 

Given x, whose NN we require, some member of 

the training set is used as a reference point. Using 

the bounding approach based on the triangular 

inequality, described above, allows other training 

set members to be excluded from any possibility of 

being NN(x). Micó et al. [28] and 

Ramasubramanian and Paliwal [29] discuss further 

enhancements to this approach, focused especially 

on the storage requirements. Fukunaga and 

Narendra [30] make use of both a hierarchical 

decomposition of the data set (they employ 

repeatedly the k-means partitioning technique), and 

bounds based on the triangular inequality. For each 

node in the decomposition tree, the center and 

maximum distance to the center of associated 

points (the “radius”) are determined. For 1000 

points, 3 levels were used, with a division into 3 

classes at each node. All points associated with a 

non-terminal node can be rejected in the search for 

the NN of point x if the following rule (Rule 1) is 

not verified:

where δ is the current NN distance, g is the center 

of the cluster of points associated with the node, 

and rg is the radius of this cluster. For a terminal 

node, which cannot be rejected on the basis of this 

rule, each associated point, y, can be tested for 

rejection using the following rule (Rule 2): 

These two rules are direct consequences of the 

triangular inequality. 

A branch and bound algorithm can be implemented 

using these two rules. This involves determining 

some current NN (the bound) and subsequently 

branching out of a traversal path whenever the 

current NN cannot be bettered. Not being inherently 

limited by dimensionality, this approach appears 

particularly attractive for general purpose 

applications. 

Other rejection rules are considered by Kamgar-

Parsi and Kanal. [31] A simpler form of clustering 

is used in the variant of this algorithm proposed by 

Niemann and Goppert. [32] A shallow MDBST is 

used, followed by a variant on the branching and 

bounding described above.  

Bennett et al. [2] use the nearest neighbor problem 

as a means towards solving the Gaussian 

distribution mixture problem. They consider a 

preprocessing approach similar to Fukunaga and 

Narendra [30] but with an important difference: to 

take better account of cluster structure in the data, 

the clusters are multivariate normal but not 

necessarily of diagonal covariance structure. 

Therefore very elliptical clusters are allowed. This 

in turn implies that a cluster radius is not of great 

benefit for establishing a bound on whether or not 

distances need to be calculated Bennett et al. [2] 

address this problem by seeking a stochastic 

d x g r
g

( , ) − < δ

d x g d y g( , ) ( , ) .− ≥ δ
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guarantee on whether or not calculations can be 

excluded. Technically, however, such stochastic 

bounds are not easy to determine in a high 

dimensional space. 

An interesting issue raised in Beyer et al. [33] is 

also discussed by Bennett et al. [2] if the ratio of 

the nearest and furthest neighbor distances 

converges in probability to 1 as the dimensionality 

increases, then is it meaningful to search for nearest 

neighbors? This issue is not all that different from 

saying that neighbors in an increasingly high 

dimensional space tend towards being equidistant. 

In section 5, we will look at approaches for 

handling particular classes of data of this type. 

Fast Approximate Nearest Neighbor 

Finding 

Kushilevitz et al., [34] working in Euclidean and L1

spaces, propose fast approximate nearest neighbor 

searching, on the grounds that in systems for 

content-based image retrieval, approximate results 

are adequate. Projections are used to bound the 

search. Probability of successfully finding the 

nearest neighbor is traded off against time and 

space requirements. 

THE SPECIAL CASE OF SPARSE BINARY

DATA

“High-dimensional”, “sparse” and “binary” are the 

characteristics of keyword-based bibliographic 

data, with values possibly in excess of 10000 for 

both n and m. Such data is usually stored as list data 

structures, representing the mapping of documents 

onto index terms, or vice versa. Commercial 

document collections are usually searched using a 

Boolean search environment. Documents associated 

with particular terms are retrieved, and the 

intersection (AND), union (OR) or other operations 

on such sets of documents are obtained. For 

efficiency, an inverted file, which maps terms onto 

documents, must be available for Boolean retrieval. 

The efficient NN algorithms, to be discussed, make 

use of both the document-term and the term-

document files.  

The usual algorithm for NN-searching considers 

each document in turn, calculates the distance with 

the given document, and updates the NN if 

appropriate. This algorithm is shown schematically 

in Fig. 4 (top). The inner loop is simply an 

expression of the fact that the distance or similarity 

will, in general, require O(m) calculation: examples 

of commonly used coefficients are the Jaccard 

similarity, and the Hamming (L1 Minkowski) 

distance. 

If m  and n  are, respectively, the average numbers 

of terms associated with a document, and the 

average number of documents associated with a 

term, then an average complexity measure, over n 

searches, of this usual algorithm is O( nm ). It is 

assumed that advantage is taken of some packed 

form of storage in the inner loop (e.g. using linked 

lists).

Croft's algorithm (see [35] and Fig. 4) is of worst 

case complexity O(nm2). However, the number of 

terms associated with the document whose NN is 

required will often be quite small. The National 

Physical Laboratory test collection, for example, 

which was used by Murtagh [36] has the following 

characteristics: n = 11429, m = 7491, m  = 19.9, 

and n  = 30.4. The outermost and innermost loops 

in Croft's algorithm use the document-term file. The 

center loop uses the term-document inverted file. 

An average complexity measure (more strictly, the 

time taken for best match search based on an 

average document with associated average terms) is 

seen to be O( nm 2 ).
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In the outermost loop of Croft's algorithm there will 

eventually come about a situation where – if a 

document has not been thus far examined - the 

number of terms remaining for the given document 

do not permit the current NN document to be 

bettered. In this case we can cut short the iterations 

of the outermost loop. The calculation of a bound 

using the greatest possible number of terms that 

could be shared with a so-far unexamined 

document has been exploited by Smeaton and van 

Rijsbergen [37] and by Murtagh [36] in successive 

improvements on Croft's algorithm. 

The complexity of all the above algorithms has 

been measured in terms of operations to be 

performed. In practice, however, the actual 

accessing of term or document information may be 

of far greater cost. The document-term and term-

document files are ordinarily stored on direct access 

file storage because of their large sizes. The 

strategy used in Croft's algorithm, and in 

improvements on it, does not allow any viable 

approaches to batching together the records which 

are to be read successively, in order to improve 

accessing-related performance. 

The Perry-Willett algorithm (see Perry and Willett, 

[38]) presents a simple but effective solution to the 

problem of costly I/O. It focuses on the calculation 

of the number of terms common to the given 

document x and each other document, y, in the 

document collection. This set of values is built up 

in a computationally efficient fashion. O(n)

operations are subsequently required to determine 

the (dis)similarity, using another vector comprising 

the total numbers of terms associated with each 

document. Computation time (the same “average" 

measure as that used above) is O( nm n+ ). We now 

turn our attention to numbers of direct-access reads 

required. 

In Croft's algorithm, all terms associated with the 

document whose NN is desired may be read in one 

Usual algorithm:
Initialize current NN
For all documents in turn do:
... For all terms associated with the document do:
... ... Determine (dis)similarity
... Endfor
... Test against current NN
Endfor

Croft's algorithm:
Initialize current NN
For all terms associated with the given document do:
... For all documents associated with each term do:
... ... For all terms associated with a document do:
... ... ... Determine (dis)similarity
... ... Endfor
... ... Test against current NN
... Endfor
Endfor

Perry-Willett algorithm:
Initialize current NN
For all terms associated with the given document, i, do:
... For all documents, i', associated with each term, do:
... ... Increment location i' of counter vector
... Endfor
Endfor

Figure 4: Algorithms for NN-searching using high-dimensional sparse binary data.
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read operation. Subsequently, we require nm

reads, giving in all 1+ nm . In the Perry-Willett 

algorithm, the outer loop again pertains to the one 

(given) document, and so all terms associated with 

this document can be read and stored. 

Subsequently, m  reads, i.e. the average number of 

terms, each of which demands a read of a set of 

documents, are required. This gives, in all, 1 + m .

Since these reads are very much the costliest 

operation in practice, the Perry-Willett algorithm 

can be recommended for large values of n and m. 

Its general characteristics are that it requires, (i) as 

do all the algorithms discussed in this section, the 

availability of the inverted term-document file; and 

(ii) in-memory storage of two vectors containing n

integer values. 

HIERARCHICAL AGGLOMERATIVE 

CLUSTERING

The algorithms discussed in this section can be 

characterized as greedy. [39] A sequence of 

irreversible algorithm steps is used to construct the 

desired data structure.  

We will not review hierarchical agglomerative 

clustering here. For essential background, the 

reader is referred to Murtagh and Heck, [3] Gordon, 

[40] or Jain and Dubes. [41] This section borrows 

on Murtagh. [42] 

One could practically say that Sibson [43] and 

Defays [44] are part of the prehistory of clustering. 

Their O(n2) implementations of the single link 

method and of a (non-unique) complete link 

method, respectively, have been widely cited. 

 In the early 1980s a range of significant 

improvements were made to the Lance-Williams, or 

related, dissimilarity update schema, [45, 46] which 

had been in wide use since the mid-1960s. Murtagh 

[47] presents a survey of these algorithmic 

improvements. We will briefly describe them here. 

The new algorithms, which have the potential for 

exactly replicating results found in the classical but 

more computationally expensive approach, are 

based on the construction of nearest neighbor 

chains and reciprocal or mutual NNs (NN-chains 

and RNNs). 

A NN-chain consists of an arbitrary point (a in Fig. 

5); followed by its NN (b in Fig. 5); followed by the 

NN from among the remaining points (c, d, and e in 

Fig. 5) of this second point; and so on until we 

necessarily have some pair of points which can be 

termed reciprocal or mutual NNs. (Such a pair of 

RNNs may be the first two points in the chain; we 

have assumed that no two dissimilarities are equal.) 

 In constructing a NN-chain, irrespective of the 

starting point, we may agglomerate a pair of RNNs 

as soon as they are found. What guarantees that we 

can arrive at the same hierarchy as we would if we 

used traditional “stored dissimilarities” or “stored 

data” algorithms? Essentially this is the same 

condition as that under which no inversions or 

reversals are produced by the clustering method. 

Fig. 6 gives an example of this, where s is 

agglomerated at a lower criterion value (i.e.

dissimilarity) than was the case at the previous 

agglomeration between q and r.

q      r   s q      r   s

Figure 6: Alternative representations of a hierarchy with an 
inversion. Assuming dissimilarities, as we go vertically up, 
criterion values (d1, d2) decrease. But here, undesirably, d2 > d1.

a b c d e 

Figure 5: Five points, showing NNs and RNNs. 

d1

d2 d1

d2
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Our ambient space has thus contracted because of 

the agglomeration. This is due to the algorithm used 

- in particular the agglomeration criterion - and it is 

something we would normally wish to avoid. 

This is formulated as: 

Inversion impossible if  

This is essentially Bruynooghe's reducibility 

property [48] (see also [49]). Using the Lance-

Williams dissimilarity update formula, it can be 

shown that the minimum variance method does not 

give rise to inversions; neither do the linkage 

methods; but the median and centroid methods 

cannot be guaranteed not to have inversions. 

To return to Fig. 5, if we are dealing with a 

clustering criterion that precludes inversions, then c 

and d can justifiably be agglomerated, since no 

other point (for example, b or e) could have been 

agglomerated to either of these. 

The processing required, following an 

agglomeration, is to update the NNs of points such 

as b in Fig. 5 (and on account of such points, this 

algorithm was dubbed algorithme des célibataires

in [45]). The following is a summary of the 

algorithm: 

NN-chain algorithm 

Step 1 Select a point arbitrarily. 

Step 2 Grow the NN-chain from this point 

until a pair of RNNs is obtained. 

Step 3 Agglomerate these points 

(replacing with a cluster point, or updating 

the dissimilarity matrix). 

Step 4 From the point which preceded the 

RNNs (or from any other arbitrary point if 

the first two points chosen in Steps 1 and 2 

constituted a pair of RNNs), return to Step 

2 until only one point remains. 

In Murtagh [11, 47, 49] and Day and Edelsbrunner, 

[50] one finds discussions of O(n2) time and O(n)

space implementations of Ward's minimum 

variance (or error sum of squares) method and of 

the centroid and median methods. The latter two 

methods are termed the UPGMC and WPGMC 

criteria by Sneath and Sokal. [51] Now, a problem 

with the cluster criteria used by these latter two 

methods is that the reducibility property is not 

satisfied by them. This means that the hierarchy 

constructed may not be unique as a result of 

inversions or reversals (non-monotonic variation) in 

the clustering criterion value determined in the 

sequence of agglomerations. Murtagh [49] 

describes O(n2) time and space implementations for 

the single link method, the complete link method 

and for the weighted and unweighted group average 

methods (WPGMA and UPGMA). This approach is 

quite general vis á vis the dissimilarity used and can 

also be used for hierarchical clustering methods 

other than those mentioned. 

Day and Edelsbrunner [50] prove the exact O(n2)

time complexity of the centroid and median 

methods using an argument related to the 

combinatorial problem of optimally packing 

hyperspheres into an m-dimensional volume. They 

also address the question of metrics: results are 

valid in a wide class of distances including those 

associated with the Minkowski metrics. 

The construction and maintenance of the nearest 

neighbor chain as well as the carrying out of 

agglomerations whenever reciprocal nearest 

neighbors meet, both offer possibilities for 

parallelization. Willet described implementations 

on an SIMD machine. [52] 

Evidently both coordinate data and graph (e.g.,

dissimilarity) data can be input to these 

agglomerative methods. Gillet et. al. [53] in the 

context of clustering chemical structure databases 

refer to the common use of the Ward method, based 

on the reciprocal nearest neighbors algorithm, on 

d i j d i k d j k d i j d i j k( , ) ( , ) ( , ) ( , ) ( , )< � < ∪ or 
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data sets of a few hundred thousand molecules. 

Applications of hierarchical clustering to 

bibliographic information retrieval are assessed in 

Griffiths et al. [54] Ward's minimum variance 

criterion is favored. 

From details in White and McCain, [55] the 

Institute of Scientific Information (ISI) clusters 

citations (science, and social science) by first 

clustering highly cited documents based on a single 

linkage criterion, and then four more passes are 

made through the data to create a subset of a single 

linkage hierarchical clustering. 

GRAPH CLUSTERING

Hierarchical clustering methods are closely related 

to graph-based clustering. Firstly, a dendrogram is a 

rooted labeled tree. Secondly, and more 

importantly, some methods like the single and 

complete link methods can be displayed as graphs, 

and are very closely related to mainstream graph 

data structures. 

An example of the increasing prevalence of graph 

clustering in the context of data mining on the web 

is presented in Fig. 7: Amazon.com provides 

information on what other books were purchased by 

like-minded individuals. 

The single link method was referred to in the 

previous section, as a widely used agglomerative, 

hence hierarchical, clustering method. Rohlf [56] 

reviews algorithms for the single link method with 

complexities ranging from O(n log n) to O(n5). The 

criterion used by the single link method for cluster 

formation is weak, meaning that noisy data in 

particular give rise to results that are not robust. 

The minimal spanning tree (MST) and the single 

link agglomerative clustering method are closely 

related: the MST can be transformed irreversibly 

into the single link hierarchy. [57] The MST is 

defined as of minimal total weight, it spans all 

nodes (vertices) and is an unrooted tree. The MST 

has been a method of choice for at least four 

decades now either in its own right for data 

analysis, [58] as a data structure to be approximated 

(e.g. using shortest spanning paths, see Murtagh, 

[47], p. 96), or as a basis for clustering. We will 

look at some fast algorithms for the MST in the 

remainder of this section. 

Perhaps the most basic MST algorithm, due to Prim 

and Dijkstra, grows a single fragment through n-1 

steps. We find the closest vertex to an arbitrary 

vertex, calling these a fragment of the MST. We 

determine the closest vertex, not in the fragment, to 

any vertex in the fragment, and add this new vertex 

into the fragment. While there are fewer than n 

vertices in the fragment, we continue to grow it. 

This algorithm leads to a unique solution. A default 

O(n3) implementation is clear, and O(n2)

computational cost is possible ([47], p. 98). 

Sollin's algorithm constructs the fragments in 

parallel. For each fragment in turn, at any stage of 

the construction of the MST, determine its closest 

Figure 7: Example of a graph clustering in a data mining 
perspective at Amazon.com: “Customers who bought this 
book also bought …”
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fragment. Merge these fragments, and update the 

list of fragments. A tree can be guaranteed in this 

algorithm (although care must be taken in cases of 

equal similarity) and our other requirements (all 

vertices included, minimal total edge weight) are 

very straightforward. Given the potential for 

roughly halving the data remaining to be processed 

at each step, not surprisingly the computational cost 

reduces from O(n3) to O(n2 log n).

The real interest of Sollin's algorithm arises when 

we are clustering on a graph and do not have all 

n(n-1)/2 edges present. Sollin's algorithm can be 

shown to have computational cost m log n, where m 

is the number of edges. When m « n(n-1)/2 then we 

have the potential for appreciable gains. 

The MST in feature spaces can of course make use 

of the fast nearest neighbor finding methods studied 

earlier in this article. See [47], (section 4.4) for 

various examples. 

Other graph data structures that have been proposed 

for data analysis are related to the MST. We know, 

for example, that the following subset relationship 

holds: 

where RNG is the relative neighborhood graph, GG 

is the Gabriel graph, and DT is the Delaunay 

triangulation. The latter, in the form of its dual, the 

Voronoi diagram, has been used for analyzing the 

clustering of galaxy locations. References to these 

and related methods can be found in Murtagh. [59] 

NEAREST NEIGHBOR FINDING ON GRAPHS

Clustering on graphs may be required because we 

are working with (perhaps complex non-Euclidean) 

dissimilarities. In such cases where we must take 

into account an edge between each and every pair 

of vertices, we will generally have an O(m)

computational cost where m is the number of edges. 

In a metric space we have seen that we can look for 

various possible ways to expedite the nearest 

neighbor search. An approach based on 

visualization - turning our data into an image - will 

be looked at below. However, there is another 

aspect of our similarity (or other) graph that we 

may be able to turn to our advantage. Efficient 

algorithms for sparse graphs are available. Sparsity 

can be arranged - we can threshold our edges if the 

sparsity does not suggest itself more naturally. 

A special type of sparse graph is a planar graph, i.e.

a graph capable of being represented in the plane 

without any crossovers of edges. For sparse graphs, 

algorithms with O(m log log n) computational cost 

were described by Yao [60] and Cheriton and 

Tarjan. [61] A short algorithmic description can be 

found in Murtagh [47] (pp. 107-108) and we refer 

in particular to the latter. The basic idea is to 

preprocess the graph, in order to expedite the 

sorting of edge weights (why sorting? - simply 

because we must repeatedly find smallest links, and 

maintaining a sorted list of edges is a good basis for 

doing this). If we were to sort all edges, the 

computational requirement would be O(m log m).

Instead of doing that, we take the edge set 

associated with each and every vertex. We divide 

each such edge set into groups of size k. (The fact 

that the last such group will usually be of size < k is 

taken into account when programming.) 

Let nv be the number of incident edges at vertex v, 

such that Σv nv = 2m. The sorting operation for each 

vertex now takes O(k log k) operations for each 

group, and we have nv/k groups. For all vertices the 

sorting requires a number of operations which is of 

the order of Σv nv log k = 2mlog k. This looks like a 

questionable - or small - improvement over O(m log 

m). Determining the lightest edge incident on a 

vertex requires O(nv/k) comparisons since we have 

to check all groups. Therefore the lightest edges 

incident on all vertices are found with O(m/k)

MST RNG GG GT⊆ ⊆ ⊆
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operations.  

When two vertices, and later fragments, are 

merged, their associated groups of edges are simply 

collected together, therefore keeping the total 

number of groups of edges that we started out with. 

We will bypass the issue of edges which, over time, 

are to be avoided because they connect vertices in 

the same fragment: given the fact that we are 

building an MST, the total number of such edges-

to-be-avoided cannot surpass 2m. To find what to 

merge next, again O(m/k) processing is required. 

Using Sollin's algorithm, the total processing 

required in finding what to merge next is O(m/k log 

n). The total processing required for grouping the 

edges, and sorting within the edge-groups, is O(m

log k), i.e. it is one-off and accomplished at the start 

of the MST-building process. 

The total time is O(m/k log n)+O(m log k). If we fix 

k = log n, the second term dominates and gives 

overall computational complexity as O(m log log 

n). This result has been further improved to near 

linearity in m by Gabow et al., [62] who develop an 

algorithm with complexity O(m log log log … n)

where the number of iterated log terms is bounded 

by m/n.

Motwani and Raghavan [63] (chapter 10) base a 

stochastic O(m) algorithm for the MST on random 

sampling to identify and eliminate edges that are 

guaranteed not to belong to the MST. 

Let us turn our attention now to the case of a planar 

graph. For a planar graph we know that m ≤ 3n-6 

for m >1. (For proof, see for example Tucker, [64] 

or any book on graph theory). 

Referring to Sollin's algorithm, described above, 

O(n) operations are needed to establish a least cost 

edge from each vertex, since there are only O(n)

edges present. On the next round, following 

fragment-creation, there will be at most ceil(n/2) 

new vertices, implying of the order of n/2 

processing to find the least cost edge. The total 

computational cost is seen to be proportional to: n + 

n/2 + n/4 +…=O(n).

So determining the MST of a planar graph is linear 

in numbers of either vertices or edges. Before 

ending this review of very efficient clustering 

algorithms for graphs, we note that algorithms 

discussed so far have assumed that the similarity 

graph was undirected. For modeling transport 

flows, or economic transfers, the graph could well 

be directed. Components can be defined, 

generalizing the clusters of the single link method, 

or the complete link method. [65] provides an 

algorithm for the latter agglomerative criterion 

which is of computational cost O(m log n).

K-MEANS AND FAMILY

The non-technical person more often than not 

understands clustering as a partition. K-means 

looked at in this section, or the distribution mixture 

approach looked at in the section on fast model-

based clustering, provide solutions. A mathematical 

definition of a partition implies no multiple 

assignments of observations to clusters, i.e. no 

overlapping clusters. Overlapping clusters may be 

faster to determine in practice, and a case in point is 

the one-pass algorithm described in Salton and 

McGill. [66] The general principle followed is: 

make one pass through the data, assigning each 

object to the first cluster which is close enough, and 

making a new cluster for objects that are not close 

enough to any existing cluster. 

Broder et al. [67] use this algorithm for clustering 

the web. A feature vector is determined for each 

HTML document considered, based on sequences 

of words. Similarity between documents is based on 

an inverted list, using an approach like those 

described for the special case of binary data above. 

The similarity graph is thresholded, and 

components sought. 

Broder [68] solves the same clustering objective 
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using a thresholding and overlapping clustering 

method similar to the Salton and McGill one. The 

application described is that of clustering the 

Altavista repository in April 1996, consisting of 30 

million HTML and text documents, comprising 150 

GBytes of data. The number of serviceable clusters 

found was 1.5 million, containing 7 million 

documents. Processing time was about 10.5 days. 

An analysis of the clustering algorithm used by 

Broder can be found in Borodin et al., [69] who 

also consider the use of approximate minimal 

spanning trees. 

The threshold-based pass of the data, in its basic 

state, is susceptible to lack of robustness. A bad 

choice of threshold leads to too many clusters or 

two few. To remedy this, we can work on a well-

defined data structure such as the minimal spanning 

tree. Or, alternatively, we can iteratively refine the 

clustering. Partitioning methods, such as k-means, 

use iterative improvement of an initial estimation of 

a targeted clustering. 

A very widely used family of methods for inducing 

a partition on a data set is called k-means, c-means 

(in the fuzzy case), Isodata, competitive learning, 

vector quantization and other more general names 

(non-overlapping non-hierarchical clustering) or 

more specific names (minimal distance or exchange 

algorithms). 

The usual criterion to be optimized is: 

where I is the object set, . denotes cardinality, q

is some cluster, Q is the partition, and q denotes a 

set in the summation, whereas 
�

q denotes some 

associated vector in the error term, or metric norm. 

This criterion ensures that clusters found are 

compact, and therefore assumed homogeneous. The 

optimization criterion, by a small abuse of 

terminology, is more often referred to as a 

minimum variance one. A necessary condition that 

this criterion be optimized is that vector 
�

q  be a 

cluster mean, which for the Euclidean metric case 

is:

�
�

q
q

i
i q

=
∈
�

1

A batch update algorithm, due to Lloyd, [70] Forgy, 

[71] and others, makes assignments to a set of 

initially randomly chosen vectors, 
�

q , as step 1. 

Step 2 updates the cluster vectors, 
�

q . This is 

iterated. The distortion error, equation 1, is non-

increasing, and a local minimum is achieved in a 

finite number of iterations. 

An online update algorithm is due to MacQueen. 

[72] After each presentation of an observation 

vector, 
�
i , the closest cluster vector, 

�

q , is updated 

to take account of it. Such an approach is well-

suited for a continuous input data stream (implying 

“online” learning of cluster vectors). 

Both algorithms are gradient descent ones. In the 

online case, much attention has been devoted to 

best learning rate schedules in the neural network 

(competitive learning) literature: Darken and 

Moody [73, 74], Darken et al., [75] Fritzke. [76] 

A difficulty, less controllable in the case of the 

batch algorithm, is that clusters may become (and 

stay) empty. This may be acceptable, but also may 

be in breach of our original problem formulation. 

An alternative to the batch update algorithm is 

Späth's exchange algorithm. [77] Each observation 

is considered for possible assignment into any of 

the other clusters. Späth gives updating and 

“downdating” formulae. This exchange algorithm is 

stated to be faster to converge and to produce better 

(smaller) values of the objective function. Over 

decades of use, we have also verified that it is a 

superior algorithm to the minimal distance one. 

K-means is very closely related to Voronoi 

1 2

I
i q

i qq Q

�
�−

∈∈
��

44



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/murtagh/murtagh.pdf                            

(Dirichlet) tesselations, to Kohonen self-organizing  

feature-maps, and various other methods. The 

batch-learning algorithm above may be viewed as 

1. An assignment step, which we will term 

the E (estimation) step: estimate the 

posteriors,  

P(observationscluster centers) 

2. A cluster update step, the M 

(maximization) step, which maximizes a 

cluster center likelihood. 

Neal and Hinton [78] cast the k-means optimization 

problem in such away that the both E- and M-steps 

monotonically increase the maximand's values. The 

EM algorithm may, too, be enhanced to allow for 

online as well as batch learning. [79] 

In Thiesson et al., [80] k-means is implemented (i) 

by traversing blocks of data, cyclically, and 

incrementally updating the sufficient statistics and 

parameters, and (ii) instead of cyclic traversal, 

sampling from subsets of the data is used. Such an 

approach is admirably suited for very large data 

sets, where in-memory storage is not feasible. 

Examples used by Thiesson et al. [80] include the 

clustering of a half million 300-dimensional 

records.  

FAST MODEL BASED CLUSTERING

It is traditional to note that models and 

(computational) speed do not mix. We review 

recent progress in this section. 

Modeling of Signal and Noise 

A simple and applicable model is a distribution 

mixture, with the signal modeled by Gaussians, in 

the presence of Poisson background noise. 

Consider data which are generated by a mixture of 

(G-1) bivariate Gaussian densities, 

fk(x;θ)∼N(µk;Σk), for clusters k = 2; … ; G, and with 

Poisson background noise corresponding to k = 1. 

The overall population thus has the mixture density 

where the mixing or prior probabilities, πk, sum to 

1, and f1(x;θ) = A-1, where A is the area of the data 

region. This is the basis for model-based clustering. 

[81-84]  

The parameters, θ and π, can be estimated 

efficiently by maximizing the mixture likelihood 

with respect to θ and π, where xi is the ith

observation. 

Now let us assume the presence of two clusters, one 

of which is Poisson noise, the other Gaussian. This 

yields the mixture likelihood 

L A x xi
T

i
i

n

( , ) exp ( ) ( ) ,θ π π π
π

µ µ= +
�

− − � −�
�
�

�
�
�

�

	





�

�





− −

=
∏ 1

1
2

1

1

1

2

1

2

where π1 + π2 = 1. 

An iterative solution is provided by the expectation-

maximization (EM) algorithm of Dempster et al.

[85] We have already noted this algorithm in 

informal terms in the last section, dealing with k-

means. Let the “complete” (or “clean” or “output”) 

data be yi = (xi, zi) with indicator set zi = (zi1, zi2)

given by (1,0) or (0,1). Vector zi has a multinomial 

distribution with parameters (1;π1,π2). This leads to 

the complete data log-likelihood: 

[ ]l y z z f xik k k kki
n( , ; , ) log log ( ;θ π π θ= +== �� 1

2
1

The E-step then computes 

� ( ,..., , )z E z x xik ik n= 1 θ , i.e. the posterior 

probability that xi is in cluster k. The M-step 

involves maximization of the expected complete 

data log-likelihood: 

[ ]l y z f xik k k iki
n*( ; , ) � log log ( ; ) .θ π π θ= +== �� 1

2
1

The E- and M-steps are iterated until convergence. 

f x f xk k
k

G
( ; ) ( ; )θ π θ= �

=1

L f xi
i

n

( , ) ( ; ),θ π θ=
=

∏
1
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For the 2-class case (Poisson noise and a Gaussian 

cluster), the complete-data likelihood is 

L y z
A

x x
zi

i
T

i

zi

i

n

( , ; , ) exp ( ) ( )θ π
π π

π
µ µ= �

��
�

�� �
− − � −�

	



�
�



�

�
�
�

�

�
�
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−

=
∏ 1

1
2 1

2

1 2

1

2

The corresponding expected log-likelihood is then 

used in the EM algorithm. This formulation of the 

problem generalizes to the case of G clusters, of 

arbitrary distributions and dimensions. 

Fraley [86] discusses implementation of model-

based clustering, including publicly available 

software. 

In order to assess the evidence for the presence of a 

signal-cluster, we use the Bayes factor for the 

mixture model, M2 that includes a Gaussian density 

as well as background noise, against the “null” 

model, M1, that contains only background noise. 

The Bayes factor is the posterior odds for the 

mixture model against the pure noise model, when 

neither is favored a priori. It is defined as B = 

p(xM2)/p(xM1), where p(xM2) is the integrated 

likelihood of the mixture model M2, obtained by 

integrating over the parameter space. For a general 

review of Bayes factors, their use in applied 

statistics, and how to approximate and compute 

them, see Kass and Raftery. [87] 

We approximate the Bayes factor using the 

Bayesian Information Criterion (BIC). [88] For a 

Gaussian cluster and Poisson noise, this takes the 

form: 

2 2 2 6log log ( �, �) log log ,B BIC L n A n≈ = + −θ π

where �θ  and �π  are the maximum likelihood 

estimators of θ and π, and L( �, �)θ π  is the 

maximized mixture likelihood. 

A review of the use of the BIC criterion for model 

selection - and more specifically for choosing the 

number of clusters in a data set - can be found in 

Fraley and Raftery. [89] 

An application of mixture modeling and the BIC 

criterion to gamma-ray burst data can be found in 

Mukherjee et al. [90] So far around 800 

observations have been assessed, but as greater 

numbers become available we will find the inherent 

number of clusters in a similar way, in order to try 

to understand more about the complex phenomenon 

of gamma-ray bursts. 

Application to Thresholding 

Consider an image or a planar or 3-dimensional set 

of object positions. For simplicity we consider the 

case of setting a single threshold in the image 

intensities, or the point set's spatial density. 

We deal with a combined mixture density of two 

univariate Gaussian distributions fk(x,θ) ~ N(µk,σk).

The overall population thus has the mixture density 

where the mixing or prior probabilities, πk, sum to 

1.

When the mixing proportions are assumed equal, 

the log-likelihood takes the form 

l x
k k

i k
ki

n

( ) ln exp ( )θ
π σ σ

µ= − −
�
�
�

�
�
�

�

�
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2

1

2
2
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2

1

The EM algorithm is then used to iteratively solve 

this (see Celeux and Govaert, [91]). This method is 

used for appraisals of textile (jeans and other 

fabrics) fault detection in Campbell et al. [92]. 

Industrial vision inspection systems potentially 

produce large data streams, and fault detection can 

be a good application for fast clustering methods. 

We are currently using a mixture model of this sort 

on SEM (scanning electron microscope) images of 

cross-sections of concrete to allow for subsequent 

characterization of physical properties. 

Image segmentation, per se, is a relatively 

straightforward application, but there are novel and 

interesting aspects to the two studies mentioned. In 

the textile case, the faults are very often perceptual 

and relative, rather than “absolute" or capable of 

f x f xk k
k

( ; ) ( ; )θ π θ=
=
�

1

2
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being analyzed in isolation. In the SEM imaging 

case, a first phase of processing is applied to de-

speckle the images, using multiple resolution noise 

filtering. 

Turning from concrete to cosmology, the Sloan 

Digital Sky Survey [92] is producing a sky map of 

more than 100 million objects, together with 3-

dimensional information (redshifts) for a million 

galaxies. Pelleg and Moore [18] describe mixture 

modeling, using a k-D tree preprocessing to 

expedite the finding of the class (mixture) 

parameters, e.g. means, covariances. 

NOISE MODELING

In Starck et al. [93] and in a wide range of papers, 

we have pursued an approach for the noise 

modeling of observed data. A multiple resolution 

scale vision model or data generation process is 

used, to allow for the phenomenon being observed 

on different scales. In addition, a wide range of 

options are permitted for the data generation 

transfer path, including additive and multiplicative, 

stationary and non-stationary, Gaussian (“read out” 

noise), Poisson (random shot noise), and so on. 

Given point pattern clustering in two- or three-

dimensional spaces, we will limit our overview here 

to the Poisson noise case. 

Poisson Noise with Few Events Using the 

à trous Transform 

If a wavelet coefficient wj(x,y) is due to noise, it can 

be considered as a realization of the sum nkk K∈�

of independent random variables with the same 

distribution as that of the wavelet function (nk being 

the number of events used for the calculation of wj

(x,y)). This allows comparison of the wavelet 

coefficients of the data with the values that can 

be taken by the sum of n independent variables. 

The distribution of one event in wavelet space is 

then directly given by the histogram H1 of the 

wavelet ψ. As we consider independent events, 

the distribution of a coefficient wn (note the 

changed subscripting for w, for convenience) 

related to n events is given by n 

autoconvolutions of H1 : 

For a large number of events, Hn converges to a 

Gaussian. Fig. 8 shows an example of where 

point pattern clusters - density bumps in this 

case – are sought, with a great amount of 

background clutter. Murtagh and Starck [94] refer 

to the fact that there is no computational 

dependence on the number of points (signal or 

noise) in such a problem, when using a wavelet 

transform with noise modeling. 

Some other alternative approaches will be briefly 

noted. The Haar transform presents the advantage 

of its simplicity for modeling Poisson noise. 

Analytic formulae for wavelet coefficient 

distributions have been derived by Kolaczyk, [96] 

and Jammal and Bijaoui. [97] Using a new wavelet 

transform, the Haar à trous transform, Zheng et al.

[98] appraise a denoising approach for financial 

data streams, - an important preliminary step for 

H H H Hn = ⊗ ⊗ ⊗1 1 1...

Figure 8: Data in the plane. The 256 × 256 image shows 
550 “signal” points – two Gaussian-shaped clusters in the 
lower left and in the upper right – with in addition 40,000 
Poisson noise points added. Details of recovery of the 
clusters are discussed in [95]. 
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subsequent clustering, forecasting, or other 

processing. 

Poisson Noise with Nearest Neighbor 

Clutter Removal 

The wavelet approach is certainly appropriate when 

the wavelet function reflects the type of object 

sought (e.g. isotropic), and when superimposed 

point patterns are to be analyzed. However, non- 

superimposed point patterns of complex shape are 

very well treated by the approach described in 

Byers and Raftery. [99] Using a homogeneous 

Poisson noise model, they derive the distribution of 

the distance of a point to its kth nearest neighbor. 

Next, Byers and Raftery [99] consider the case of a 

Poisson process which is signal, superimposed on a 

Poisson process which is clutter. The kth nearest 

neighbor distances are modeled as a mixture 

distribution: a histogram of these, for given k, will 

yield a bimodal distribution if our assumption is 

correct. This mixture distribution problem is solved 

using the EM algorithm. Generalization to higher 

dimensions, e.g. 10, is also discussed.  

Similar data were analyzed by noise modeling and a 

Voronoi tesselation preprocessing of the data in 

Allard and Fraley. [100] It is pointed out there how 

this can be a very useful approach with the Voronoi 

tiles have meaning in relation to the morphology of 

the point patterns. However, it does not scale well 

to higher dimensions, and the statistical noise 

modeling is approximate. 

Ebeling and Wiedenmann, [101] reproduced in 

Dobrzycki et al., [102] propose the use of a 

Voronoi tesselation for astronomical X-ray object 

detection and characterization. 

CLUSTER-BASED USER INTERFACES

Doyle first described Information retrieval by 

means of “semantic road maps” in detail. [103] The 

spatial metaphor is a powerful one in human 

information processing. The spatial metaphor also 

lends itself well to modern distributed computing 

environments such as the web. The Kohonen self-

organizing feature map (SOM) method is an 

effective means towards this end of a visual 

information retrieval user interface. We will also 

provide an illustration of web-based semantic maps 

based on hyperlink clustering. 

The Kohonen map is, at heart, k-means clustering 

with the additional constraint that cluster centers be 

located on a regular grid (or some other topographic 

structure) and furthermore their location on the grid 

be monotonically related to pairwise proximity. 

[104] The nice thing about a regular grid output 

representation space is that it lends itself well as a 

visual user interface. 

Fig. 9 shows a visual and interactive user interface 

map, using a Kohonen self-organizing feature map 

(SOM). Color is related to density of document 

clusters located at regularly-spaced nodes of the 

map, and some of these nodes/clusters are 

annotated. The map is installed as a clickable 

Figure 9: Visual interactive user interface to the journal 
Astronomy and Astrophysics.
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image-map, with CGI programs accessing lists of 

documents and - through further links - in many 

cases, the full documents. In the example shown, 

the user has queried a node and results are seen in 

the right-hand panel. Such maps are maintained for 

(currently) 12000 articles from the Astrophysical 

Journal, 7000 from Astronomy and Astrophysics, 

over 2000 astronomical catalogs, and other data 

holdings. More information on the design of this 

visual interface and user assessment can be found in 

Poinçot et al. [105, 106] 

Guillaume [107] developed a Java-based 

visualization tool for hyperlink-based data, 

consisting of astronomers’ names, astronomical 

object names, article titles, and with the possibility 

of other objects (images, tables, etc.). Through 

weighting, the various types of links could be 

prioritized. An iterative refinement algorithm was 

developed to map the nodes (objects) to a regular 

grid of cells, which as for the Kohonen SOM map, 

are clickable and provide access to the data 

represented by the cluster. Fig. 10 shows an 

example for an astronomer (Prof. Jean Heyvaerts, 

Strasbourg Astronomical Observatory). 

These new cluster-based visual user interfaces are 

not computationally demanding. They are not 

however, scalable in their current implementation. 

Document management (see e.g. Cartia, [108]) is 

not so much the motivation, but rather the 

interactive user interface. 

IMAGES FROM DATA

It is quite impressive how 2D (or 3D) image signals 

can handle with ease the scalability limitations of 

clustering and many other data processing 

operations. The contiguity imposed on adjacent 

pixels bypasses the need for nearest neighbor 

finding. It is very interesting therefore to consider 

the feasibility of taking problems of clustering 

massive data sets into the 2D image domain. We 

will look at a few recent examples of work in this 

direction. 

Church and Helfman [109] address the problem of 

visualizing possibly millions of lines of computer 

program code, or text. They consider an approach 

borrowed from DNA sequence analysis. The data 

sequence is tokenized by splitting it into its atoms 

(line, word, character, etc.) and then placing a dot at 

position i,j if the ith input token is the same as the 

jth. The resulting dotplot, it is argued, is not limited 

by the available display screen space, and can lead 

to discovery of large-scale structure in the data. 

When data do not have a sequence we have an 

invariance problem that can be resolved by finding 

some row and column permutation which pulls 

large array values together, and perhaps 

furthermore into proximity to an array diagonal. 

Berry et al. [110] have studied the case of large 

sparse arrays. Gathering larger (or nonzero) array 

elements to the diagonal can be viewed in terms of 

minimizing the envelope of nonzero values relative 

to the diagonal. This can be formulated and solved 

in purely symbolic terms by reordering vertices in a 

suitable graph representation of the matrix. A 

widely used method for symmetric sparse matrices 

is the Reverse Cuthill-McKee (RCM) method. 

The complexity of the RCM method for ordering 

rows or columns is proportional to the product of 

the maximum degree of any vertex in the graph 

Figure 10: Visual interactive user interfaces, based on graph 
edges. Map for astronomer Jean Heyvaerts. Original in color. 
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representing the array values and the total number 

of edges (nonzeroes in the matrix). For hypertext 

matrices with small maximum degree, the method 

would be extremely fast. The strength of the 

method is its low time complexity but it does suffer 

from certain drawbacks. The heuristic for finding 

the starting vertex is influenced by the initial 

numbering of vertices and so the quality of the 

reordering can vary slightly for the same problem 

for different initial numberings. Next, the overall 

method does not accommodate dense rows (e.g., a 

common link used in every document), and if a row 

has a significantly large number of nonzeroes it 

might be best to process it separately; i.e., extract 

the dense rows, reorder the remaining matrix and 

augment fit by the dense rows (or common links) 

numbered last. Elapsed CPU times for a range of 

arrays and permuting methods are given in Berry et

al., [110] and as an indication show performances 

between 0.025 to 3.18 seconds for permuting a 

4000 x 400 array. 

A review of public domain software for carrying 

out SVD and other linear algebra operations on 

large sparse data sets can be found in Berry et al.

([111], section 8.3). 

Once we have a sequence-respecting array, we can 

immediately apply efficient visualization 

techniques from image analysis. Murtagh et al.

[112] investigate the use of noise filtering (i.e. to 

remove less useful array entries) using a multiscale 

wavelet transform approach. 

An example follows. From the Concise Columbia 

Encyclopedia (1989 2nd ed., online version) a set of 

data relating to 12025 encyclopedia entries and to 

9778 cross-references or links was used. 

Fig. 11 shows a 500 x 450 subarray, based on a 

correspondence analysis (i.e. ordering of 

projections on the first factor). 

This part of the encyclopedia data was filtered 

using the wavelet and noise-modeling methodology 

described in Murtagh et al. [112] and the outcome 

is shown in Fig. 12. Overall the recovery of the 

more apparent alignments, and hence visually 

stronger clusters, is excellent. The first relatively 

long “horizontal bar” was selected - it corresponds 

to column index (link) 1733 = geological era. 

The corresponding row indices (articles) are, in 

sequence: 

SILURIAN PERIOD 
PLEISTOCENE EPOCH 
HOLOCENE EPOCH 
PRECAMBRIAN TIME 
CARBONIFEROUS PERIOD 
OLIGOCENE EPOCH 

Figure 11: Part (500 × 450) of original encyclopaedia 
incidence data array. 

Figure 12: End-product of the filtering of the array shown 
in Figure 11. 
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ORDOVICIAN PERIOD 
TRIASSIC PERIOD 
CENOZOIC ERA 
PALEOCENE EPOCH 
MIOCENE EPOCH 
DEVONIAN PERIOD 
PALEOZOIC ERA 
JURASSIC PERIOD 
MESOZOIC ERA 
CAMBRIAN PERIOD 
PLIOCENE EPOCH 
CRETACEOUS PERIOD 

The work described here is based on a number of 

technologies: (i) data visualization techniques; (ii) 

the wavelet transform for data analysis; and (iii) 

data matrix permuting techniques. The wavelet 

transform has linear computational cost in terms of 

image row and column dimensions, and is 

independent of the pixel values. 

CONCLUSIONS

Viewed from a commercial or managerial 

perspective, one could justifiably ask where we are 

now in our understanding of problems in this area 

relative to where we were back in the 1960s? 

Depending on our answer to this, we may well 

proceed to a second question: Why have all 

important problems not been solved by now in this 

area - are there major outstanding problems to be 

solved? 

As described in this chapter, a solid body of 

experimental and theoretical results has been built 

up over the last few decades. Clustering remains a 

requirement that is a central infrastructural element 

of very many application fields. 

There is continual renewal of the essential 

questions and problems of clustering, relating to 

new data, new information, and new environments. 

There is no logjam in clustering research and 

development simply because the rivers of problems 

continue to broaden and deepen. Clustering and 

classification remain quintessential issues in our 

computing and information technology 

environments. [113] 
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ABSTRACT

INTRODUCTION

Production of Data 

The typical scenario of data generation starts from a 

device or automaton producing data (production), 

which will be recorded using some representation 

characteristic for the data and, of course, 

characteristic for the production itself. Based on 

this representation, data will be processed to extract 

the related information. In addition, the data may be 

transferred into a repository for later use. 

Whenever the original production is deterministic, a 

faithful model of the original data production can 

be found, at least in principle. In such cases there is 

a unique data scheme and, furthermore, a well-

defined analytical data representation. Usually, 

such models are given by a system of differential 

equations, the solutions of which define the data 

scheme. The way in which these solutions are 

determined also defines options of data 

representation. Extraction of information is then 

straightforward (Figure 1). 

The advantage of the correspondence between 

original production and model production is that 

data scheme and data representation of the model 

Support of industrial research and development activities by computing and information technologies
today is coupled to huge amounts of data. Therefore, data management is a very crucial aspect of
successful application of information technologies. Various strategies are used to handle the situation, each
of which has its merits depending on the type of data, the context, and the usage.  
Apart from the very straightforward approach to distribute data on appropriate storage media of sufficient
volume, there are three different ‘philosophies’ of data compression.  

1. Non-lossy data compression 
2. Lossy data compression 
3. Model-based data compression 

Types 1 and 2 are probably the most widely used because they do not necessarily introduce a bias into the
compressed data. There are a number of methods known today that are fully reversible, or at least
reversible to a large extent.  
This is different for model-based data compression. The idea is useful for data being produced by
dynamic, deterministic systems. Important is the existence of a model with well-defined data scheme and
data structure. These model features can be used to condense the corresponding original data. Two
examples from industrial research are presented.  
First example is the representation of computer simulations of molecular ensembles by correlation
functions. The second example is the representation of microbiological studies on pathogenicity by kinetic
constants. In both cases, the underlying model together with methods to generate compressed data
representations allows efficient interpretation of simulations or experiments, respectively.  
High levels of data condensation provide a variety of opportunities to link results from research and
development to auxiliary information from many different sources. Thus, powerful infrastructures for
decision support can be created. 
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can be used to generate a condensed representation 

of the original data. The information behind model 

data can usually be represented by few parameters.  

The way in which this works will be shown by two 

examples. The first example is the computer 

simulation of molecular structures to analyze the 

stability of biomolecular complexes. In the second 

example, it will be shown how microbiological 

experiments with pathogenic bacteria can be 

analyzed in a very efficient way. 

Representation and Condensation of 

Data

Extracting and condensing information from data 

means creating a specific representation of the 

information. Basically, there are two different 

approaches to representing information. On the one 

hand, information can be mapped using predefined 

descriptor sets, thus creating specific profiles. On 

the other hand, information can be mapped in terms 

of relationships of the given object to known 

objects, which results, at least, in a delimiting view 

of the information. Genealogic aspects can be taken 

into account quite easily on a class and instance 

basis.  

Both approaches offer several ways to condense 

information. Descriptor sets and profiles, for 

example can be handled using statistical methods 

such as clustering and classification, which also 

suggest strategies of visualization familiar from 

statistics and data mining.  

Representing information by specifying 

relationships is first of all a simple and direct way 

of classifying objects based on similarity. In 

addition, this concept directly leads into the world 

of semantic networks. 

AN EXAMPLE FROM MOLECULAR

MODELING

Molecular modeling can be very useful to assess 

questions regarding, very generally speaking, 

stability and affinity of molecular systems. A very 

powerful, even though ‘expensive’ tool is the 

simulation of the dynamics of molecular systems. 

The underlying paradigm is based on perturbation 

theory. Simulations can be considered as computer 

experiments that allow the study of the response of 

a given system (molecular model) to some defined 

perturbation. The perturbation applied most 

frequently is just the kinetic energy of the N

particles associated with a given temperature T

according to [1] 

E m NkTkin i i
i

N
= ⋅ =�1

2
2 3

2

�

ν  (1) 

Such simulations show the time evolution of the 

given system under the thermodynamic conditions 

specified and allow us to judge the stability of the 

given structural alignment, constitution, or 

conformation relative to some reference state. For 

Figure 1: Data production and representation 
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this reason, simulation of molecular dynamics is a 

quite popular way of performing conformation-

searches, especially for large molecular systems. By 

extending the analysis to the various aspects of 

entropy, affinity can also be estimated, at least on a 

molecular level. 

A Model for Dynamical Affinity of 

Molecular Systems 

In practice, molecular dynamics simulations are 

performed by discretized integration of the 

respective equations of motion. [2] Since the 

characteristic frequencies of all relevant degrees of 

freedom must be resolved by the integration step-

size, simulations of molecular dynamics are usually 

very lengthy and produce huge data sets 

(trajectories) if applied to large systems.  

There is, however, a way to avoid very long 

simulations. The idea is based on the concept of 

collective modes of oscillation, which exist in 

stable molecular alignments. Indeed, the existence 

of such collective modes can be taken as a criterion 

for stability, because they make the difference 

between an unstable scattering state and a stable 

bound state of a molecular aggregate. According to 

quantum mechanics, their respective 

Eigenfrequency can identify such modes. Using a 

so-called Drude model, [3] which was originally 

developed for the electronic dispersion interaction 

of atoms and molecules by London, [4] this can be 

shown quite easily. Interacting molecules are 

represented by pairs of coupled harmonic 

oscillators (Figure 2). For simplicity, we take a pair 

of one-dimensional, coupled, identical harmonic 

oscillators positioned on the z-axis. The 

corresponding Hamiltonian is given by 

[ ] [ ]H T V m z z K z z a z zi j i j i j= + = + + + + ⋅ ⋅1
2

2 2 1
4

2 2 2� �

(2)

 where m is the mass of each oscillator, K the force 

constant and a the coupling constant, which is a 

function of the distance between the equilibrium 

positions of the oscillators. After separation of 

variables one has 

( ) ( )( ) ( )
( )( )

( ) ( )

H z z K a z z m z z

K a z z

H z z H z z

i j i j i j

i j

i j i j

= + + + + + +

+ −

= + + −

1
4

2 1
4

2 1
4

2

1
4

2

1

1

� � � �

.

(3)

The first term represents the coherent motion of the 

center of gravity of the pair of oscillators and the 

second term the relative ‘breathing’ motion. Since 

both oscillators have a ground state frequency ω0,

coupling results in a symmetric split of energy 

levels as shown in the following scheme (for a > 0) 

ω ω+ = ⋅ +0 1 a

ω 0 = K m

ω ω− = ⋅ −0 1 a

(for a < 0 in reversed order) 

The energy of an oscillator is ε ω= ⋅
1

2
� , so that 

the splitting is given by  

Figure 2: Coupled oscillators 
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( )
[ ]

ε ε ω ω ω
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For small |a| one has 

ε ε ω− ≈ − ⋅0 0
2

� a    (5) 

 which is a typical second order, resonance-like 

effect.  

Coming back to classical mechanics, one can 

calculate the sum over states (|a|<<ω0) of the 

system 

Q
kT kT

kT

a
= ⋅ =

�

�
�

�

�
�

−+ −� �

�

ω ω
ω0

2

21
      (6) 

The Helmholtz free energy is 

( )A kT Q A
kT

a= − ⋅ = + −ln ln0
2

2
1         (7) 

and since 
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d Q
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( )S S k a= − ⋅ −0
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21ln ,

it is clear that 

( ) ( )A A T S S T a
kT

ak− = − ⋅ − = ⋅ − ≈0 0 2
2 21

2
ln     (8) 

Therefore, in terms of thermodynamics, coupling of 

oscillators adds a contribution to the energy of the 

overall system, which is mainly an entropy effect. It 

should be noted that the difference of the energy 

levels is independent of the sign of the coupling 

constant, since it is proportional to a2. The energetic 

order of ω+ and ω-, however, is a function of the 

sign of the coupling constant. By analogy to the 

analysis of the (electronic) dispersion interaction by 

London, [4] this contribution to the entropy of 

molecular complexes can be called mechanical 

dispersion or, because of its stabilizing effect, 

dynamical affinity. 

Tracing Dynamical Affinity in 

Molecular Dynamics Simulations 

In a molecular dynamics simulation dynamical 

affinity can be traced, mapping coherent and 

breathing motion by correlation functions. 

For harmonic oscillators, one can define the 

autocorrelation functions for coherent and breathing 

motion 

(9)

(10)

Now, it can be shown that the second derivative of 

these correlation functions is -ω2 for zero 

correlation time (δ =0). This means that the whole 

simulation can be condensed to just two 

independent numbers, ω+, ω-, and perhaps ∆ω = ω+-

ω-.

G+ and G- are determined by selecting two centers 

(atoms or groups of atoms) i and j. The only 

condition to meet, is that i and j should be 

: position correlation function 
g ={

: velocity correlation function 

i, j : centers of correlation 

δ : correlation time 
T-t0 : time of measurement (simulation time) 
i = j : autocorrelation 
i ≠ j : cross-correlation 
Gij(0) = 1 : normalization 

( ) ( ) ( )[ ]
( ) ( )[ ]
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influenced in their dynamics by both, the coherent 

and the breathing mode. 

Since ω+ and ω- are determined from the trajectories 

of the full simulation ensemble, they are 

frequencies from the phonon spectrum of the whole 

system and not just frequencies of local molecular 

vibrations. In fact, splitting into ω+ and ω- is a 

sensitive indication of the existence of a common, 

non-local mode of vibration for both oscillators. 

This of course shows that the interaction between 

the molecules has lead to a stable bound state and 

not an unstable scattering state. 

Streptavidin and Biotin 

The example given below is a complex of two 

biomolecules, the protein Streptavidin and the 

vitamin Biotin. They form a specific complex with 

the largest binding constant known between 

biomolecules in nature. Therefore, this system is 

frequently used for immobilization of biomolecules. 

Surprisingly, experimental studies with molecules 

slightly different from Biotin show significant loss 

of stability and document the high specificity of the 

Biotin/Streptavidin complex.  

For example, 2-(4’-hydroxyphenylazo)-benzoic 

acid (HABA) also binds to streptavidin, but with a 

binding constant which is 9 (!) orders of magnitude 

lower.  

The thermochemical data measured for these 

complexes are given in Table 1. [5] 

Apart from the remarkable values of the binding 

constants, it should be noted that the sign of the 

entropy contribution to the free binding energy 

changes going from Biotin to HABA. This is an 

indication of a change in the role of entropy.  

NN

S

O

O

O

Biotin

N

N

O

O

O

2-(4'-hydroxyphenylazo)-benzoic acid

[ ]
[ ][ ]K

Streptavidin Biotin

Streptavidin Biotin
Mbinding

Biotin = ≅ −:
1013 1

[ ]
[ ][ ]K

Streptavidin HABA

Streptavidin HABA
Mbinding

HABA = ≅ −:
104 1

From the theoretical point of view, it is of course a 

challenge to model such a system. Fortunately, 

crystal structures of both complexes have been 

published. [6] Molecular dynamics simulations 

starting from these crystal structures have been run 

using the AMBER 3.0 [7] force field in NVT 

ensembles with water and counterions at 300 K. 

The ensembles have been thermalized during 30 

psec simulations. Subsequently, another 15 psec 

were used to sample the trajectories from which 

oscillator correlation functions have been estimated. 

Table 2 summarizes the results of the simulations. 

For Biotin, four different orientations of the ligand 

in the binding pocket of Streptavidin have been 

simulated, for two HABA (Table 3). Columns 2 and 

3 show the frequencies of the coupled oscillator 

motions derived from the autocorrelation functions 

G+ and G-. For the crystal structure orientation of 

Biotin (1) the coherent motion has the lower 

frequency and the breathing motion is significantly 

faster. In the first row of Table 2 the Biotin-results 

of a simulation without water and counterions are  

Molecule ∆∆∆∆G

kcal mol
-1

∆∆∆∆H

kcal mol
-1

T∆∆∆∆S

(297 K) 

kcal mol
-1

Kbinding

(M
-1

)
∆∆∆∆GBiotin / 

∆∆∆∆GHABA

T∆∆∆∆SBiotin / 

T∆∆∆∆SHABA

Biotin -18,3 -32,0 -13,7 2,5x1013 3,5 -2,0 
HABA -5,27 1,70 6,97 104 1 1 

Table 1: Thermochemical data of Streptavidin complexes with Biotin and HABA.
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given. The values do not differ very much from the 

results for the solvated system, which indicates the 

robustness of the method. 

The interesting result is that the entropy 

contribution from oscillator coupling found in the 

molecular dynamics simulations shows the same 

relationship between Biotin and HABA as does the 

experimentally determined quantity T⋅∆S. The 

agreement is 13% with respect to the experimental 

value, which is adequate for the force field chosen, 

the size of the simulation ensembles, and the 

simulation time.  

This underlines the role of oscillator coupling as 

indicator for stability of a given molecular 

alignment. At the same time it demonstrates the 

potential of data reduction that is given by this 

approach. 

In terms of model-based data compression, we have 

the following situation. The original data 

production is the molecular dynamics algorithm in 

combination with the force field model of the 

system. The trajectories are the original data. Now, 

the model production is given by the coupled 

oscillators, the corresponding data scheme by the 

oscillator correlation functions, and the data 

representation by the oscillator frequencies. The 

representation of the information, i.e. the descriptor 

of stability, is given by the level splitting, 

calculated from the frequencies. 

AN EXAMPLE FROM BIOMETRY

Quite a different approach to model based data 

compression is possible in the area of kinetic 

studies of bacterial pathogenicity. Such studies are 

very important in infectious disease research. In a 

very general view, the key issue is the interaction 

between pathogens and the hosts they infect. 

System / 

binding mode 
ωωωω+

(GHz) 

ωωωω-

(GHz) 

∆∆∆∆ωωωω
(GHz) 

Type of 

coupling 

Splitting 

kcal.mol
-1

T∆∆∆∆S

 (297 K) [6] 

kcal.mol
-1

1STP [8]/ 1[9] 
5.4 14.6 -9.1 a<0 -0.87  

1STP / 1 
2.9 12.4 -9.6 a<0 -0.91 -13.70 

1STP / 2 
6.1 0.76 5.4 a>0 0.51  

1STP / 3 
13.5 6.9 6.6 a>0 0.63  

1STP / 4 10.7 2.2 8.4 a>0 0.80  
       

1HBA [8] / 1 8.7 4.7 4.0 a>0 0.38 6.97 
1HBA / 2 8.6 13.8 -5.3 a<0 -0.50  

Table 2: Results of molecular dynamics simulations of Streptavidin complexes with Biotin and HABA. Starting from the crystal structures 
published, different orientations of the ligands have been studied. See text for further details. 

Experiment 
297 K 

MD Simulation
300 K η =

T ⋅ ∆SBiotin

T ⋅ ∆SHABA
-1.97 -2.27 

Ligand  

orientation 

Description System 

1 crystal structure Biotin, 
HABA 

2 upside down Biotin, 
HABA 

3 reversed Biotin 

4 upside down and 
reversed 

Biotin 

Table 3: Orientations of the ligands Biotin and HABA bound to 
Streptavidin
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Besides the medicinal aspects of infection, 

pathogen-host interactions are the primary focus of 

target and lead compound search in the 

pharmaceutical industry. It is a complex 

phenomenon with several degrees of freedom. 

Dynamics of Infectious Disease 

Progression 

Progression of an infectious disease is, in a 

generalized sense, always the result of several types 

of growth processes, which are characteristic for 

different phases of disease progression. [10] If one 

wants to identify targets for anti-infective drugs, the 

early phases of disease progression are of special 

interest.  

The first phase is the invasion of the pathogen. This 

is some kind of transport phenomenon, which often 

is coupled to specific surface interactions and 

recognition steps.  

What follows is a phase of establishment that 

usually results in a growth of the pathogen 

population. In this phase chemical communication 

between pathogen and host may occur, which can 

facilitate the pathogen’s establishment significantly. 

The chemical ‘messages’ pathogens send to the 

host are called virulence factors. Typically, they 

serve to subvert normal functions of the host cells. 

Sometimes they have an immuno-suppressive 

effect. [11] 

Next is the formation or enrichment of so-called 

pathogenicity factors. Very often they are toxins 

secreted by the pathogen. But also bacterial 

enzymes, which, for example cause necrotic 

degradation of host tissue belong to this class of 

factors. 

Last but not least, the development of disease 

symptoms is related to the amount of pathogenicity 

factors formed. In all theses phases, however, there 

is some kind of host response to defend against the 

pathogen. For more complex host organisms it is an 

immune response.  

The scenario described above can be summarized in 

terms of the categories pathogenicity, virulence, 

and susceptibilty. Even though in literature 

pathogenicity and virulence are often used 

synonymously, a distinction based on genomical 

and disease progression considerations is possible. 

Pathogenicity is first of all a property of a pathogen 

that manifests in the formation of pathogenic 

factors like, for example toxins. [12] This, of 

course, depends on genotypic, as well as 

phenotypic conditioning of the pathogen. To be 

specific, what matters is type and amount of 

pathogenicity factors produced by the pathogen 

inside, or in contact with the host. The amount of 

factors formed, however, also depends on the size 

Figure 3: Phases of infectious disease progression. See text 
for details. 

Pathogen
invasion

Pathogen
multiplication

Enrichment
of toxins

Host response

Host response

Host response

Development
of symptoms

Host response

Phase 1

Phase 2

Phase 3

Phase 4

Figure 4: Pathogenicity, virulence, susceptibility, genotypic, and 
phenotypic conditioning. 
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of the pathogen population inside the host, which, 

in turn, depends on genotypic and phenotypic 

conditioning of the pathogen.  

Due to host response, however, pathogen 

multiplication also depends on genotypic and 

phenotypic conditioning of the host. In principle, 

there are two degrees of freedom for the pathogen. 

These are, on the one hand its ability to produce 

pathogenicity factors, and on the other hand the size 

of population of pathogenicity factor producing 

pathogens inside the host.  

Since virulence factors are often host specific, 

many authors refer the notion virulence to the 

combined effect of pathogenicity factor formation 

and population growth.  

The third degree of freedom (see Figure 5) is the 

host’s susceptibility to infection by the pathogen. 

Here, genotypic and phenotypic conditioning of the 

host are the important features.

Any research in the field of infectious diseases 

aimed at understanding the large variety of 

strategies pathogens have developed during 

evolution must analyze the kinetics related to the 

different phases. First of all, descriptors have to be 

identified that allow us to follow the individual 

processes by experimental measurements (see 

Table 4). 

A key problem in handling living organisms is 

reproducibility. Usually, this is taken care of by 

running replicate experiments and forming 

averages. In addition, time-resolved measurements 

are necessary to analyze the associated kinetics. To 

do so, the following model assumptions are useful. 

A Model for Infectious Disease 

Dynamics 

The normal way to measure pathogenicity starts 

from a set of N0 host organisms, which are infected. 

In the course of the experiment, decrease of the host 

population is measured. Typically, one obtains a 

sigmoid curve (Figure 6), which can be represented 

by the solutions of the following differential 

equation (DE). It is called the logistic, autocatalytic, 

or autokatakinetic differential equation [14] 

( ) ( )[ ]dN t

dt
k g N t N t= − ⋅ ⋅ ( )     (11) 

describing growth processes with feedback. It is the 

equation of an exponential growth, which is 

modified by the second term in the square brackets. 

This second term depends on the population N at 

time t and constitutes the feedback. It can be 

agonistic (g<0), as well as antagonistic (g>0). The 

Phase Type of process Descriptors 

Invasion - transport 
phenomenon, 
first/zeroth 
order kinetics; 

- target 
recognition, 
signal 
transduction 

invasive pathogen 
count, [13] optical 
densities of culture 
media 
specific 
interactions 

Pathogen 
multiplication 

- free pathogen 
population 
growth 

- invaded 
pathogen 
population 
growth 
(dependent on 
host response) 

pathogen count, 
[13] optical 
densities 
pathogen count, 
[13] disease 
marker 
concentration, 
antibody titer 

Toxin 
enrichment 

- secretion of 
toxins and 
other 
pathogenicity 
factors 

- pathogen 
population 
growth 

toxin 
concentration, 
antibody titer, 
disease marker 
concentration 
pathogen count 
[13] 

Development 
of symptoms 

- host 
population 
decrease 

disease marker 
concentration, 
antibody titer 

Table 4: Processes in disease progression

Figure 5: Genetic degrees of freedom in infectious diseases

toxin
formation

pathogen population growth

host response
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general form of the solution is 

( )N t
k N e

k g N e

k t

k t
( ) = ⋅ ⋅

+ ⋅ ⋅ −

⋅

⋅
0

0 1
  (12) 

With the integration constant N0, the initial size of 

the population, plus the rate constant k, and the 

feedback constant g there are three independent 

parameters. The combination of N0>0 and a 

negative value of k describes the decrease of a 

population (Figure 6). 

In contrast, vanishing N0 together with a positive 

value of k describes a population that grows into a 

saturation state. With such parameters a growing 

pathogen population can be described (Figure 7).  

Applying this equation to infection experiments, 

one has, first of all, equation (11) for the decrease 

of the host population. According to the 

considerations outlined above, it is easy to imagine 

that the kinetic constant k in fact depends on the 

growing pathogen population P(t) and is thus a 

pseudo-constant. Therefore, 

[ ]k k P t= ( )                  (13) 

The growth of the pathogen population may either 

be unrestricted (free exponential growth) 

dP t

dT
P t P(t) P e t( )

( ),= ⋅ = ⋅ ⋅κ κwhere 0 (14)

or restricted, 

[ ]dP t

dT
P t P t

P(t)
P e

P e

t

t

( )
( ) ( ),

( )

= − ⋅ ⋅

=
⋅ ⋅

+ ⋅ −

⋅

⋅

κ λ

κ
κ λ

κ

κwhere 0

0 1

    (15) 

reaching a saturation level due to host response. As 
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Figure 8: Decrease of host population coupled to growing pathogen population.  

Figure 6: Decrease of a host population after infection. The 
time of the population’s half-life is indicated. 
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Figure 7: Increase of a pathogen population after infection.
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mentioned above, P0 is small, and κ is positive. 

The simplest form of combining the two processes 

is to set 

k P t= −η ( ),    (16) 

which, for example results in the situation shown in 

Figure 8.  

It is obvious that the effect of the growing (not 

constant) pathogen population can be seen as a 

deformation of the host population curve. The 

degree of deformation increases with η. There is, 

however, a further type of deformation of the host 

population curve. It comes from the feedback term 

and can be seen in Figures 9 and 10. This certainly 

reflects host conditioning. 

Practical Applications 

In experiments with time-resolved measurements, 

one usually has data reflecting the decrease of a 

host population that consists of test organisms such 

as, for example insects, mice, rats, or nematodes 

[15] (Figure 11). 

Traditionally, the simplest way to measure 

pathogenicity is to count the host population after 

some predefined time tscoring, which gives an ad hoc

score as a percentage. 
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Figure 9: Decrease of host population coupled to growing pathogen population. A clear modulation of the host curve by the 
feed-back term can be seen
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S
N N

Nadhoc
tscoring=

−
⋅

0

0
100%  (17) 

Unfortunately, this way of measuring pathogenicity 

depends very much on the choice of tscoring.

Standardization is accomplished by normalization 

with the wild type of the pathogen: 

S

N N

N

N N

N

normalized

tscoring

wildtype
tscoring
wildtype

wildtype

=

−

−
⋅

0

0

0

0

100%

(18)

Very often, time series are run until the host 

population has reached half its original size and 

( )t t N
1

2

0
2=    (19)

is taken as the measure of pathogenicity. This 

condenses the whole series of measurements to one 

single value. For a given host organism those 

pathogens with a low t½ are more pathogenic than 

those with a higher value. 

Further Developments

In general, however, this is not sufficient to 

distinguish all possible effects that may modulate 

the interactions between a host and a pathogen. 

Coming back to the solutions of the logistic 

equation, steepness of the population curve at t½ can 

tell a lot about pathogens, as well as hosts. [15] To 

improve the analysis, one has to fit solutions of the 

logistic equation (12) to the experimental data. This 

can be done, for example using the method by 

Marquardt and Levenberg. [16] The set of 

parameters k, g, and eventually κ, λ, or even η

allow the identification of those bacterial mutants 

that show extraordinary behavior. This allows 

scanning the genome for so-called pathogenicity 

and virulence genes. Furthermore, different 

mechanisms of infection can be distinguished.  

Together with the huge amount of genomic 

bacterial information available in the near future, 

such methods can be used to look for entirely new 

ways of fighting infectious diseases. One can, for 

example try to target genes or gene products 

involved in the very first step of an infection. This 

would not kill a pathogen, but disable its 

establishment and later on multiplication in the 

host. Such a ‘gentle’ way of infectious disease 

prevention is very likely not to trigger the 

development of resistances. Since the pathogens 

can survive ‘outside’ the host, there is only little 
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Figure 11: Time-resolved measurements of a C. elegans population infected by P. aeruginosa.
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selective pressure.  

Based on the situation described above, strategies 

for fighting infectious diseases must be defined. 

This also defines the type of targets to be searched 

and later on has an impact on the assays used for 

identification of active substances (lead 

compounds).  

The normal strategy in target finding is to 

deactivate (knock out) genes systematically and to 

check by suitable assays with model organisms, to 

what extent pathogenicity, virulence, and, perhaps 

susceptibility are affected. Both steps are rather 

critical and need careful evaluation of the data 

generated and a very critical assessment of the 

results obtained.

SUMMARY

Whenever it is possible, model-based data 

compression serves two purposes. First of all it can 

be a great help to condense even huge data sets to 

very few numbers. Furthermore, the definition of 

the model necessary for compression is a very 

challenging step that often helps to gain deeper 

insights into the matter. It can reveal 

inconsistencies and facilitate the recognition of 

unknown phenomena. Together with the condensed 

data it offers possibilities to represent the 

information behind the data in a very efficient way.  

However, any kind of modeling is an abstraction 

and idealization. A model always has to skip part of 

the reality. This of course limits the applicability of 

model-based data compression and defines the due 

diligence that must be applied using it.  
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ABSTRACT

INTRODUCTION

The problem of organizing collections of molecular 

structures has been with us in one form or another 

since the dawn of modern chemistry. The 

development of substructure-searching algorithms 

was one of the initial pursuits in the creation of 

databases specifically structured for chemists and 

reflects the natural partial ordering of compounds 

with respect to the substructure-relationship. The 

last 15 years has seen the development of 

sophisticated algorithms for similarity searching, 

another way of exploring the compounds in a large 

collection based on the computation of a distance 

relationship between them. However, neither of 

these two methods provides a systematic way of 

assuring that all of the compounds in a collection 

have been examined. 

Clustering and projection methods have long been 

available as statistical tools for organizing objects 

embedded in a high-dimensional space that does 

facilitate systematic browsing. Projection methods 

organize the objects into a low-dimensional space, 

usually the plane, so that distances in the points 

reflect distances between the points in the high-

dimensional space. Clustering methods traditionally 

organize the objects along a line so that related 

clusters tend to occur together.  

Long predating chemistry, humankind faced the 

problem of organizing large collections of hand-

made objects as market places evolved. Modern 

department stores now display millions of items. 

Yet in one day you browse a large department store 

Structural browsing indices (SBIs) have been proposed as tools for organizing and exploring large sets of
chemical structures in a manner complementary to that addressed by substructure and similarity-based 
methodologies. Molecular equivalence indices (MEQIs) comprise a special subclass of SBIs that play a
central role in constructing a suite of SBIs appropriate to a variety of browsing, chemical-diversity, and 
SAR tasks. After presenting a general definition of a molecular equivalence index, three different ways of
constructing SBIs based on MEQIs will be illustrated. The first index uniquely identifies the chemical
graph of a compound and will be used to identify the sets of geometric and stereoisomers in a compound
collection as well as to visually assess the overlap of two compound collections. The second index
identifies a largest set of nonoverlapping functional groups of a compound and will be used to visually
identify a functional-group-based receptor-relevant subspace associated with ACE inhibitors. The third 
index provides a hierarchical ordering of compounds whose use will be illustrated in the context of
browsing structures and SAR relationships. 
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for a sense of what it sells, and if you wish to buy a 

shirt, you are likely to find the shirts that interest 

you in reasonably close proximity of each other. 

This is an organizational feat that merits study by 

investigators in cheminformatics.  

How do the department store managers do it? 

Basically they form a hierarchy of equivalence 

classes. Appliances, clothes, cosmetics…. Within 

appliances: stoves, refrigerators, washing 

machines…. Stoves might then be organized by 

size or manufacturer. Lastly the items are ordered 

along aisles in a manner consistent with this 

organizational hierarchy.  

The organizational hierarchy can be distinguished 

from the clustering and projection methods we have 

just mentioned in that the equivalence classes are in 

some sense inherent in the nature of the object. We 

needn’t see a stove in a cluster of other stoves, 

refrigerators, and washing machines to recognize 

that stove as an appliance and not a cosmetic. 

The molecular equivalence indices presented here 

were developed with this department store analogy 

in mind, only, in this case, the equivalence classes 

are entities such as the chemical graph, the cyclic 

system, and chemical formula of a molecule, its 

side chains, ring systems and functional groups. 

Rouvray [1] reviews a number of the notions of 

structural equivalence that have played an 

important role in the development of chemistry. 

The formal perception of various integral 

components of a molecule has its origin in the 

dawning of cheminformatics, [2] as does the 

perception of an exhaustive set of a particular genre 

of components. [3] The idea of looking at a 

formalized notion of molecular equivalence and 

studying the resulting equivalence classes is more 

recent [4] as is the notion of hierarchically 

organizing structures by means of numbers. [5] The 

notion of systematically incorporating various 

notions of molecular equivalence into browsing 

indices whose values essentially serve as names for 

the resulting equivalence classes [6] forms the 

subject of this study. 

After describing the set of structures that will serve 

to illustrate the concepts, a general definition of a 

molecular equivalence index (MEQI) will be given. 

A simple, yet fundamental, MEQI that assigns each 

chemical graph a unique code [7] will be presented 

and used to find the sets of geometric and 

stereoisomers in collection of compounds and to 

illustrate a simple mechanism for determining 

which structures occur in each of two collections. A 

more general MEQI identifies a largest set of 

nonoverlapping functional groups of a compound 

and will be used to visually identify a functional-

group-based receptor-relevant subspace associated 

with ACE inhibitors. Finally, a MEQI specifically 

designed to hierarchically order compounds with 

respect to their cyclic systems and arrangement of 

their side chains will be illustrated in the context of 

browsing structures and SAR relationships. 

AN ACE-INHIBITOR DATASET

In a recent paper, Pearlman and Smith [8] develop 

the concept of a receptor-relevant subspace using 

78 angiotensin-converting enzyme (ACE) 

inhibitors. In Figure 3 of that study, these 78 

compounds are positioned in a localized area of a 

three-dimensional BCUT space when viewed 

against a backdrop of a “5% diverse subset of the 

total MDDR [9] population.” Bob Pearlman 

graciously sent us the structures of those 78 ACE 

inhibitors and Veer Shanmugasundaram kindly 

provided us with a similar diverse subset of 3932 

compounds based on a comparable three-

dimensional BCUT space from the MDDR 

collection at Pharmacia. Choosing a “comparable” 

subset of the MDDR compounds to serve as a 

backdrop was thought to increase our chances of 

finding a receptor-relevant subspace using MEQIs, 
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a concept that will be discussed in the section on 

the alpha-augmented functional group ensemble 

MEQI. No attempt has been made to verify the 

suitability of this expectation. 

DEFINING A MOLECULAR EQUIVALENCE 

INDEX

If a chemical descriptor is viewed broadly enough 

to include any function that maps the space of 

compounds to a linearly ordered set, a MEQI can be 

viewed as a special case of a chemical descriptor. 

However, in the case of a MEQI, this mapping can 

always be viewed as a composite mapping in that it 

first maps the space of compounds to a space of 

visually interpretable representations and then maps 

this intermediary space to a linearly ordered set. 

This decomposition of a MEQI is illustrated in 

Figure 1. A few comments are needed to explain 

the figure. For computationally purposes, one must 

replace the compounds by some approximate 

mathematical representation. In Figure 1, we use a 

slight generalization of the chemical graph in which 

both the vertices and the edges are labeled. 

Mathematicians call this a colored or labeled graph. 

By allowing for loops and multiple edges, one 

obtains a labeled pseudograph. Thus, in our case, 

the equivalencing function always maps the space 

of labeled pseudographs onto itself. The particular 

equivalencing function in Figure 1 deletes all 

single-degree vertices labeled ‘H’ for hydrogen. In 

particular, it converts all chemical graphs to their 

hydrogen-reduced counterparts, but note that our 

definition of this equivalencing function is 

operationally defined for any labeled pseudograph. 

The second mapping assigns each labeled 

pseudograph a unique code. This code depends only 

on the labeled pseudograph on which it is 

computed, and not on the compound mapped to that 

pseudograph by the equivalencing function. This 

code could be a number base 10, a number base 36, 

such as is used in car license plates, or a character 

string. However, the resulting values must be 

linearly ordered. In some cases, these assigned 

values depend on the sequence in which graphs are 

presented to the naming algorithm with the first 

graph labeled number 1, the second 2, et cetera. [6] 

A priori naming procedures [5,7] depend only on 

the labeled pseudograph and will consequently be 

independent of the time and place in which the 

naming is carried out. Obviously, the utility of a 

MEQI diminishes rapidly if this naming function is 

equivalencing

function

naming

function

labeled
pseudograph

representation
of compound

labeled
pseudograph

representation of
desired structural

relation

linearly
ordered set

Figure 1. Two basic components of a molecular equivalence index mapping a
compound to its compound meqnum.
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not unique for all practical purposes, i.e. 

nonisomorphic labeled pseudographs are assigned 

distinct values. (It remains an open question if there 

exists a one-to-one naming function that lies 

outside the NP-completeness class. [10])  

In this study we will be using an extension [11] of 

the Morgan algorithm [12] to compute an a priori

naming function. We have yet to encounter a case 

of nonuniqueness. This algorithm assigns a number 

base 34. (I’s and O’s are not used because of their 

possible confusion with 0’s and 1’s.) We refer to 

this number as a molecular equivalence number or 

meqnum for short.  

For every distinct equivalencing function, we 

obtain a distinct MEQI. When the equivalencing 

function maps a compound to its hydrogen-reduced 

graph as in Figure 1, we call the resulting assigned 

numbers “compound meqnums.” In an analogous 

way, we obtain compound-skeleton meqnums, 

cyclic-system meqnums, cyclic-system skeleton 

meqnums, et cetera.

THE COMPOUND MEQNUM 

Finding Geometric and Stereoisomers

The compound meqnum identifies a compound up 

to geometric and stereoisomerism. Even this simple 

meqnum has interesting uses. For example, the 

pharmacological activity of a compound is often 

stereospecific, whereas most chemical descriptors 

are not. This would seriously diminish the utility of 

most chemical descriptors in lead-optimization 

contexts if it were not for the fact that lead 

optimization efforts in drug discovery quickly focus 

on those compounds with the desired handedness at 

the critical stereocenters. However, there are often 

cases in which both stereoisomers are present and 

one must remove the compound with the undesired 

handedness before proceeding further. This is easily 

done by computing the compound meqnums for all 

of the compounds and then constructing the 

histogram given in Figure 2. We will assume that 

the compound with the desired handedness will be 

synthesized whenever the compound with the 

undesired handedness is synthesized. Consequently, 

the compound meqnum of any compound with the 

undesired handedness will occur twice since the 

corresponding stereoisomer will also be present and 

have the identical chemical graph. 

Emerging graphical capabilities are enabling us to 

visualize relationships involving high-content 

Figure 2. Histogram for finding geometric and stereo isomers with
with the compound meqnums along the x-axis.  The two geometric
isomers associated with the marked bar of height two are displayed.
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variables such as MEQIs. Spotfire [13] allows the 

use of string-valued variables for the axes of a plot 

and provides many of the navigational aids required 

for efficient browsing. By simply selecting the 

compound meqnum variable for the x-axis in the 

histogram view in Spotfire, Figure 2 pops into 

view. 

Out of a data set of roughly 4000 compounds, one 

quickly and visually isolates all the pairs of 

geometric and stereoisomers. These pairs 

correspond to the three thin bars of height 2 

representing 6 compounds. The structures can be 

seen by moving the mouse diagonally across its top 

to form an enclosing rectangle which “marks” the 

compounds. One of the bars of height 2 in Figure 2 

is marked. The details window gives the identifiers 

of the two tallied compounds as 174833 and 

174834 and gives EWBJK for the common 

compound meqnum. The remaining 3926 

compounds are represented by corresponding bars 

of height 1 compressed so tightly as to give the 

visual impression of a solid black horizontal bar of 

that height. 

Comparing Two Compound Collections 

 A similar logic allows one to quickly find the 

intersection in two compound collections. Again, 

compounds that occur in both collections would be 

represented by bars of height 2 or greater. These 

can be marked appropriately and the other 

compounds deleted. The remaining bars can then be 

proportionally colored by source. Multicolored bars 

would reflect chemical graphs found in both 

collections. Monocolored bars would represent 

isomers and other compounds with the same 

chemical graph found in only one collection. 

AN ALPHA-AUGMENTED FUNCTIONAL 

GROUP MEQNUM ENSEMBLE

 The concept of a receptor-relevant subspace as 

developed by Pearlman and Smith [8] can be 

viewed generally as any formal specification of a 

class of compounds in which compounds with the 

desired receptor affinity are highly concentrated. In 

this section, we would like to illustrate another 

group of MEQIs by developing one that provides a 

equivalencing
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pseudograph
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of compound

four connected
graphs

meqnum
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Figure 3. Construction of two alpha-augmented functional group MEQIs using
a naming function that generates a single meqnum and a list of meqnums for
multicomponent graphs, respectively.
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simple means of specifying a receptor-relevant 

subspace for the 78 ACE inhibitors in our data set. 

Figure 3 shows two distinct MEQIs involving the 

same equivalencing function, but two different, yet 

related naming functions. To define the 

equivalencing function, divide the atoms of a 

chemical graph into separating atoms and non-

separating atoms. Call a largest-connected subgraph 

consisting only of non-separating atoms a maximal 

group. By letting the separating vertices be any 

carbon atom that does not share a double bond with 

any oxygen, nitrogen, or sulfur or share a triple 

bond with nitrogen, we obtained the maximal 

functional groups. By augmenting these maximal 

functional groups with their adjacent alpha carbon 

atoms, we obtain the alpha-augmented functional 

groups (AFGs) that form the disconnected graph of 

four components depicted Figure 3.  

We now have a choice of naming functions. We can 

use the one in Figure 1 which always assigns a 

single number to a graph whether connected or not. 

This gives the ensemble meqnum A4J92 in the 

Meqnums of larger functional 
groups come first in each list.
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Figure 4. Histogram of alpha-augmented functional group list.
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upper portion of Figure 3. Alternatively, we could 

apply the naming algorithm to each of the 

components and, in that way, obtain a list of 

numbers. This is illustrated in the lower portion of 

Figure 3, in which the outcome of the naming 

function is a meqnum ensemble list. There are k! 

ways of ordering a list of k numbers. To order the 

AFG lists canonically, we order the names first by 

the number of atoms in the corresponding 

component. When two or more components have 

the same number of atoms, the numbers are ordered 

lexicographically. The ensemble meqnum is nice 

when a short number is required. The meqnum 

ensemble list gives us substring access to its 

components and will be used here. 

Figure 4 is obtained by simply selecting the AFG 

meqnum ensemble list variable for the x-axis of the 

histogram and coloring the bars to indicate the 

proportion of ACE inhibitors amongst the 

compounds with a particular set of alpha-

NR8X 1SDJ …

Alpha-augmented
functional group meqnums
linked to sizes

07 05 ...

Sizes of alpha-augmented
functional groups
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Figure 6. Marked region of ACE inhibitors suggesting alpha-augmented
functional groups associated with ACE activity.
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Figure 7.  Substring search demonstrating the specificity of a suggested 
alpha-augmented functional group with meqnum NR8X.

N

O

S

MDDR cpds. turned on

42 out of 3392 records visible, 42 marked

NR8X 1SDJ … 07 05 …

2.5

5

73



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/johnson/johnson.pdf                            

augmented functional groups. 

We immediately see that one combination of AFGs 

is shared by 13 non-ACE inhibitors, and another 

combination of AFGs is common to 5 ACE 

inhibitors. However, most of the compounds have a 

unique combination of AFGs, and consequently, we 

obtain the black horizontal bar of height 1 along the 

bottom. The importance of using an meqnum 

ensemble list rather than a ensemble meqnum is 

revealed when we use the x-axis slider to zoom in 

on the narrow region on either side of the red bar 

corresponding to the 5 ACE inhibitors. This gives 

rise to Figure 5. Since the AFG meqnums in each 

ensemble list are ordered first by size, and since the 

carbamothioate AFG with meqnum NR8X is the 

largest AFG in quite a few ACE inhibitors, but is 

not the largest AFG in any non-ACE inhibitors, we 

obtain a very interesting interval of uninterrupted 

ACE inhibitors. 

Zooming back out and turning off the non-ACE 

inhibitors, we obtain Figure 6. One can now easily 

mark the interval of ACE inhibitors displayed in 

Figure 5. This reveals the AFG lists for each of the 

marked compounds. Again we note that each begins 

with NR8X. 

To check if the associated AFG occurs on any other 

compounds, which would necessarily contain 

another AFG of 7 or more atoms, one enters NR8X 

in the substring search window for the AFG slider 

as indicated in the upper-right portion of Figure 7. 

When finished, all compounds without that AFG 

are removed from view. In Figure 7, we see that the 

non-ACE inhibitors have been turned back on! 

Consequently, we see that all compounds 

containing the NR8X functional group are ACE 

inhibitors. 

But Figure 6 also reveals that the thiocarbonate 

AFG 1SDJ is present whenever NR8X is present. 

Searching for those compounds that contain 1SDJ, 

we obtain Figure 8. There are 47 such compounds, 

all ACE inhibitors. The data are inadequate to 

determine if only one or both of these functional 

groups is critical to activity in this subseries of the 

ACE inhibitors.  

It is informative to repeat this logic by marking the 

compound in the “subsequently marked region” in 

Figure 8.  Substring search demonstrating the specificity of a co-occurring
alpha-augmented functional group with meqnum 1SDJ
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Figure 6. The results are summarized in Figure 9. 

We see that there were 24 marked compounds 

whose largest AFG is the amide JCPL. The 

corresponding substring search reveals a total of 

312 compounds with that AFG, 35 of which are 

ACE inhibitors. Consequently, we conclude that 

this amide AFG is not ACE-receptor specific, even 

though it may still contribute to activity when other 

more receptor-specific structural features are 

present in a particular arrangement. 

A DESIGNED CYCLIC SYSTEM-ORDERING

Browsing Structures

Efficient systematic browsing requires that 

structures be linearly ordered. If we are to look at 

every structure m in a collection of n structures 

without looking at any one more than once, we 

would necessarily encounter them in some 

sequence. One of the most common sequences is 

defined by the registry number of compounds. 

Figure 10 shows the first 12 structures one would 

encounter when lexicographically ordering the 

3854 MDDR structures in our data set by their 

registry number. Although very useful for finding 

particular compounds when the registry number is 

known, this ordering does not facilitate our finding 

a particular cyclic system or getting a good sense of 

its representatives. 

Now suppose the structures were ordered by a 

MEQI that maps each structure to its cyclic system. 

Then, for each cyclic system, there would be a 

single largest interval of compounds comprised of 

all the compounds with that particular cyclic 

system. Long/short intervals would represent cyclic 

systems represented by many/few compounds, 

respectively. However, adjacent intervals would 

generally represent compounds coming from 

entirely unrelated cyclic systems. For example, an 

interval of steroids might be adjacent to an interval 

of indoles.  

This raises the question as to how one gets closely 

related cyclic systems to be associated with closely 

positioned intervals. The natural solution is to 

develop a hierarchical ordering so that, for 

example, the compound intervals associated with 

cyclic systems sharing the same cyclic skeleton are 

grouped together. Such groupings are easily 

obtained as follows:  

Figure 9.  Substring search demonstrating the nonspecificity of a suggested
alpha-augmented functional group with meqnum JCPL.
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Let SBIj, j = 1,…,J, be any finite sequence of SBIs. 

These will usually be a combination of MEQIs 

associated with the cyclic system skeleton, the set 

of component ring systems, et cetera and suitably 

chosen counts of the number of atoms, number of 

component ring systems, et cetera. If m denotes an 

arbitrary structure, then ‘SBI1(m) SBI2(m) … 

SBIJ(m)’ is a keyword list. A variable taking such 

keyword lists as values hierarchically orders 

structures when its values are lexicographically 

ordered. For example, if J were 2 and SBI1 and 

SBI2 were MEQIs representing a cyclic-skeleton 

meqnum and cyclic-system meqnum, respectively, 

we would immediately accomplish our purpose of 

assuring that compound intervals associated with 

cyclic systems sharing the same cyclic skeleton 

were grouped together. 

The proof of the relevance of a particular sequence 

of SBIs in constructing a hierarchical ordering lies 

in the relevance of the compound orderings that 

emerge. Such relevance is best demonstrated 

though numerous examples in a variety of contexts. 

Space restrictions allow only a rather superficial 

demonstration of a rather involved cyclic system 

ordering we are exploring. 

The first SBI in the construction of this ordering is 

the number of ring systems. Since this number is 0 

for acyclic structures, all acyclic structures precede 

all non-acyclic structures in our ordering. 

Consequently, to extract a short section of the 3854 

MDDR structures in our data set that shows that our 

cyclic system ordering groups related cyclic 

systems, we list structures 1001 – 1012 in our 

ordering. The list, given in Figure 11, consists of 12 

aromatic, single-ring-system structures beginning 

with 6 quinoxalinediones, followed by a 1,2,3,4-

tetrahydropyrido[4,3-d]pyrimidine-2,4-dione, and 

then 5 1,2,4-benzotriazin-3-ones. Our perception 

program currently treats a ketone as an acyclic 

group. Consequently, the first quinoxalinedione has 

3 acyclic groups, the next three have 4, and the last 

two have 5. Because of this ordering of the number 

of acyclic groups within a cyclic system, we know 

there are exactly 3 and 2 single-ring-system 

quinoxalindiones with 4 and 5 acyclic groups, 

respectively. Similarly, the interval of 1,2,4-

benzotriazin-3-ones begins with two compounds 

with 2 acyclic groups. The last three compounds 

have 3 such groups. Consequently, we know there 

are exactly 2 single-ring-system 1,2,4-benzotriazin-

3-ones with 2 acyclic groups in this subcollection of 

the MDDR. 
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Figure 10.  First 12 of 3854 random MDDR structures as traditionally
ordered by registration number.
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Browsing a Structure-Activity 

Relationship

A visual analysis of a structure-activity relationship 

(SAR) provides an intuitive feel for the structures 

on which it is based and roughly determines which 

structural features are critical to activity. There are 

many aspects to a comprehensive visual analyses of 

an SAR. One aspect that is repeatedly encountered 

is to find a group of compounds with a common 

cyclic system and similarly positioned side-chains. 

This is easily facilitated with the joint use of a 

medium and fine-grained cyclic system ordering. 

The medium-grained ordering only distinguishes 

between compounds with different cyclic systems. 

The fine-grained ordering further distinguishes the 

compounds by the number of side-chains, how they 

are positioned, and the particular set of side chains. 

Figure 12 illustrates how the two levels of 

resolution work together. The figure is restricted to 

the 78 ACE inhibitors. The upper histogram has the 

medium-grained cyclic-system ordering along the 

x-axis. The lower scatter plot has the fine-grained 
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cyclic-system ordering along the x-axis and minus 

the log of the IC50 concentration for the y-axis. The 

tallest bar in the histogram indicates the presence of 

a cyclic system represented by 11 compounds. 

When one “marks” this tallest bar, the 

corresponding points in the scatterplot are marked 

as well. These 11 marked points form an interval of 

contiguous marked points because the fine-grained 

ordering is simply a further elaboration of the 

medium-grained ordering. 

Because the cyclic-system orderings are based 

purely on structure, one has no guarantee or even 

expectation that a particular activity will relate to 

that ordering. However, one can expect to see 

closely related structures positioned close to one 

another. Should these similarly positioned 

structures differ markedly in activity, we will have 

found a “structure-activity cliff” where a small 

structural change is accompanied by a large change 

in activity. Such an occurrence identifies a critical 

position in the SA analysis. Figure 13, a blow-up of 

the marked region in the lower scatter plot of 

Figure 12, illustrates such an occurrence. Notice 

that ACE inhibitors 62, 64, and 72 have side-chains 

at the same position and that the number of atoms 

in the side-chains increases as we move along this 

particular part of the ordering. As we go from the 

propyl group to the aminopropyl group, a marked 

increase in activity is observed, revealing a 

structure-activity cliff. 

POSITIONING MOLECULAR EQUIVALENCE 

INDICES IN CHEMINFORMATICS

MEQIs are another tool in a long line of tools for 

organizing and browsing structures. Figure 14 is an 

attempt to put these tools into a comparative 

perspective, not with respect to the pros and cons of 

the possible uses to which such tools have been put, 

but wit h respect to their mathematical and 

inferential structure. The major categories along the 
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first row of the figure groups these tools by the 

underlying mathematical space.  

Although complex and difficult to navigate, the 

space of chemical graphs, partially ordered by the 

substructure relation, is arguably the most 

fundamental of the three representations. Because a 

chemical graph is such a rich storage vehicle, 

substructure searching gives the user exquisite 

control in retrieving specific subsets of structures. 

On the other hand, manually specifying such 

subsets is too time consuming and the resulting 

inferential structure too restrictive for most 

purposes of SAR analysis. 

High-dimensional chemical-descriptor spaces have 

become increasingly important with the advent of 

similarity searching and the development of data-

mining software, especially recursive partitioning 

programs. The component chemical descriptors 

usually have very limited structural content by 

themselves, but taken all together, they can encode 

a very significant amount of the structural 

information in a molecule. These spaces are 

arguably the most simple in that one can define an 

algebra over them. Consequently, one can 

“automate” analyses. On the other hand, these high-

dimensional spaces are visually unintuitive and 

often what actually takes place in this automation 

can differ significantly from what one believes is 

taking place. (See the paper of this Beilstein 

workshop by Stanley Young for recent 

developments along these lines.) 

Structural browsing indices are variables whose 

values are linearly ordered, but there is no 

restriction that they behave as numbers admitting 

algebraic operations. The only requirement is that 

intervals along this linear ordering represent some 

type of structural commonality. The more such 

intervals there are, the arguably more rich is the 

information content of the corresponding index. 

(One could think of a single fragment chemical 

descriptor that might be a component of a high-

dimensional descriptor space as a browsing index, 

but it would be a relatively uninformative one. One 

of its intervals would represent the compounds with 

the structural fragment and the other would 

represent the remaining compounds.) 

Structural browsing indices have been around for a 

long time, and have always played an important 

role in visualizing chemical space. The idea of 

capturing in a few variables much of the distance 

information in a high-dimensional point cloud has a 

long history in statistics and in cheminformatics. 

Often two principal components suffice. Although 

some information is sacrificed, much is gained by 

being able to visualize the captured information in a 

two-dimensional point cloud. Hierarchically 

clustering objects and then correspondingly 

ordering the objects along a line also has a long 

history, but is receiving renewed interest from the 

scientific visualization community. (See the papers 

of this Beilstein workshop by Jeff Saffer for recent 

developments in visualization methods based on 

projection and hierarchical clustering.) Meqnum 

orderings provide a third alternative.  

The three types of orderings can be operationally 

distinguished four ways. First, a MEQI is 

distinguished from the other two indices in that it 

can be computed on a single object. The other two 

types of clustering and projection indices only 

make sense with respect to a collection of 

compounds. Their values change with changes in 

that collection. 

Second, the visual grouping of structures is 

hierarchically organized for MEQI and clustering-

based methods whereas these groupings are 

spatially distinguished in projection methods. This 

distinction leads naturally into the third 

distinguishing criteria. Since spatial distinctions 

rely upon the eye to say whether or not a particular 

point is or is not in a cluster, the user has 

79



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/johnson/johnson.pdf                            

considerable freedom in deciding which groupings 

of points are clusters and which are not. 

Operationally, the structural groupings are exactly 

set fourth when using MEQI and clustering-based 

methods. 

MEQIs are again distinguished from the other two 

visualization categories when it comes to 

interpreting the clusters. The interpretation of a 

meqnum is set forth by the equivalencing function. 

Moreover, the labeled pseudograph to which a 

compound is mapped by that function serves as a 

visual specification of its class with respect to that 

equivalencing function. This contrasts markedly 

with the groupings set up via the other two 

visualization methods. Sometimes these methods 

generate clusters which admit obvious 

specifications that distinguish the clusters, but it 

would seem to be a rare instance where this would 

be the case if all possible structures were 

represented in the collection of compounds that was 

clustered. 

SUMMARY AND CONCLUSION

In this study we have attempted a rather broad 

overview of the types of MEQIs that can be 

generated and the variety of uses to which they can 

be put. Our overview is far from exhaustive, and 

the examples invite further development. 

Hopefully, this brief sketch of some of the 

directions we are pursuing in delineating roles 

MEQIs might play in cheminformatics and 

structure-activity analysis will suggest areas of 

interest to others. 
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ABSTRACT

INTRODUCTION

Enormous numbers of compounds are now 

available for screening. Large companies will have 

over five hundred thousand compounds in 

inventory; over one million compounds are 

available commercially; library synthesis offers 

many millions of possible compounds. It is not 

feasible to screen all available compounds in all 

screens. Indeed, with the ongoing genetics efforts 

there will be an explosion of drug targets over the 

next several years, increasing the number of 

available screens.  

There is a need to be able to examine screening data 

and make recommendations on how to proceed. 

Which compounds should be screened next? Which 

compounds acquired for screening? When to stop 

screening and move to lead optimization? For lead 

compounds, what are the important features? 

Statistical analysis of large screening sets can help 

with all of these questions. In this paper we 

describe the use of recursive partitioning for the 

analysis of large chemistry data sets. 

METHODS

We use rather simple compound descriptors. See 

Figure 1 for examples of atom pairs, [1] atom 

triples, and topological torsions. [2] For 

pharmacophore identification we use standard 

pharmacophore features. [3]  

Recursively splitting a data set into homogeneous 

subsets was first proposed by Morgan, and 

Sonquest. [4] Statistical methods for univariate 

recursive partitioning are described by Hawkins and 

Kass, [5] Hawkins et al. [6] and Rusinko et al. [7] 

Basically, all potential variables are examined and 

the single variable that will best split the entire data 

set into two daughter data sets is selected and the 

split made; those compounds with the feature go to 

the right daughter node and those without the 

feature go to the left. See Figure 2.  

Very large screening data sets are becoming available; hundreds of thousands of compounds are screened
against panels of biological assays. There is a need to make sense out of the data; screeners need to know
which compounds to screen next and medicinal chemists need to know which series of compounds are
active and what features are associated with activity. We use the statistical technique recursive
partitioning and simple molecular descriptors, atom pairs and topological torsions, to analyze these data
sets based upon the 2D representation of the compounds. We use more general features and a special 3D
representation of the compounds for pharmacophore identification. The benefit of this work is that we 
can rapidly evaluate screening data and make sound recommendations for additional screening work or
how to proceed with lead optimization. 
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n = 1650 

ave = 0.34 
sd = 0.81

   

        

        

n = 1614 
ave = 0.29 
sd = 0.73

TT: NN-CC

RP = 2.03E-70 

AP = 1.30E-66

n = 36 
ave = 2.60 
sd = 0.9

Each daughter node is split in turn. Splitting stops 

when there are no statistically significant splits 

remaining. For multivariate recursive partitioning 

we replace the Student t-test with the Hotelling T2.

[8]

RESULTS

RESULTS

Recursive partitioning is capable of identifying    

multiple chemical classes of compounds from a 

data set, and is thus a method for deconvoluting 

mixtures. [7] Figure 3 gives a skeleton of the 

recursive partitioning tree. 

Also given are representative compounds from two 

of the terminal nodes. These compounds act 

through different mechanisms to block the MAO 

enzyme, see references in Rusinko et al. [7] 

A data set of 20989 compounds with 4 tumor 

responses was obtained from the NCI website. 

Atom pair 
N(3,0) - 7 - S(2,0)

N

O

S N

N

N
O

O

Atom triple 
N(3,0) - 7 - S(2,0) 
S(2,0) - 6 - N(2,0) 
N(3,0) - 12 - N(2,0) N

O

S N

N

N
O

O

Topological torsion 
N(3,0)C(2,0)-1-
C(3,1)O(2,0)

N

O

S N

N

N
O

O

Figure 1. Atom pair, atom triple and topological torsion molecular descriptors. 

Figure 2: The data set is split using a t-test. 

Figure 3: Tree and active compound classes identified.
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Multivariate recursive partitioning was run. Figure 

4 gives a skeleton tree with blowups of two of the 

terminal nodes. Terminal node N0101 has a 

relatively high incidence of the first and last tumor 

types, Lung and Melanoma, and a relatively low 

incidence of the second and third tumor types, 

Colon and Breast. Terminal node N001 has a high 

incidence of the first and third tumor types. The bits 

in the node names note the absence, 0, or presence, 

1, of chemical features characteristic of compounds 

in the terminal nodes. 

An internal data set of 1444 compounds with IC50 

values for the kinase CDK2 was analyzed using 

typical pharmacophoric features, H-bond donor, H-

bond acceptor, etc. [3] Multiple conformations were 

computed and distance between features were 

binned. After each split, constrained conformations 

were computed. A total of about 1.4M 

conformations were computed and the analysis took 

about 14 hr. CPU time. The resulting recursive 

partitioning tree is given in Figure 5. The resulting 

3D pharmacophore was comparable to crystal 

structure results, Figure 6.

Figure 4: Multivariate recursive partitioning tree, NCI 
data. 

Figure 5: 3D recursive partitioning tree for CDK2 data set. 
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CDK2-purvalanol B interactions determined by 
X-ray (Science 1998, 281, 533) 

Key interaction features of CDK2 inhibitors  
determined by 3DSCAM. 

Figure 6: Node N111 in CDK2 Tree 

DISCUSSION

The key problem to be overcome in the analysis of 

HTS data sets is that there are likely to be multiple, 

biological mechanisms. Some molecules may act 

through one mechanism and others by another. 

Some might bind in one orientation, others in a 

different orientation or even at a different location. 

In the case of the Abbott MAO data set, two 

mechanisms are known and compounds following 

each mechanism are found by recursive 

partitioning. For a large HTS data set there are 

likely to be multiple mechanisms and even for a 

single binding pocket, different compounds might 

bind in different orientations. Most statistical 

methods assume that there is one underlying model 

of a single process. If there are two processes, e.g. 

regular binding site and alosteric binding site, then 

the features important for one process are very 

unlikely to be important for the other. Most 

statistical methods, e.g. linear regression, will 

average the effect for each feature over the two 

processes. Results are likely to be bad and could be 

entirely misleading. Recursive partitioning is a 

simple statistical method that can deal with multiple 

mechanisms. A feature is identified and the data 

split based upon this feature. If the feature is 

important for a specific mechanism, then 

compounds with that feature (and binding by that 

mechanism) are separated out from the main body 

of the data. Following this set of compounds, the 

analysis is limited to just these compounds; other 

compounds in the data set have no affect on the 

subsequent analysis. In this manner, multiple 

mechanisms can be identified. 

A second important problem with HTS data is that 

assay results for individual compounds are often 

only crudely determined. Speed and cost are 

important aspects of HTS. The main goal is to 

rapidly eliminate the vast majority of compounds 
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from further consideration. Recursive partitioning 

does not depend upon a single assay value. 

Recursive partitioning is driven by averages of 

compounds with a specific feature and averages are 

much more stable than single assay values. The 

node average is the average of all the compounds 

that have the features that lead compounds into that 

node. Because the recursive partitioning process is 

driven by averages, the derived structure-activity 

rules can have great statistical validity; p-values 

less than 10-100 are common even if the measured 

effects, increases in binding of less that five 

percent, are small.  

A great deal of effort has been expended 

implementing these algorithms to make these codes 

fast. Univariate recursive partitioning runs in 

seconds for modest data sets, twenty five thousand 

compounds and ten thousand descriptors. 

Multivariate recursive partitioning is also fast. This 

speed has proven to be very useful. Obviously, time 

is money so completing an analysis quickly can 

help speed a drug to market. Just as important is 

that the speed can be used to explore alternative 

analyses. Medicinal chemists and biologists can 

interact with the data in real time increasing the 

likelihood that alternatives are considered and good 

decisions are made. The statistical methods are 

rigorous, e.g. p-values are adjusted for multiple 

testing, [9] and help keep the exploratory analysis 

soundly based. 

Atom pairs and topological torsions could be 

criticized as too simple to be of use for structure 

activity determination. It is clear that binding into a 

protein is a three dimensional process; optical 

isomers often have very different effects. 

Knowledge of the binding conformation would 

seem to be essential for good SAR determination. It 

is clear both theoretically and empirically that these 

descriptors do capture some structural information. 

Our empirical results demonstrate that these simple 

descriptors, coupled with recursive partitioning, are 

effective in building simple, but useful, structure-

activity models. 

Building three dimensional pharmacophore models 

from large data sets is a challenge. We report here 

on modestly sized data sets, less than 2,000 

compounds, where IC50 data is available. 

Computational speed for 3D recursive partitioning 

is good relative to commercial codes, but it would 

be helpful to increase speed. We are working on 

methods to increase speed with the goal of real-time 

analysis. In theory, 3D pharmacophore models 

should be better than 2D methods, but the 

superiority of 3D over 2D is largely 

undemonstrated. We plan benchmarking studies to 

address this question.  
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ABSTRACT

INTRODUCTION

The aqueous solubility (log S), octanol/water 

partition coefficient (log P), and brain/blood 

concentration ratio (log BB) of a drug are important 

factors in determining its bioavailability. Log S 

reflects the concentration S of the drug in mol/l for 

a saturated aqueous solution in equilibrium with the 

crystalline material, while log P and log BB give 

the log of the concentration ratio of the drug at 

equilibrium partitioning between octanol and water 

phases or brain and blood. These quantities affect 

the ability of a drug to reach significant 

concentrations in the blood stream and to distribute 

into tissue. In view of their importance, numerous 

procedures have been developed for their 

estimation.[1-8] Most methods start with a structure 

drawing and have numerical increments associated 

with large numbers of molecular fragments. For 

example, the CLOGP procedure of Hansch and Leo 

uses more than 200 fragment and correction terms 

to predict log P values. [1]  

We recently reported an alternative approach in 

which a Monte Carlo (MC) simulation is run for the 

solute in water. [9a] Configurationally averaged 

results are obtained for physically significant 

quantities including the solute-water Coulomb and 

Lennard-Jones interaction energies, solvent-

accessible surface area (SASA) and numbers of 

donor and acceptor hydrogen bonds. Correlations 

were obtained between these descriptors and gas to 

liquid free energies of solvation in hexadecane, 

octanol, and water, and log P. Linear regressions 

with only 3-4 descriptors yielded fits with 

correlation coefficients, r2, of 0.9 in all cases. The 

regression equation for log P was developed using 

over 200 diverse compounds and only requires four 

Monte Carlo statistical mechanics simulations have been carried out for more than 250 organic solutes in
water. Physically significant descriptors such as the solvent-accessible surface area, numbers of hydrogen 
bonds, and indices for cohesive interactions in solids are correlated with pharmacologically important
properties including the octanol/water partition coefficient (log P), aqueous solubility (log S), and 
brain/blood concentration ratio (log BB). The regression equations for log P and log S only require 4 - 5 
descriptors to provide correlation coefficients, r2, of 0.9 and rms errors of 0.7. The descriptors can form a
basis for structural modifications to guide an analog’s properties into desired ranges. For more rapid
application, a program that estimates the significant descriptors, QikProp, has been created. It can be used
to predict the properties for ca. 1 compound/sec. with no loss of accuracy. 
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descriptors to provide an rms error of 0.55, which is 

competitive with the best fragment-based methods. 

Extension of the method to log S was reported 

using a database of 150 compounds including more 

than 80 drugs and related heterocycles. [9b] A more 

rapid procedure, QikProp, has been developed, 

which uses algorithms to estimate the significant 

descriptors including the hydrogen-bond counts. No 

degradation in the quality of the results is found in 

comparison to the full simulation results. Its 

application is illustrated here including for 

predictions of log BB. 

COMPUTATIONAL METHODS

The computational details have been described in 

the earlier work. [9] Briefly, the MC calculations 

are performed for a single solute in a periodic cube 

with 500 TIP4P water [10a] molecules at 25 °C and 

1 atm. Each simulation consists of sampling 3.2 

million configurations for equilibration and 10 

million configurations during the averaging phase. 

The potential energy is represented by harmonic 

bond-stretching and angle-bending terms, a Fourier 

series for each dihedral angle, and Coulomb and 

Lennard-Jones non-bonded interactions. The 

parameters come from the OPLS-AA force field; 

[10b] however, since OPLS-AA partial charges are 

not available for some functional groups, all partial 

charges are obtained from PM3 calculations using 

the CM1P procedure. [11] These charges, which are 

appropriate for the gas phase, are scaled by a factor 

of 1.3 for neutral molecules in the simulations to 

reflect the enhanced polarization in the liquid state. 

The TIP4P water molecules undergo only rigid-

body translations and rotations, while the sampling 

for the solutes also covers all internal degrees of 

freedom. The MC calculations are run with the 

BOSS program [12] in an automated manner; only 

the atomic numbers and a set of starting coordinates 

are required for the solute. 

Twelve descriptors are averaged including the 

solute-water Coulomb (ESXC) and Lennard-Jones 

(ESXL) interaction energies, the number of freely 

rotatable bonds other than for CXYZ (X,Y,Z = H, 

halogen) groups, SASA and its hydrophobic, 

hydrophilic and aromatic components, and the 

numbers of solute as donor (HBDN) and acceptor 

(HBAC) hydrogen bonds. [9] Hydrogen bonds are 

defined using a geometric cutoff of 2.5 Å for solute 

H/water O and solute N, O, or S/water H distances.  

Results were obtained for more than 250 

compounds for log P, [9a] 150 compounds for log 

S, [9b] and 61 compounds for log BB, [13] that 

have available experimental data. [1-8,13] 

Emphasis was placed on representation by diverse 

structures, functionality, and drugs. The database 

was maintained and analyzed with the JMP 

program. [14] F ratios (regression model 

mean/error mean square) were used to establish the 

significance of the descriptors; the descriptors 

reported in the regression equations satisfy the 

condition that the probability of a greater F value 

occurring by chance (Prob>F) is less than 0.0001. 

Cross-validated r2 values, q2, were obtained by a 

leave-one-batch-out procedure using 15 batches of 

10 randomly chosen compounds. The database was 

not split into training and test sets since this is only 

statistically meaningful for significantly larger data 

sets. 

MONTE CARLO RESULTS

From the Monte Carlo simulations, it was found 

that log P is well predicted by eq. (1), where the 

dominant terms are the total surface area and the 

number of hydrogen bonds accepted by the solute. 

Corrections are included for the number of non-

conjugated amine groups, #amine, and the total 

number of nitro and carboxylic acid groups, 

#(nitro+acid). 
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log P = 0.01448•SASA – 0.7311•HBAC –

1.064•#amine + 1.1718•#(nitro+acid) –1.772  

        (1) 

The need for the corrections was traced to 

deficiencies in the CM1P charge distributions for 

these functional groups. Increasing size favors 

solvation in octanol or other organic solvents, while 

hydrogen-bond acceptor sites favor solvation in 

water. [3,9] The similar hydrogen-bond accepting 

ability of octanol and water eliminates the 

significance of a term for the number of donated 

hydrogen bonds (HBDN). This simple equation 

yielded an r2 of 0.90, q2 of 0.89, a rms error of 0.55, 

and a mean unsigned error of 0.44 log unit for the 

database of 250 compounds. 

For solubility, Yalkowsky has noted that log S 

correlates well with log P with an additional term 

involving the melting point (MP) for crystalline 

solutes, eq. (2). [4] MP can be regarded as a gauge 

of cohesive interactions in the crystal such that a 

higher MP leads to lower solubility. 

log S = 0.8 – log P –0.01(MP – 25)                (2) 

Thus, we initially set out to supplement eq 1 with 

measures of the cohesive interactions, which could 

be extracted from the computed descriptors in 

water. None of the measures of the electrostatic 

interactions such as the Coulomb energy, ESXC, or 

the total number of hydrogen bonds, HBAC + 

HBDN, proved useful. However, ESXC/SASA is a 

statistically significant descriptor. It can be deemed 

the Coulomb tension and is large in magnitude for 

small, highly polar molecules, which have high 

melting points. Augmentation of eq. (1) with this 

term led to an equation that yields an r2 of 0.82 and 

a rms error of 0.88. However, analysis of the 

compounds with significant errors pointed 

especially to heteroaromatic molecules such as 

pyridines, pteridines, and cytosine, which have an 

excess of hydrogen-bond acceptor over donor sites. 

If the sites are not in balance and oriented properly, 

substantial hydrogen-bonding does not occur in the 

crystal. To reflect the needed balance, HBDN x 

HBAC was tried in place of ESXC/SASA, but it did 

not improve the correlation. However, adjusting 

this for size with HBDN x HBAC/SASA yields an 

r2 of 0.86 and rms error of 0.78. Significant outliers 

are then prostaglandin E2, chloramphenicol, and 

mannitol, which have unusually high numbers of 

hydrogen-bond donor and acceptor sites, and are 

predicted to have log S values that are too low by 2 

- 3 units. With that many hydrogen-bonding sites, it 

is unlikely that they can all be satisfied 

simultaneously in the crystal. So, a saturating effect 

is expected. This can be introduced by applying a 

fractional power in the descriptor. We arrived at 

HBAC x HBDN½/SASA as a reasonably simple and 

effective cohesive index, and the best five-

descriptor equation that could be found is eq. (3). 

The correction for carboxylic acids is no longer 

significant and has been dropped. 

log S = 0.3158•ESXL + 0.6498•HBAC 

+2.192•#amine – 1.759•#nitro – 161.6•HBAC• 

HBDN
½
/SASA + 1.181              (3)                             

Eq. (3) gives an r2 of 0.88, q2 of 0.87, a rms error of 

0.72, and a mean unsigned error of 0.56 for the 150 

compounds. Uncertainty in the experimental data 

makes it unlikely that predictive schemes for such 

diverse collections of compounds can yield rms 

errors below 0.5. [8]  

QIKPROP RESULTS

With QikProp, the same descriptors are found to be 

the most significant as from the Monte Carlo 

simulations. However, the solute-water Coulomb 

and Lennard-Jones energies are no longer available, 

and it is often found that a somewhat larger number 

of descriptors, ca. 8, are found to be fully 

significant from the F ratios. For log P, the 
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regression equation for 270 compounds yields an r2

of 0.92 and rms error of 0.55. For log S, the 

corresponding figures for 190 compounds are 0.88 

and 0.69. And, for log BB, eq. (4) has an r2 of 0.84 

and rms error of 0.31 with the dataset of 61 

compounds. 

log BB = 0.001300•FOSA – 0.004332•FISA 

+0.6337•#amine – 0.0751•µµµµ –0.1369•#rotor + 

0.04192               (4) 

There are only five significant descriptors; 

hydrophobic surface area and non-conjugated 

amines increase the brain concentration, while 

increased polarity, as reflected in the hydrophilic 

surface area and dipole moment, and flexibility 

increase the concentration of the compound in 

blood. The results are illustrated in Figure 1. 

-2.0

-1.0

0.0

1.0

2.0

-2 -1 0 1 2

log BB Predicted 

Figure 1: QikProp vs experimental results for log BB.

CONCLUSION

In summary, log P, log S, and log BB can be 

predicted well using regression equations with only 

4-8 descriptors. The descriptors correspond to 

easily interpreted quantities. They suggest changes 

that can be made in a structure to guide an analog’s 

properties into a desired range. The current methods 

are applicable to any neutral molecule with atoms 

having PM3 parameters, i.e., H, C, N, O, F, Al, Si, 

P, S, Cl, Br, and I. Improvements are possible 

through the addition of new descriptors, 

performance of simulations in different media, and 

use of alternative partial charges. The descriptors 

can also be applied to develop correlations for other 

properties or for refined analyses of narrower 

classes of compounds. 
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ABSTRACT

INTRODUCTION

Until recently, quantum mechanics calculations 

were thought of as CPU-intensive and only 

applicable to perhaps tens of moderately sized 

(typically under 100 atoms) molecules within a 

reasonable cost in computer resources. The often 

described phenomenal increase in the performance 

of computer hardware has, however, been 

accompanied by a similar increase in the efficiency 

of quantum mechanics software, so that, for 

instance the geometry optimization of ascorbic acid 

with MNDO, [1] which took about 40 minutes 

CPU-time on a Convex C1 superminicomputer at 

the end of 1983, now takes only 5 seconds on an 

average PC under Windows NT. This, and the fact 

that most cheminformatics applications are 

inherently massively parallel through the trivial 

parallelization of calculating one molecule per 

processor, make quantum mechanical techniques 

applicable to tens of thousands of compounds 

within a single day, as we were able to demonstrate 

a few years ago. [2] This article is intended to 

describe the use and applications of semiempirical 

molecular orbital techniques (exclusively AM1 [3] 

and PM3 [4]) to complete databases and for the 

prediction of physical properties. Such techniques 

are equally well suited to the estimation of 

biological activity, but this will be the subject of a 

second article. [5] This article will concentrate on 

the advantages of using quantum mechanical, rather 

than classical mechanical, methods and on the 

derivation of robust, reliable and accurate 

quantitative structure-property relationships 

(QSPRs) with individual error estimation for each. 

WHY QUANTUM MECHANICS?

Classical mechanical (force field) techniques 

employ a simple mechanical model of the 

molecular system. It is therefore not surprising that 

they do not do as good a job of describing 

properties that can be derived from the electron 

density of the molecule such as the molecular 

The use of semiempirical MO-theory for complete databases is demonstrated using the
example of the Maybridge Chemical Company Database (53,000 compounds). 3D-
Descriptors derived from the quantum mechanical wavefunction are used to set up QSPR-
models using neural nets as the interpolation technique. Techniques for cross-validation of
such models and for calculating individual error estimates for each compound are
discussed. The examples are illustrated for properties such as logP, the vapor pressure,
aqueous solubility and boiling points. The multi-net method of estimating individual error
bars appears to give a good approximation of error limits of ± one standard deviation for
several datasets. 
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electrostatics, polarizability, ionization potential 

etc. as quantum mechanical techniques that treat the 

electrons explicitly. This is illustrated be the 

molecular electrostatic potentials shown for 

guanine in Figure 1. Figures 1(a) and 1(b) show the 

solvent-excluded surface [6] of guanine color coded 

according to the electrostatic potential at the 

surface. The color scale is the same for the two 

figures. Figure 1(a), however, shows the quantum 

mechanically calculated molecular electrostatic 

potential (MEP), whereas Figure 1(b) shows the 

MEP obtained from an atomic multipole model in 

which the partial atomic charges were fitted to the 

quantum mechanical MEP using the VESPA 

technique. [7] Thus, Figure 1(b) represents almost 

the best approximation to the quantum mechanical 

results obtainable from an atomic monopole model 

(not quite the best as VESPA fits to charges outside 

the molecular surface).  

Figure 2 shows the areas of the surface in which the 

difference between the two different MEPs is 10 

kcal mol-1 or more. The surface is now color coded 

according to the difference in MEPs at the surface. 

Only the areas in which the absolute difference 

exceeds 10 kcal mol-1 are shown. Red indicates a 

positive difference and blue negative. The red 

circles indicate the nitrogen H-bond acceptor 

regions and the blue ellipse the H-bond acceptor 

region above the ring system. 

 The importance of the data illustrated by Figure 2 

lies not in the magnitudes of the deviations, 

although these are significant, but in their positions, 

The largest concentrations of deviations between 

the two types of MEP lie at the two hydrogen-bond 

acceptor site on the ring nitrogens (marked by red 

Figure 1: Color coded MEP-surface of guanine (red is positive, blue negative) calculated (left) using the NAO-PC
technique [7] from the AM1 wavefunction and (right) using VESPA-derived [6] atomic monopoles. 

Figure 2: Difference {QM-monopole} of the two MEPs
shown in Figure 1, again shown as a color-coded
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circles) and at the H-bond acceptor site on the face 

of the ring system (marked by the blue ellipse). 

Thus, by projecting the quantum mechanical charge 

distribution onto an atomic monopole model we 

lose significant information exactly where it is 

important for intermolecular interactions. 

Thus, we can expect that quantum mechanical 

methods should describe strong (electrostatic) 

intermolecular interactions better than atomic 

monopole based force field techniques. This is, 

however, not the only advantage of quantum 

mechanical techniques. Properties such as 

polarizability, ionization potentials, electron 

affinities, multipole moments etc. are readily 

available. Descriptors based on these properties can 

be expected to play a significant role in QSPRs 

designed to predict common physical properties. 

THE MOLECULAR POLARIZABILITY

Apart from the often dominant and longrange 

electrostatic interactions, weak intermolecular 

forces (dispersion) play a major role in determining 

intermolecular interactions. [8] In order to treat 

these forces, which dominate for intermolecular 

interactions between nonpolar molecules, correctly, 

we need to be able to calculate the molecular 

electronic polarizability accurately. There are 

several types of calculational technique available 

for calculating the polarizability from the molecular 

wavefunction, but most are too unwieldy to be used 

routinely for applications on complete databases. 

Among these are the finite field perturbation 

method, [9] which, however, is compute-intensive 

and requires a large, flexible basis set in order to 

give good results, and the perturbational sum-over-

states (SOS) technique. [10] The latter, however, 

requires a configuration interaction calculation in 

order to obtain the excited states and is therefore 

also very compute-intensive. The SOS-method 

does, however, have the advantage that it can give 

frequency-dependent polarizabilities.  
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A more computationally tractable technique that we 

have used for some years is the variational method 

developed by Rivail and his coworkers. [11] This 

technique requires only some multipole integrals 

and the density matrix and can therefore be 

appended to a normal SCF-calculation much like a 

population analysis and without increasing the time 

of the calculation significantly. Figure 3 shows the 

results of such calculations with AM1 for a test set 

of organic molecules.  

The results show a systematic deviation for the 

Figure 3: Calculated [11] and experimental
molecular electronic polarizabilities (Å3)
using the original variational technique [10]
with AM1. 

Figure 4: Comparison of calculated and
experimental molecular electronic
polarizabilities (Å3) using the parametrized
variational technique [11] with AM1.
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larger molecules and a significant scatter for the 

smaller ones. The standard deviations between 

calculation and experiment for MNDO, AM1 and 

PM3 are 1.94, 2.99 and 4.44 Å3, respectively.  

Thus, although the original variational method 

fulfils the computational requirements for use in a 

cheminformatics application, it is not accurate 

enough. In order to remedy this situation, we 

developed a parameterized variational technique. 

[12]

If the multipole integrals, which are normally a 

function of the Slater exponents and ordinal 

numbers, are treated as variable parameters and the 

optimized for a set of 156 organic molecules, the 

results shown in Figure 4 are obtained for the 

independent test set of 83 organic molecules also 

shown in Figure 3. 

The standard deviations between calculation and 

experiment for MNDO, AM1 and PM3 are now 

0.78, 0.70 and 0.74 Å3, respectively. Thus, the 

parameterized variational method offers a 

computationally economical and accurate method 

for determining molecular electronic 

polarizabilities. It also offers the advantage that, 

with certain restrictions, it can be partitioned into 

atomic polarizability tensors, which, although not 

physically measurable, are particularly useful for 

additive, atom-atom dispersion models.

AM1 OPTIMIZATIONS FOR A COMPLETE 

DATABASE

The computational software must fulfill two 

conditions for a semiempirical technique such as 

AM1 or PM3 to be applied to a database of perhaps 

hundreds of thousands of compounds. It must be 

fast and it must be extremely reliable. Perhaps 

surprisingly in the light of the introduction, speed is 

not really a problem. Database applications can use 

the full power of massively parallel architectures, or 

even of large compute clusters with relatively slow 

communication. This is of course because the 

computational effort per molecule is relatively large 

and data transfers relatively small and seldom. We 

reported [1] a benchmark application of AM1 to the 

Maybridge database [13] a few years ago. The 

computational protocol necessary to process a 2D-

database like Maybridge is shown in Table 1. 

Table 1: Processes, software and failure rates for 
processing the Maybridge database. [1] 

Process Software # of 

failures 

Data cleanup SDFClean [14] 211

2D →→→→ 3D 

Conversion

CORINA [15] 41

AM1 optimization VAMP [16] 68

Generate 

descriptors

PROPGEN [17] 0

Apply models PROPHET [18] 0

The data cleanup process is necessary because, 

even if each structure were entered perfectly, the 

structures needed for quantum mechanical 

calculations are not necessarily those entered in 

databases. Ion pairs, for instance, may be entered as 

covalently bound structures, free base plus 

counterion, or in other less standard ways. Because 

generally the counterion is not considered in 

quantum mechanical calculations, it must be 

eliminated and the correct protonation site 

determined if the free base is entered. Finally, it is 

also necessary to check that the structures entered 

in the database make chemical sense. This process 

resulted in 211 compounds from Maybridge being 

marked for manual processing, mostly because the 

exact site of protonation was not absolutely clear. 

We note here that for many applications it may be 

preferable to calculate the free base, or even both 

the base and its conjugate acid. 

The 2D to 3D conversion process has been 

discussed in detail before [19] and will therefore 
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not be treated here. We used CORINA [15] for the 

Maybridge run, which resulted in only 41 failures. 

The optimization of the molecular geometries with 

AM1 or PM3 is the most time-consuming step in 

the entire process. This was performed in parallel 

(one molecule per processor) on a 128-processor 

Silicon Graphics Origin 2000. At the time of the 

run, two processors were defective, giving a total 

number of processors used of 126. The details of 

this run have been published, but the essence is that 

the molecules in the database were optimized 

within 14 hours elapsed time with only 68 failures. 

[2] We have since repeated this run several times 

on distributed moderately parallel machines and on 

heterogeneous UNIX/Windows NT clusters with 

excellent results. Using a Compaq-Alpha two-

processor server, a Hewlett-Packard four-processor 

server and two Intel-based two-processor 

Windows-NT machines, for instance, Maybridge 

can be processed in a weekend. [20] 

The descriptors necessary to calculate physical 

properties can be calculated from the complete 

electrostatic information stored in the database in a 

relatively fast step (the most time-consuming task is 

to generate the potential-derived charges using the 

VESPA-technique [20]). Finally, the descriptors 

generated, which are added to the molecular 

description in the database, are used to calculate 

properties such as logP [21], the vapor pressure at 

25° [22] or the aqueous solubility. [23] 

WHAT FACTORS ARE IMPORTANT IN 

QSPR-MODELS?

Figure 5 shows an overview of typical QSPR-

techniques. 

The yellow boxes indicate the descriptors used to 

characterize the molecule. These may be atoms or 

groups, in which case the interpolation technique 

used (colored light blue) consists of a set of 

increments. Such atom- or group-additive methods 

assume that such increments are transferable and 

are best suited for properties where this is most 

likely to be true, such as heats of formation [24] or 
13C-chemical shifts. [25] There are a large variety 

of 2D-descriptors such as, for instance, the range of 

Kier and Hall indices, [26] although there are very 

many others. These indices are remarkably 

successful in treating a large number of properties. 

They have the advantage that they treat the 

molecular conformation, if at all, implicitly, so that 

there is no requirement to locate the most stable 

conformation or even perform a Boltzmann 

averaging over a number of conformations. 3D-

descriptors, which will be used in the work 

described here, are derived from the molecule at a 

given geometry. They are often calculated from the 

electron density given by quantum mechanical 

calculations, but this must not be the case. Many 

descriptors, such as those introduced by Politzer 

and Murray, [27] describe a property such as the 

electrostatic potential at the molecular surface. 3D-

descriptors are, however, conformationally 

dependent. This is in principle an advantage, but in 

practice practically always a disadvantage. This is 

because the search for the global conformational 

minimum or a representative set of stable 

conformations is an extremely compute-intensive 

task for molecules with a large number of rotatable 

bonds. Thus, many QSPR-models based on 3D-

descriptors actually only use one conformation. 

This point will be discussed below. Table 2 shows 

Atoms  
or Groups

2D-
Descriptors

3D-
Descriptors

Incre- 
ments 

Inter-
polation 

Property

Figure 5: The typical features of QSPR models
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the main characteristics of the different types of 

descriptors: 

Table 2: The principal characteristics of different types 

of molecular descriptors. 

Increments 2D- 

descriptors 

3D-descriptors 

Fast fast can be slow

not universally 

applicable

general General

best for 

additive 

properties 

(heats of 

formation, 

chemical shifts)

good for many 

properties

good for 

properties 

involving 

intermolecular 

interactions

no

conformational 

information

treats

conformation 

implicitly (?) 

conformationally 

dependent

The most traditional interpolation technique is a 

regression analysis in some form. Alternatives 

include nearest neighbor techniques, in which the 

property in question is estimated from those of the 

most similar known molecules, and artificial neural 

nets. When used carefully, the latter are extremely 

powerful but, like all interpolation techniques, they 

are open to misuse and can simulate a far better 

performance than they can actually deliver. This 

leads to a set of requirements for the interpolation 

used in a QSPR model: 

The model should be well validated. This is 

typically done by some sort of cross-validation 

procedure in which the predictive ability of the 

technique, rather than its ability to reproduce 

known results, is assessed. 

The second requirement is that the technique should 

be as robust as possible. This requirement is often 

translated as meaning that the model should give a 

small standard deviation from experimental values 

for a wide variety of compounds. I suggest, 

however, that the largest observed error is the most 

indicative variable for a the robustness of a QSPR-

model. The largest likely error is a quantity that 

defines the reliability of the model for many 

experimentalists.  

Leading from the requirement for robustness is the 

further desirable feature that the QSPR-model 

should be able to assess the likely reliability of its 

prediction for each individual compound. Clearly, 

the properties of s compound that is similar to many 

in the training set will be predicted more reliability 

than for one that lies outside its range. The ideal 

model should not only give its predicted value, but 

also its estimated error limits.  

QUANTUM MECHANICAL/NEURAL NET

QSPR-MODELS

We have in recent years developed a series of 

QSPR-models based on 3D-descriptors derived 

from semiempirical MO-calculations and using 

simple feedforward neural nets with one hidden 

layer as the extrapolation technique. The general 

scheme of such techniques is shown schematically 

in Figure 6. 

However, such simple models do not usually satisfy 

the general conditions for a good QSPR-model 

given above. We must therefore address the 

questions of cross-validation and individual error 

estimates. 

Figure 6: Schematic view of a typical QM/NN-
QSPR-model.

VAMP

(AM1/PM3)

Physical

property

Back-propagation

neural net in

recall mode

DATA
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We [22] have approached cross-validation by 

dividing the dataset into about 10 equal, random 

portions and training 10 separate nets, each using 

one of the random portions as a test set. This results 

in 10 different nets, all of which use the same 

descriptors but which all have different test and 

training sets. The mean of the results of the 10 nets 

is used as the predicted value for the model as a 

whole and the results of the nets for which the 

compound in question was in the test set are used 

for cross-validation. In this way, cross-validated 

results are obtained for each compound in the 

dataset for a neural net in which it was a part of the 

test set.  

The descriptors used for the QM/NN-models are 

often those introduced by Politzer and Murray for 

density functional calculations using the isodensity 

molecular surface. [27] We use semiempirical MO-

theory with the NAO-PC model [28] for the 

molecular electrostatic potential at the solvent-

excluded surface [6] of the molecule. Briefly, 

Politzer and Murray descriptors describe the 

statistics of the electrostatic potential distribution at 

the surface of the molecule. Figure 7 shows some 

illustrative examples. Methane is essentially 

nonpolar with very little variation of the 

electrostatic potential. This leads to a very low 

variance (5.4). Trimethylamine exhibits an area of 

negative potential due to the lone pair. This results 

in a higher variance (446.6) but, because there is no 

equivalent positive area, a very low balance 

parameter (0.009). The far more polar bis-

(trifluoromethyl)phosphinic acid, with both positive 

and negative areas on the electrostatic potential 

surface, has an even higher total variance (651.0) 

and also a high balance parameter (0.246). Such 

descriptors were designed to describe the 

intermolecular electrostatic interactions. They have 

been used in all our QSPR models that estimate 

physical properties that depend on intermolecular 

forces. Table 3 shows the parameters used for our 

published logP model. [21]  

These descriptors, of which the sums of the ESP-

derived charges probably function as extended 

atom-counts, can all be linked to logP conceptually.  

It is noteworthy that the molecular polarizability 

and the molecular volume, parameters that are 

generally very strongly correlated, are both 

necessary in order to generate a reliable model. 

Figure 8 shows the results obtained using the cross-

Figure 7: Molecular electrostatic potential surfaces for (from left to right) methane (total variance =5.4, balance 
parameter = 0.144), trimethylamine (total variance = 446.6, balance parameter = 0.009) and bis-
(trifluoromethyl)phosphinic acid (total variance = 651.0, balance parameter = 0.246)
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validation technique described above.

Table 3: Descriptors used for logP. 

[21]
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 Table 4 gives the performance of the mean model 

and the cross-validation. 

The above model appears to be robust as the cross-

validation results are comparable to those of the 

mean of the ten nets. It does not yet, however, give 

error estimates for individual compounds. 

In order to be able to assess individual errors, we 

[22] calculated the standard deviations of the 10 net 

predictions for each compound. In principle, the 

larger the disagreement among the 10 nets, the less 

reliable should be the predicted value. If now the 

absolute difference between the calculated (mean 

model) and experimental value for each compound 

is divided by the standard deviation of the 10 net 

predictions for that compound, we obtain the 

histogram shown in Figure 9.  
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 Table 4: Analysis of the mean model and the cross-

validation results for the logP model.

Descriptor Definition 

αααα Molecular 
polarizability 

µµµµ Dipole moment 

A Molecular surface area (SES) 

V Molecular volume 

Nsum
Sum of ESP-derived charges on N-
atoms 

Osum
Sum of ESP-derived charges on O-
atoms 

Psum
Sum of ESP-derived charges on P-
atoms 

Ssum
Sum of ESP-derived charges on S-
atoms 

Xsum
Sum of ESP-derived charges on 
halogens 

Vmax
Maximum MEP at the SES 

Vmin
Minimum MEP at the SES 

M+
Mean positive MEP at the SES 

M-
Mean negative MEP at the SES 

σσσσ2
tot

Total variance of the MEP 

νννν Politzer/Murray balance parameter 

G Globularity [29] 

Parameter Mean 

model 

Cross-

validation 
Std. dev 0.47 0.56

Max. error 1.21 2.15

r2 0.91 0.87

slope 1.01 0.97

intersect 0.01 0.06

Figure 8: Mean and cross-validated results
for the logP model. [21]

Figure 9: Histogram of the experimental
errors in units of the standard deviations of
the predictions of the 10 nets for the logP
model. [21, 22]

100



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/clark/clark.pdf                  

The mean absolute value of the deviation in units of 

the individual standard deviation for each 

compound is 3.58. We therefore suggest that an 

intuitively reasonable error estimate for each 

compound is simply the product of the standard 

deviation of the net predictions times this mean 

deviation for the training dataset. [22] If we 

calculate the error bars in this way for the logP 

model, we obtain the data shown in Figure 10. 
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This results in 408 compounds (37%) with errors 

outside the error bars, which corresponds fairly 

closely to an error estimate of ± one standard 

deviation. Two questions remain. Is this behavior 

general for all models and how appropriate are the 

error bars for completely unseen data? 

In order to answer the latter question, we 

investigated the dataset of nucleotides published 

bay ACD-labs. [30] These data are not only outside 

our dataset, but also apply to a class of models 

explicitly excluded from our data because of the 

ambiguity of the exact form of the compounds in 

different media. The results obtained are shown in 

Figure 11.  

Table 5: Performance of three QM/NN-QSPR models. 

 Aqueous 

solubilty 

Vapor 

pressure

Boiling 

point 

Reference [23] [22] [31] 

Units Log 
(solubility) 

Log 
(vapor 

pressure) 

°C

Number of 

compounds 

559 551 6,000 

Std. dev. 0.51 0.29 16.5 

mean 

unsigned 

error

0.40 0.22 11.8 

maximum 

error

1.67 1.00 -119 

r2 0.90 0.94 0.96 

slope 1.03 1.01 1.01 

intersect 0.08 -0.01 -4.6 

mean ∆∆∆∆ 2.11 2.98 2.15 

compounds 

outside the 

error bar

201

(35%) 

199

(36%) 

2244

(37%) 
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In this case only 8 compounds (20%) are outside 

the error bars. This, however, is an anomalous 

result probably caused by the very low diversity of 

the dataset, as will be seen in the following 

Figure 10: Performance of the logP model
with error bars. [21, 22]

Figure 11: LogP results obtained for the
nucleotide dataset. [22, 30] 
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examples. Table 5 shows the statistics of the results 

obtained for three further models, aqueous 

solubility [23], vapor pressure at 25° [22] and 

boiling points at atmospheric pressure. [31] In all 

cases, the error estimates given by the multi-net 

technique described above are close to those 

expected from error bars of ± one standard 

deviation, confirming the hypothesis that the multi-

net technique as described gives reliable error 

estimates.

Thus, the purely empirical technique of error 

estimation appears to give reliable results for a 

variety of QSPR-models and can help to point to 

compounds for which the neural nets are attempting 

to extrapolate outside the range of their training 

sets. 

THE EFFECT OF CONFORMATIONAL 
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The above models used only one molecular 

conformation per molecule – that obtained from the 

Corina-calculated structure after AM1-optimization 

with VAMP. In principle, models based on 3D-

descriptors such as these should be able to describe 

conformational effects on the property. However, 

the available data, most of which is for flexible 

compounds, does not provide us with the necessary 

experimental resolution to be able to produce a 

conformationally dependent model. We thus rely on 

the standard computational protocol to provide us 

with reasonable conformations. How does this 

affect the results, however? In order to investigate 

this effect, we [31] calculated all the minimum 

energy conformations of bis-(2-aminoethyl)amine 

using the systematic torsional search facility in 

VAMP. The boiling point model was then applied 

to each of these conformations, some of which, for 

instance, contain internal hydrogen-bonds. The 

results are shown in Figure 12.  

In general, the fluctuations in the calculated boiling 

point are of the same order as the error estimate. 

The Boltzmann-averaged calculated boiling point is 

444�36°, compared with an experimental value of 

480°. We therefore feel justified in using the 

present single conformation approach. 

SUMMARY AND CONCLUSIONS

The techniques described here have demonstrated 

the applicability of quantum mechanical techniques 

to cheminformatics. Surprisingly for some, the 

CPU-requirements are not the major disadvantage 

of such techniques, but rather the lack of reliable 

and consistent experimental data and, to some 

extent, the limitations of current semiempirical 

methods. For some properties such as aqueous 

solubility, the published experimental data is too 

sparse and too noisy to produce a first class QSPR-

model. In any case, the available data do not 

usually allow us to produce a conformationally-

dependent model, although normal boiling points 

may be an exception to this rule. Modern 

techniques allow us to store essentially the entire 

electrostatic and polarizability information about a 

molecule as well as a host of other quantum 

mechanically derived parameters, so that an 

Figure 12: Calculated boiling points for
different conformations of bis-(2-
aminoethyl)amine plotted against the heat of
formation of the individual conformers. 
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amazingly complete description of the molecules is 

now available form databases of this type.  

Just as the work reported here was impossible at the 

time of the first Beilstein Workshop (1988), so will 

the techniques described here be superseded in ten 

years time? A prime requirement is a semiempirical 

MO-method that does not suffer the weaknesses of 

the current techniques for heavy atoms, hydrogen 

bonds, branching errors and weak interactions. We 

are currently developing such a technique, which 

should then provide an even better description of 

the molecules. However, the “magic limit” of about 

�0.5 log units mean error for QSPR-models of 

physical properties is only likely to be lifted when 

large (103-104) numbers of consistent and accurate 

datapoints become available.  
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ABSTRACT

INTRODUCTION

The problem of localized versus delocalized 

bonding is almost as old as chemical structure 

theory itself. The first localized structures were 

probably drawn by A. S. Couper in 1859 in Ann.

Chim. [1] and by Kekulé in 1860 in his famous 

“Lehrbuch der Organischen Chemie”. [3] The 

latter formulae are known as “Wurstformel” 

(sausage formula).  

Only a few years later Kekulé realized that 

ascribing fixed bonds to carbon does not explain the 

properties of benzene [4] and he suggested that the 

six carbon atoms are somehow combined in a 

common nucleus. In today’s terminology we would 

say that he realized that the localized bonding 

concept fails in the case of benzene. His rather 

fuzzy description was criticized by contemporary 

colleagues, who tried to preserve the fixed bonding 

concept by proposing localized structures (Claus, 

[5] Städeler, [6] Kolbe, [7] Ladenburg, [8] 

Wichelhaus [9] and Meyer [10]). Driven either by 

his genius or simply by the need to save his six-ring 

structure, Kekulé proposed a mechanical collision 

or vibration of the six carbon atoms exchanging 

double and single bonds. Even though this view 

might seem quite close to our understanding today, 

Kekulé did not have a real chance to provide an 

answer on a sound physical basis. 

Delocalization is a phenomenon that can only be 

explained by quantum theory. Thus the community 

had to wait for quantum mechanics to enter the 

field of chemistry. Erich Hückel published the 

decisive papers on delocalization in 1931 [11] and 

1932. [12] He not only explained aromaticity, but 

also other forms of π-conjugation. 

We have shown that the anisotropy of the induced current density (ACID) can be interpreted as the density
of the delocalized electrons in molecules. The ACID scalar field, which can be plotted as an isosurface, is
a powerful and generally applicable method for investigating and visualizing delocalization and
conjugative effects, e.g. stereoelectronic effects in reactions, the anomeric effect, aromaticity,
homoaromaticity etc.

Figure 1: Historical localized bonding concepts of Couper 
(CH3CH2OH, left) and Kekulé (CO2, right). 

105



Chemical Data Analysis in the Large, May 22nd – 26th 2000, Bozen, Italy 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

http://www.beilstein-institut.de/bozen2000/proceedings/herges/herges.pdf

Today we use two different concepts to explain 

delocalization: VB- and MO-theory. In its simplest 

and most approximate application, valence bond 

theory describes delocalization by drawing 

mesomeric structures (mixing VB configurations). 

MO theory inherently considers delocalization by a 

linear combination of atomic orbitals to a set of 

molecular orbitals that extend over the whole 

molecule. Both methods, however, exhibit the 

drawback that they are “unanschaulich” (not easily 

interpretable). In larger, and particularly in non-

planar systems, the situation becomes complicated 

and conjugative effects are difficult to “extract” 

from a number of other phenomena.  

Our main goal, therefore, was to develop a method 

to visualize delocalized (mobile) electrons in 

molecules. Moreover, the method should also 

provide a simple means to quantify conjugation. 

Since delocalization is a quantum theoretical 

property, (even though it is not an observable) we 

searched for a suitable interpretation of a quantum 

chemical observable that avoids empirical 

parameters. 

MAGNETIC PROPERTIES OF MOLECULES,

THE ACID METHOD

There are a number of criteria derived from the 

observables energy and geometry to describe 

delocalization and conjugation. Conjugation usually 

leads to changes in energy and geometry with 

respect to a reference system without conjugation. 

The choice of the reference system is ambiguous 

and so are the numbers representing the strength of 

conjugation. Moreover, the numbers calculated by 

energy and geometry considerations are not suitable 

for visualization. 

Magnetic properties of molecules have been used to 

describe aromaticity, which is a special type of 

cyclic delocalization. The magnetic susceptibility, 

the anisotropy of the magnetic susceptibility and 

the NICS method (based on the magnetic shielding) 

provide numbers that must be compared with 

reference systems to quantify aromaticity.  

Even though these methods provide valuable 

information, they are restricted to aromaticity and 

are difficult to visualize as a molecular property 

with spatial resolution. Closest to a visualization 

concept are the so-called current density plots. The 

current density is a vector field obtained by 

calculating the current induced by an external 

magnetic field at each point in space. Remember 

from high school physics that a magnetic field 

induces a current that follows the ”left hand rule“ 

(if the thumb points parallel to the magnetic field B

the remaining fingers indicate the direction of the 

induced current J e.g. in a solenoid).

In quantum mechanics, the situation is more 

complicated. The quantum theoretical equation for 

the calculation of the induced current density 
�

J
( )1

is obtained by a first order perturbation treatment 

and can be expressed in vectorial form as follows: 

[13,14]
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Figure 2: The “left hand rule“ for determining the direction of
an induced current. 
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Schrödinger equation for the unperturbed system. 

Ψn are the corresponding wavefunctions and ρ = 

Ψ0
2 is the electron density in the unperturbed 

system. A is the vector field. The coefficients an are

obtained by applying perturbation theory using the 

magnetic field as the perturbation. Since a vector 

field is difficult to visualize (a vector is assigned to 

each point in space), a reference plane in which the 

current vectors are projected is usually selected (see 

Figure 3): 

The arrows in Figure 3. represent the “interatomic 

currents” (a notation introduced by London), [15] 

which are interpreted as mobile or delocalized 

electrons. Currents that follow the left hand rule are 

called diatropic and are characteristic of aromatic 

systems. Those flowing in the reverse direction are 

paratropic and are observed in antiaromatic 

systems. The analysis of induced currents is a 

powerful tool for investigating aromaticity and 

NMR shielding effects.  

However, there are three major drawbacks:  

1. Since a graphical 3-D representation of a 

vector field is impossible (a vector is 

assigned to each point in space) the 

method is restricted to planar systems or 

arbitrary chosen sectional planes.  

2. The current density is a function of the 

overall electron density (see last term in 

Eq. (1)). Hence, the largest currents are 

induced close to the nuclei, where the 

electron density is highest. Since these 

local currents are much larger than the 

interatomic currents, they often obscure 

delocalization effects.  

3. Current density maps in terms of 

delocalization are only interpretable in 

case of cyclic conjugation (aromaticity and 

antiaromaticity). 

To avoid these problems we must satisfy the 

following conditions: 

1. The parameter representing 

delocalization should be a scalar field to 

allow plotting as an isosurface. 

2. The scalar field should be independent of 

the relative orientation of the molecule 

and the magnetic field (the current 

density is not). 

3. The scalar field should not be a function 

of the electron density (the isosurface 

should represent the density of 

delocalized electrons and not the density 

as a whole). 

4. The method should be generally 

applicable, not only for aromatic systems 

but also for any kind of conjugation 

(through bond, through space, ...) in any 

kind of system (ground state, excited 

state, transition state, ...) 

The anisotropy of the induced current density 

∆TS
(1)  is such a parameter. It can be computed from 

the current density tensor according to the 

following equation: [1, 16] 

( ) ( ) ( )

( ) ( ) ( )
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Figure 3: -current density of tetracene, calculated in a 
plane parallel to and at a distance of one a0 from the plane 
of the molecule (Steiner, E.; Fowler, P. W. Int. J. Quant. 
Chem. 1996, 60, 609) 
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VISUALIZATION

We compute the current density tensor field using 

the continuous set of gauge transformation (CSGT) 

method, developed by Keith and Bader [17, 18] 

implemented in the Gaussian suite of programs. 

[19] Link 1002 was changed in such a way that the 

current density vector field was written to a file. 

The data was transformed to the scalar field of the 

anisotropy of the induced current density (ACID) 

according to the above equation and written in the 

in the cub file format. Isosurfaces were plotted 

using Povray. For 3D animations we used the 

Chime plugin, which is able to read cub files.  

To provide additional information on the magnitude 

and direction of currents (e.g. diatropic or 

paratropic), current density vectors can be plotted 

onto the isosurface of ACID.  

The only parameter that can be chosen in ACID is 

the isosurface value. This provides control over the 

sensitivity of the method and a way to quantify 

conjugative effects (small conjugative effects can 

be visualized using small isosurface values). We 

define the isosurface value at which the topology of 

the ACID boundary surface changes (e.g. breaks in 

two independent enveloping surfaces) as the critical 

isosurface value (CIV). The smaller the CIV 

between two atoms or groups the weaker is the 

conjugation. .   

EXAMPLES

We have tested our method extensively. In the first 

test stage we investigated small and well-known 

systems to prove consistency with current 

knowledge. Further emphasis was put on the fact 

that a broad range of conjugative effects should be 

covered to prove general applicability. The 

examples include different types of conjugation 

such as linear π−, cyclic π− (aromatic), through-

bond- and through-space-conjugation. The systems 

investigated are ground states, excited states, and 

transition states.  

In agreement with the general view of 

delocalization, alkanes such as methane, butane and 

cyclohexane do not exhibit delocalized bonds. This 

is represented by small ACID values around the 

nuclei and bonds. At isosuface values of 0.05 a.u. 

(the standard value used in most examples) only 

small areas of toroidal topology between two 

bonded nuclei (C-C and C-H) are visible, whereas 

double bonds exhibit ACID values at least two 

orders of magnitude larger. Interpreted in 

traditional terms, this means that the two electrons 

in a double bond are delocalized over both p-

orbitals of the sp2 carbons. In linearly π-conjugated 

molecules such as butadiene, delocalization is 

represented by a continuous boundary surface 

including all conjugated sp2 carbons. However, 

Figure 4: ACID surfaces of ethane, ethylene and s-cis-butadiene. 
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again in agreement with the intuitive view, 

conjugation is less pronounced between the double 

bonds than within each double bond. The above 

defined critical isosurface value (CIV) is lower for 

the single bond between two double bonds than for 

the double bond itself. Thus, visualization of 

molecules using the ACID method is 

complementary to the information retained from the 

structural formulae, which only represent localized 

bonds. ACID plots for ethane, ethylene and s-cis-

butadiene are shown in Figure 4. 

 More difficult to represent by traditional methods, 

and more interesting to investigate, are through-

bond and through-space interactions. Figure 5 

shows the anomeric effect in 2-hydroxy-1,3-

dioxane as an example. For steric reasons (1,3-

interactions) substituents in cyclohexane, 

tetrahydropyran, 1,3-dioxane and other six-

membered rings with chair conformations usually 

prefer the equatorial over the axial position. 

Exceptions are heteroatom substituents in the 

α−position to a heteroatom in the ring. This is due 

to the conjugation of the σ* bond of the exocyclic 

C-heteroatom bond with the lone pair of the 

heteroatom in the ring. This conjugation is more 

favorable in the axial than in the equatorial 

position. What is difficult to explain within MO 

theory is instantly visible in the ACID plot. 

There is a continuous isosurface from the lone pair 

of the endocyclic O to the exocyclic O-atom in the 

axial conformation and there is a discontinuity 

between the two O’s in the equatorial conformation. 

Hence, the conjugation in the axial conformation is 

more pronounced, making it more stable. Note that 

there is also hyperconjugation between the ring O-

atom and the neighboring CH2-group. This is 

another example of a well-known effect that is 

difficult to explain in terms of MO-theory but 

instantly visible in our ACID plot. 

IMPLEMENTATION IN A GRAPHIC 

ENVIRONMENT 

Delocalization and conjugation are among the most 

important concepts in chemistry. These principles 

Figure 5: The anomeric effect in 2-hydroxy-1,3-dioxane. 
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are taught separately in organic, inorganic and 

physical chemistry from different points of view. 

The ACID method allows for the first time an 

integrated approach to teaching delocalization. To 

this end, we have implemented the ACID plots 

described above with additional 30 examples in a 

graphical environment for teaching purposes. We 

consider the following features to be important for 

didactical reasons: 

1. Figures should replace text wherever possible. 

2. Learning information should be divided into 

modules that fill one screen page (scrolling 

should be avoided). 

3. One module (screen) should present only one 

main message. 

4. The screen pages should present the 

information in such a way that the message 

becomes clear just by reading the titles and 

taking a close look at the pictures (self-

explanatory as far as possible). 

5. 3D-objects such as molecules and isosurface 

plots should be represented as 3D objects that 

can be translated, rotated and zoomed by the 

user. Additional information not necessary for 

understanding the main message should only 

be available in pull down menus. 

6. Information containing dynamic data, such as 

conformational movements or reactions should 

be represented as dynamic objects (movie). 

Unlike videos that can be interrupted by 

pushing a (virtual) button, the movies should 

advance stepwise by interaction of the user 

(absolute control of the speed by the user, self-

paced learning). 

7. Important stages in a movie should be directly 

addressable by buttons.  

8. If a movie contains 3D objects (e.g. molecules 

on a reaction coordinate) it should be possible 

to manipulate (translate, rotate, zoom) the 3D-

objects in each frame of the movie by user 

interaction.  

9. Interactive features should be used whenever 

possible (explorative learning), e.g. different 

isosurface values for representation of the 

ACID should be offered in a menu so that the 

user can determine the critical isosurface value 

by trial and error. 

Our learning module so far includes 25 molecules 

as 3D objects, and 6 reactions as movies. The 

graphic interface (learning environment) will be 

further refined in an iterative process by testing the 

system with students.
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INTRODUCTION

Modern methods in the chemical and life sciences 

are providing data at an unprecedented pace. This is 

occurring in many areas with multiple types of 

information. For example, combinatorial chemistry 

and ultra-high-throughput screening methods are 

providing incredible numbers of, and information 

about, chemical compounds. Related screening 

methods, such as gene chip assays, and the 

associated expanding world of genome science is 

also providing information at a very high rate. And 

data annotations, scientific literature, patents, and a 

wide range of other documents have text 

information that is difficult to assimilate due to the 

sheer volume and complexity.  

Given this flood of diverse information, effective 

and timely use of the results is no longer possible 

using traditional approaches. With large volumes of 

information, it is difficult to learn from long lists, 

tables, or even simple graphs, particularly with 

multidimensional data. Furthermore, it is clear that 

more valuable hypotheses can be derived by 

simultaneous consideration of multiple types of 

experimental data (e.g. chemical structural 

information in addition to activity data), a process 

that is problematic with large amounts of data. 

As one solution for moving from large volumes of 

information to knowledge, we have developed an 

integrated data visualization and mining framework 

(OmniViz Pro¶). The primary premise upon which 

this framework was built is that discovery of the 

unexpected is a key goal of data mining. That is, in 

addition to searching for data records of well-

defined behavior (testing specific hypotheses), 

ABSTRACT

The volumes and diversity of information in the discovery, development, and business processes
within the chemical and life sciences industries require new approaches for analysis. Traditional list-
or spreadsheet-based methods are easily overwhelmed by large amounts of data. Furthermore,
generating strong hypotheses and, just as importantly, ruling out weak ones, requires integration
across different experimental and informational sources. We have developed a framework for this
integration, including common conceptual data models for multiple data types and linked
visualizations that provide an overview of the entire data set, a measure of how each data record is
related to every other record, and an assessment of the associations within the data set. 
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considerable value can often be obtained from 

assessing all the relationships within the full data 

set. To this end, there are several full data set 

overview visualizations that provide value to the 

analyst. The rationale behind these and the 

operational issues that have to be dealt with in their 

implementation are presented here.

CONCEPTUAL DATA MODELS

In working toward an integrated framework for data 

visualization and mining, we recognized that a 

common conceptual data model was essential. This 

conceptual model provides a familiar framework 

for the analyst and a common view that is 

independent of data type. 

Functionally, this conceptual model can be 

considered similar to a spreadsheet where each 

record is a row in the data table and each column 

contains data describing a distinct attribute. This 

collection of attributes, or any subset, can be used 

directly in multivariate analyses. The goal is to use 

these attributes to define for each record a high-

dimensional vector representation that can be used 

for cluster analysis as well as a common structure 

for visualization and interaction. Although the 

mental picture for this paradigm is two-

dimensional, functionally the resulting vector space 

model can be multi-dimensional, providing a 

framework for integrating different analyses of the 

same data records.  

Multiple data types can be used as attributes in this 

conceptual model, as with a spreadsheet, providing 

great flexibility. Numeric data (e.g., screening assay 

results), categorical data (e.g., functional 

classification or structure descriptors), genomic 

sequence (protein or nucleic acid), or even free text 

can be used. Some of this data can be used directly 

in high-dimensional vector representations. Other 

types of data may require the definition of specific 

descriptors or features, leading to the generation of 

a new collection of attributes. That is, a column of 

the data table is translated to a new set of one or 

more columns. As a result, each data record can 

ultimately be considered as a vector, whose 

dimensions are the attribute columns chosen for 

comparison. Some examples of how this might be 

accomplished are shown in Figure 1.  
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Figure 1: Examples of high-dimensional vector representations 
for several data types – numeric, chemical structure, 
chromatographic, text, genomic sequence, and mixed mode 
(numeric and categorical). 

The methods for defining attributes or features for 

many data types are well known and will not be 

presented here. However, because of the relatively 

recent application of these approaches to genomic 

sequences, it is worth mentioning that a variety of 

sequence descriptors have been used that in many 

ways parallel the approaches used for chemical 

descriptors. For example, van Heel [1] has used a 

sequence-based method in which each protein 

sequence is represented the collection of amino acid 

dimers present in the sequence, somewhat 

analogous to using contiguous atom pairs for small 

molecule comparison. More diverse sequence 

properties have been employed by Hobohm and 

Sander; [2] in this case, protein sequences were 

translated to 144 attributes that included sequence 

components (amino acid composition and a subset 

of dimers) and several physical-chemical 

properties. More recently, as for chemical 

compounds, structural descriptors have been 

derived for comparing proteins. [3,4] 
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DATA VISUALIZATION – BASIC CONCEPTS

Exploratory data analysis requires a framework in 

which  

1. the data can be organized along the lines 

of interest to the analyst and  

2. a collection of tools is available for 

pursuing specific inquiries.  

For both, the methods need to handle large volumes 

of data, with reasonable speed, and provide linkage 

among complementary views and to other tools. 

Presenting data in an organized fashion requires 

appropriate data overviews, especially those that 

allow inference by comparison. For this, we have 

adopted visualization methods since they offer 

unequalled facility in presenting large volumes of 

data. In addition, the structure within a well-

designed visualization can suggest relationships 

that might otherwise be overlooked. In that regard, 

it should be clear that data visualization methods 

assist, but cannot replace the analyst.  

A key component of this approach is to use all the 

relevant attributes simultaneously for deriving the 

comparisons. With very large data sets, such as 

high-throughput screening, it is not possible for the 

analyst to examine the behavior of the data records 

a few columns at a time and be able to assess the 

overall behavior. The selection of attributes for 

comparison can be useful for testing specific 

hypotheses, but do not facilitate discovery of the 

unexpected. Hence, cluster-based methods that 

utilize all the appropriate data attributes 

simultaneously are preferred. 

Even with mathematical methods that use all the 

data, no single visualization method can convey all 

of the information likely to be needed by the 

analyst and several complementary approaches are 

necessary. In that spirit, these should not be viewed 

as stand-alone entities, but linked together for 

continuity in data analysis. This becomes 

particularly important in an integrated analysis 

across different experimental data sets, for example, 

where distinct visualizations are used to organize 

the data from separate experimental regimens. The 

data overviews also need to be supported by 

complementary tools that support access to and, in 

many cases, visualization of the details of the data. 

The easy access to these tools is the foundation for 

progressing from visualization to data mining. 

Given that the data exploration is necessary in the 

first place since the volume of data is too large to 

assimilate at once, the key features of the 

visualization methods are speed and progressive 

disclosure. Speed is essential since iterative 

analyses are necessary. Progressive disclosure is a 

specific type of iteration that is needed frequently. 

This goes beyond simply zooming in, but rather 

needs to allow a finer resolution based on 

comparison of a subset of data records. For 

example, the relationships uncovered from a subset 

may be driven by a very different set of attributes 

than in a full data set comparison. 

Finally, recognizing that no exploratory data 

analysis package can do everything, the 

visualizations and tools need to provide easy access 

to external databases and analytical methods. For 

example, in the bioinformatics realm, the collection 

of public domain tools is enormous and rather than 

attempt to duplicate these, all that is necessary is 

easy export of data from a visualization into these 

tools and vice versa.

DATA OVERVIEW VISUALIZATIONS

As noted above, complementary data overviews are 

needed to address different aspects of a large data 

set. We classify these overviews into four types:  

• overviews of the data itself,  
• overviews of the relationship of each 

data record to every other record, 
• overviews of the associations within 

the data set, and 
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• overviews specific to a particular data 
type. 

To enable the discovery process, each of these 

visualizations must provide ready access to the 

underlying information and appropriate analytical 

tools. With these, it becomes possible to explore 

prior hypotheses as well as the unexpected 

relationships often suggested by the structure of 

visualizations of complex data sets. 

CORSCAPE

As one approach for viewing an entire data set, we 

have created the CorScape visualization (Figure 

2A). Here, each data record is a row in the 

visualization and each attribute in the data table a 

column. Each cell in this visualization is color-

coded to represent the actual data. The color-coding 

can be defined by continuous variables using a 

color gradient or specific colors for categorical data 

or missing values. Thus, this is like a spreadsheet 

with the individual cells color-coded and then 

shrunk to make it all visible in a single glance.  

The rows in the CorScape are ordered for better 

recognition of the types of behaviors in the data set. 

Specifically, the records are first clustered (with 

cluster membership indicated by the alternating 

gray bars on the left), then the clusters are 

correlation ordered, and finally the records within 

each cluster are ordered using a Euclidean distance 

measure. The result of this layered ordering is the 

ability to see structure in the data. Furthermore, 

with large numbers of records (greater than the 

number of pixels available for the visualization), 

the ordering allows smoothing with minimal loss of 

ability to recognize types of behavior.  

In addition to the record (row) ordering, the 

CorScape allows the columns to be ordered in a 

variety of ways as well. As for the rows, this 

provides useful structure in the visualization, but 

moreover provides an analytical tool. For example, 

consider a visualization of a number of compounds 

(rows) tested in several HTS assays (columns); 

arranging the assays by similarity, the analyst can 

immediately determine which assays may be 

providing redundant information and allow future 

screens to be done in a more cost effective manner.  

A.  B.

C.  D.

Figure 2: Visualization schemes. A. CorScape. B. Galaxy. C. CoMet. D. ThemeMap. 
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The CorScape simultaneously provides both a ‘far 

view’ which shows the entire data set in one frame 

and a ‘near view’ which provides a close-in view of 

a region of interest in a separate frame. Thus the far 

view provides the overall context for a data set and 

the near view allows detailed probing of the data. 

This two-tiered approach is particularly important 

for very large data sets. 

The approach used in the CorScape visualization is 

similar in concept to methods employed by Eisen 

[5] and Weinstein, [6,7] but is done in a manner 

that is fully interactive. The end result, as 

implemented in the OmniViz Pro software, is a 

visualization that allows the analyst to understand 

the overall nature of the data, discern groupings of 

records and attributes, and explore the details 

quickly.  

LINKING THE FAMILIAR WITH THE 

USEFUL

Besides providing a useful overview of all the data, 

the CorScape provides a link from the data table 

that is familiar to analysts and the higher-

dimensional realm of multivariate data. It shows the 

information in what is essentially a data table, yet 

adds information about cluster membership. Thus, 

the CorScape along with tools, such as the 

NumericRecordViewer, which shows a portion of 

the data table with both the color code and numeric 

values, and familiar analytical tools, such as simple 

plots, provides a natural transition to higher order 

analyses. 

GALAXY

Although the CorScape provides a ready overview 

of the overall data set, there is a limitation to the 

one-dimensional ordering in this type of view. 

Consider a group of three records in a CorScape, 

ordered 1-2-3 according to some measure of 

similarity (Figure 3). It may be that objects 1, 2, 

and 3 are in fact equally related, as in the diagram 

to the right. In this case, any order of the three 

records is correct, a complex relationship that can 

only be indicated in a higher-dimensional view.  

Figure 3:

1
2
3

32

1

We have created such a visualization, the Galaxy 

view (Figure 2B), which is a projection of the data 

records from the high-dimensional space where the 

cluster analysis takes place to a two-dimensional 

view in which interactions can take place. In this 

view, a point represents each data record and a 

circle represents each cluster centroid. In particular, 

the Galaxy view shows how each data record is 

related to every other data record, with emphasis on 

the natural groups or clusters that occur within that 

information space. Thus, this visualization is a 

representation of the information space that allows 

the analyst to become oriented rapidly and assess 

global features of the information.  

The Galaxy visualization has some features, such as 

the representation of an entire data set in single 

view, in common with other methods that have 

been applied in the chemical and biological 

sciences. For example, Sammon maps [8] have 

been used to compare protein sequences [9] and 

self-organizing maps [10] have been used for gene 

expression analysis . [11]  

The Galaxy visualization also has several unique 

attributes to assist the analyst. To help with 

orientation in the Galaxy view, iconic 

representation of the behavior of the records in each 

group, for example, miniature plots for numeric 

data, provide immediate landmarks on the overall 

map and allow the user at a glance to see how many 
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records have what types of behavior. As 

implemented in OmniViz Pro, the Galaxy, as with 

the other visualizations, is fully interactive with 

ready access to data mining tools. 

COMET

To complement the insights about the data and the 

relationships of data records as gained from the 

above visualizations, a separate view of how the 

attributes associated with each data record are 

distributed is critical. This can be an assessment of 

how one or more attributes correlate with clusters 

of records (associating attributes with the group’s 

behavior) or an assessment of how one set of 

attributes correlate with another set (independent of 

record to record relationships). 

We have created the CoMet visualization (Figure 

2C). This view is a data matrix with the rows and 

columns representing objects or attributes of 

interest. For example, if the association of a set of 

attributes with behavior (clusters) is of interest, the 

rows would represent each cluster (e.g., compounds 

grouped by biological activity) and the columns 

would represent the categorical values for each 

attribute (e.g., structural descriptor). Each cell in 

this matrix represents the records in that cluster that 

contain the attribute in that column and is color-

coded according to raw occurrence frequency, 

percent occurrence, or, usually most valuable, the 

deviation from expected occurrence. In this way, it 

is easy to see which attributes contribute to the 

observed behavior. As with the CorScape, 

additional value in the visualization is derived by 

appropriate ordering of the rows and columns. For 

clusters as rows, these are presented in the same 

correlation order as in the CorScape. The columns 

can also be ordered (e.g., correlation) to add 

structure to the view. 

Alternatively, the association of attributes with 

other attributes can be done by selecting the rows to 

be other attributes - for example, in a preclinical 

trial, the association of outcome (categorical 

attributes) with treatment (a separate categorical 

value). In this case, each cell in the matrix 

represents how many records contain the attribute 

in the row and the attribute in the column, with 

color-coding using the same statistical options as 

above. 

As implemented in OmniViz Pro, the CoMet 

visualization is also fully interactive, allowing 

ready access to the underlying information and the 

relevant analytical tools. 

DATA TYPE SPECIFIC VISUALIZATIONS

For some data types, there are specific 

visualizations that are needed to convey aspects of 

the information space. In the case of text, we have 

created the ThemeMap visualization. The landscape 

visualization metaphor for the major themes within 

the text provides a rapid means for getting oriented 

in the two-dimensional Galaxy projection. To this 

visualization, we have added a suite of tools that 

facilitate analysis, discovery, and presentation. 

INTEGRATION

Each of the visualizations described above provides 

unique value, but should not be viewed in a 

vacuum. In the course of data exploration, the 

complementary views need to be linked together so 

that assessment across separate analyses, different 

experiments, or even different data types is 

facilitated. This linkage must essentially be 

universal within the information space defined by 

the data set so that examination of subsets of data 

(e.g., in progressive disclosure) or different subsets 

of the data attributes can be fully integrated. 

Our method for implementing this unified approach 

is to provide active linkage of records throughout 

the visualizations and tools. Using an event-driven 

model, each visualization and each interactive tool 
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displays the selected records from any other 

visualization. Thus, records selected in a CorScape 

view are immediately highlighted in the Galaxy 

view to link the data overview with the better 

presentation of record-record relationships. 

Similarly, records clustered by one set of attributes 

(e.g., chemical structure descriptors) in one 

visualization are automatically linked to records in 

another view clustered by another set of attributes 

(e.g., biological activity). Linkage from 

experimental data sets with literature analysis is 

also possible, through integrated query capabilities. 

The integration across data sets and data types is 

facilitated by the common visualization schemes 

and interactive tools used for all data. This is made 

possible by the common data table concept; most 

visualizations and tools access record information 

through the same underlying data structures. 

SUMMARY

As the methods being employed in chemical and 

life sciences continue to evolve and produce even 

greater volumes of information, exploratory data 

analysis will become increasingly dependent on 

visualization methods. In addition to analysis of 

specific high-throughput experiments, the 

integration of multiple experiments across the 

discovery and development process can be 

approached. This integration extends across data 

types to analysis of internal and external data 

repositories, including historical information such 

as literature and patents, bringing a new level of 

continuity to the data mining process. 
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INDEX

-Conjugation Herges
2-(4'-Hydroxyphenylazo)-benzoic acid Wallmeier
1,3-Dioxane Herges
2-Hydroxy-1,3-dioxane Herges
1,2,4-Benzotriazin-3-ones Johnson
1,2,3,4-Tetrahydropyrido[4,3-d]pyrimidine-2,4-dione Johnson
2D-descriptors Clark
2D-pharmacophore Young
3D-descriptors Clark
3D-pharmacophore Young
3DSCAM Young
2D to 3D conversion Clark
13C-Chemical shifts Clark

A
À trous transform Murtagh
Abbott MAO dataset Young
ACD Gillet
ACE-inhibitor dataset Johnson
ACID Herges
Active site Gaizauskas
AFGs Johnson
Agglomeration criterion Murtagh
Agrochemical industry Gillet

  Algorithm,  Croft’s Murtagh
Morgan Johnson
NN-chain Murtagh
Perry-Willett Murtagh
Sollin’s Murtagh
Späth’s exchange Murtagh

Algorithme des célibitaires Murtagh
Alpha-augmented functional groups Johnson
AM1 Clark
Amazon.com Murtagh
AMBER 3.0 Wallmeier
Amino acid Gaizauskas
Angiotensin-converting enzyme Johnson
Anisotropy of the current-induced density Herges
Anomeric effect Herges
Answer keys Gaizauskas
Approximate nearest neighbor finding Murtagh
Aqueous solubility Jorgensen, Clark 
Aromaticity Herges
Association coefficients Gillet
Astronomy and Astrophysics Murtagh
Astrophysical Journal Murtagh
Autocorrelation functions Wallmeier
Available Chemicals Directory Gillet

B
Back propagation of errors Clark
BCUT descriptors Gillet, Johnson
Bellman’s curse of dimensionality Murtagh
Benzene Herges
Benzodiazepine Gillet
Best match Murtagh
Bibliographic information retrieval systems Croft
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Binning Murtagh
Bioavailability Jorgensen
Biochemica et Biophysica Acta Gaizauskas
Biological activity Gillet
Biometry Wallmeier
Biomolecular complexes Wallmeier
Biotin  Wallmeier
Bis-(trifluoromethyl)phosphinic acid Clark
Boiling points Clark
Boolean matching Croft
BOSS Jorgensen
Bounding Murtagh
Bounds Murtagh
Brain/blood concentration ratio Jorgensen
Breast tumor Young
Browsing structures Johnson
Bruynooghe’s reducibility property Murtagh
Bucketing Murtagh
Butadiene Herges

C
Categorization techniques Croft
CDK2 Young

  Charges,  CM1P Jorgensen
MEP-derived Clark
VESPA Clark

Chebyshev distance Murtagh
Chemical Abstracts Croft
Chemical shifts, 13C- Clark
Cheminformatics Johnson
Cherry-picking Gillet
Chime Herges
Citation Murtagh
Citation analysis Croft
CIV Herges
Classification Wallmeier
CLOGP Jorgensen
Clustering Croft, Gillet, Murtagh, Wallmeier, Johnson
Clustering algorithms Murtagh

  Clustering,  Gaussian mixture Murtagh
graph Murtagh
hierarchical agglomerative Murtagh
model-based Murtagh
Ward’s Gillet

Clutter removal Murtagh
CM1P Jorgensen
Collaborative filtering Croft
Colon tumor Young
Colored graph Johnson
Combinatorial chemistry Gillet
Combinatorial library Gillet
Combinatorial library design Gillet
Combinatorial optimization algorithms Murtagh
Combinatorial reaction Gillet
Competitive learning Murtagh
Compound acquisition program Gillet
Compound selection Gillet
Concentration ration, brain/blood Jorgensen
Conformational changes Clark
Conformation-searches Wallmeier
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Continuous set of gauge transformation Herges
Coreference resolution Gaizauskas
CORINA Clark
Critical isosurface value Herges
Croft’s algorithm Murtagh
Cross-lingual techniques Croft
Cross-validation Clark
CSGT Herges
Current awareness Croft
Cyclic system-ordering Johnson
Cyclohexane Herges

D
Data cleanup Clark
Data compression, model-based Wallmeier
Data generation Wallmeier
Data mining Croft, Murtagh, Wallmeier, Saffer
Data models Saffer
Data overview visualization Saffer
Data visualization Saffer
Database systems Croft
Database,  Maybridge Chemical Company Clark

MDDR Johnson
Modern Drug Data Report Johnson
NCI Young
SPRESI Gillet
WDI Gillet

Dataset, Abbott MAO Young
ACE-inhibitor Johnson
HTS Young
nucleotide Clark

Datasets, large chemistry Young
massive Murtagh

Daylight fingerprints Gillet
DBCS Gillet
Delaunay triangulation Murtagh
Delocalization Herges
Dendrogram Murtagh
Descriptor Gillet, Jorgensen, Clark
Descriptor sets Wallmeier
Descriptors,  2D Clark

3D Clark
BCUT Gillet, Johnson
molecular Gillet
Politzer and Murray Clark

Development corpus Gaizauskas
Dimensionality, Bellman’s curse of Murtagh
Discourse interpretation Gaizauskas
Discourse model Gaizauskas
Dispersion Clark
Dissimilarity Gillet, Murtagh
Dissimilarity-based compound selection Gillet
Distance Murtagh
Distance measures Gillet
Distance, Chebyshev Murtagh

Euclidean Gillet, Murtagh, Saffer
Hamming Murtagh

Diverse library Gillet
Diversity analysis Gillet
Diversity index Gillet
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Diversity measure Gillet
Domain modeling Gaizauskas
Domains Gaizauskas
D-optimal design Gillet
Drude model Wallmeier
Drug discovery Gaizauskas
Drug-like Gillet
Drug-space Gillet
DTD Gaizauskas
Dynamical affinity Wallmeier

E
EC number Gaizauskas
E-commerce Croft
Electrons, mobile Herges
EMP database Gaizauskas
EMPathIE Gaizauskas
Enzyme Gaizauskas
Enzyme classification number Gaizauskas
Enzyme MAO Young
Error limits Clark
Ethane Herges
Ethylene Herges
Euclidean distance Gillet, Murtagh, Saffer
Evaluation corpus Gaizauskas
Experimental design techniques Gillet

F
Feedforward neural net Clark
FEMS Microbiology Letters Gaizauskas
Fingerprints, Daylight Gillet
Force field, OPLS-AA Jorgensen
Fortran Murtagh
Free energies of solvation Jorgensen
Free energy, Helmholtz Wallmeier

G
GA Gillet
Gabriel graph Murtagh
GATE development environment Gaizauskas
Gaussian mixture clustering Murtagh
Gaussian suite Herges
Gene expression analysis Saffer
Genetic algorithm Gillet
Glyoxylate cycle Gaizauskas
Glyoxylate phenylhydrazone Gaizauskas
Graph clustering Murtagh
Graph,  colored Johnson

labeled Johnson
Guanine Clark

H
Haar transform Murtagh
HABA Wallmeier
Hamming distance Murtagh
Harmonic oscillator Wallmeier
Helmholtz free energy Wallmeier
Hierarchical agglomerative clustering Murtagh
High-throughput SAR Johnson
High-throughput screening Gillet, Young, Saffer
Homoaromaticity Herges
Hotelling T2 Young
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HTML Croft, Murtagh
HTS Gillet, Young, Saffer
HTS dataset Young
Hydrogen bonds Jorgensen, Clark

I
IC50 Johnson, Young
IE Gaizauskas
Infectious disease progression Wallmeier
Information condensation Wallmeier
Information filtering Croft
Information overload Croft
Information retrieval Gaizauskas
Information retrieval systems, bibliographic Croft, Gaizauskas
Information seeking, template-oriented Gaizauskas
Institute of Scientific Information Murtagh
Internet Croft
ISI Murtagh
Isocitrate lyase Gaizauskas
Isodata Murtagh
Isomers, geometric Johnson
Isosurface Herges

K
KD tree Murtagh
Kier and Hall indices Clark
Kinase CDK2 Young
K-Means Murtagh
Kohonen map Murtagh

L
Labeled graph Johnson
Labeled pseudograph Johnson
Lance-Williams dissimilarity update Murtagh
Language modeling Croft
Large chemistry datasets Young
Large scale information extraction Gaizauskas
LaSIE Gaizauskas
Lead compound Young
Lead-optimization Johnson, Young
Lexical processing Gaizauskas
Lexicon Gaizauskas
Library design, combinatorial Gillet
Library synthesis Young
Library, thiazoline-2-imine Gillet
Linear regression Jorgensen
Lipophilicity Gillet
Literature-based discovery Croft
Localized bonding Herges
logBB Jorgensen
logP Jorgensen, Clark
logS Jorgensen
Lung tumor Young

M
MACCS screens Gillet
Machine translation Gaizauskas
Magnetic properties Herges
Magnetic shielding Herges
Magnetic susceptibility Herges
Mahalanobis metric Murtagh
Mannitol-l-phosphate 5-dehydrogenase Gaizauskas
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MAO enzyme Young
Marquardt and Levenberg method Wallmeier
Massive data sets Murtagh
MaxMin Gillet
MaxSum Gillet
Maybridge Chemical Company database Clark
MC-simulation Jorgensen
MDBST Murtagh
MDDR database Johnson
Melanoma Young
MEP Clark
MEP-derived charges Clark
MEQI Johnson
MEQNUM Johnson
MESH Croft
Message understanding conferences Gaizauskas
Metabolic pathways Gaizauskas
Metadata Croft
Methane Clark
Microbiological experiments Wallmeier
Minimal spanning tree Murtagh
MNDO Clark
Mobile electrons Herges
Model-based clustering Murtagh
Model-based data compression Wallmeier
Model data Wallmeier
Modeling of signal and noise Murtagh
Modern Drug Data Report database Johnson
Molar refractivity Gillet
Molconn-Z Gillet
Molecular biology Gaizauskas
Molecular descriptor Gillet, Jorgensen
Molecular dynamics Wallmeier
Molecular electrostatic potential Clark
Molecular equivalence indices Johnson
Molecular modeling Wallmeier
Molecular orbital theory Jorgensen, Clark, Herges
Molecular polarizability Clark
Molecular weight Gillet
Monte-Carlo simulations Jorgensen
Morgan algorithm Johnson
Morphological analysis Gaizauskas
MO-theory Jorgensen, Clark, Herges
MPEG7 Croft
MST Murtagh
MUC Gaizauskas
MUC-7 Gaizauskas
Multidimensional binary search tree Murtagh
Multimedia retrieval Croft
Multivariate recursive partitioning Young
Mutual nearest neighbors Murtagh

N
Named entity recognition Gaizauskas
NAO-PC Clark
Natural atomic orbitals Clark
Natural language texts Gaizauskas
NCI database Young
Nearest neighbor Murtagh
Nearest neighbor chain Murtagh
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Neural net, feedforward Clark
NICS Herges
NMR Herges
NN Murtagh
NN-chain Murtagh
NN-chain algorithm Murtagh
NN diversity index Gillet
NN searching Murtagh
Nuclear magnetic resonance Herges
Nucleotide dataset Clark
NVT ensemble Wallmeier

O
Octanol/water partition coefficient Jorgensen, Clark
OPLS-AA Jorgensen

P
Parser Gaizauskas
Parsing Gaizauskas
Partition coefficient, octanol/water Jorgensen, Clark
Partitioning Gillet
Part-of-speech tagger Gaizauskas
PASTA Gaizauskas
Pathogen Wallmeier
Pathogenic bacteria Wallmeier
Pathogenicity factors Wallmeier
PDB Gaizauskas
Perry-Willett algorithm Murtagh
Perturbation theory Wallmeier, Herges
Pharmaceutical industry Gillet

  Pharmacophore,  2D Gillet, Young
3D Young

Phrasal parser Gaizauskas
Physicochemical property Gillet
PM3 Jorgensen, Clark
Poisson noise Murtagh
Polarizability, molecular Clark
Polarizability tensor Clark
Politzer and Murray descriptors Clark
Portals Croft
Povray Herges
Probabilistic techniques Croft
Product-based selection Gillet
Projection methods Johnson
Projections Murtagh
PROPGEN Clark
PROPHET Clark
Protein active site Gaizauskas
Protein Active Site Template Acquisition Gaizauskas
Protein data bank Gaizauskas
Protein sequence Saffer
Protein structure Gaizauskas
Pseudograph, labeled Johnson
Purvalanol-B Young

Q
QikProp Jorgensen
QM/NN-models Clark
QSPR Jorgensen, Clark
QSPR-models Jorgensen, Clark
Quantitative structure-property relationships Jorgensen, Clark 
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Quantum cheminformatics Clark
Quantum mechanics Jorgensen, Clark, Herges
Query expansion, automatic Croft
Question answering Croft
Quinoxalinediones Johnson 

R
RCM-method Murtagh
Reactant-based selection Gillet
Reciprocal nearest neighbors Murtagh
Recursive partitioning, multivariate Young
Recursive partitioning tree Young
Regression, linear Jorgensen
Rejection rules Murtagh
Relevance feedback Croft
Retrieval models Croft
Reverse Cuthill-McKee method Murtagh
RNN Murtagh
Root labeled tree Murtagh

S
Sammon map Saffer
SAR Gillet, Johnson, Young
SASA Jorgensen
SBI Johnson
Scanning electron microscope Murtagh
Scenario template Gaizauskas
Scenario template filling Gaizauskas
SCF-calculation Clark
Schrödinger equation Herges
Scientific journal abstract Gaizauskas
Scientific journal papers Gaizauskas
Screening set Young
Screens, MACCS Gillet
SDFClean Clark
Search engines Croft
Sectionizer Gaizauskas
SELECT Gillet
Self-organizing map Murtagh, Saffer
SEM Murtagh
Semantic interpretation Gaizauskas
Semantic networks Wallmeier
Semantic road map Murtagh
Semiempirical MO-theory Jorgensen, Clark
Serine Gaizauskas
SGML Croft, Gaizauskas
Signal and noise modeling Murtagh
SIMD-computer Murtagh
Similarity Gillet, Murtagh
Similarity join Murtagh
Similarity query Murtagh
Similar property principle Gillet
Sloan Digital Sky Survey Murtagh
Sollin’s algorithm Murtagh
Solubility, aqueous Jorgensen, Clark 
Solvation, free energies Jorgensen
Solvent-accessible surface Clark
Solvent-accessible surface area Jorgensen
SOM Murtagh, Saffer
SOS method Clark
Späth’s exchange algorithm Murtagh
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SPRESI Database Gillet
Stereoelectronic effect Herges
Stereoisomers Johnson
Streptavidin Wallmeier
Structural browsing indices Johnson
Structure-activity relationship Gillet, Johnson, Young
Student-t-test Young
Subset selection Gillet
SUMCOS Gillet
Sum-over-states method Clark
SUMTAN Gillet
Surface area, solvent-accessible Jorgensen
System-ordering, cyclic Johnson
System response Gaizauskas

T
Tagger Gaizauskas
Tanimoto coefficient Gillet
Technical vocabulary Gaizauskas
Template Gaizauskas
Template element Gaizauskas
Template element filling Gaizauskas
Template-oriented information seeking Gaizauskas
Template relation Gaizauskas
Template relation filling Gaizauskas
Terminological processing Gaizauskas
Terminology grammar Gaizauskas
Terminology lexicon Gaizauskas
Tetrahydropyran Herges
Text data mining Croft
Text genres Gaizauskas
Text preprocessing Gaizauskas
Thermodynamics Wallmeier
Thiazoline-2-imine library Gillet
Thresholding Murtagh
TIP4P water Jorgensen
Tokenization Gaizauskas
Topological indices Gillet, Clark
Trajectories (molecular dynamics) Wallmeier

  Transform,  à trous Murtagh
Haar Murtagh

Traveling salesman problem Murtagh
  Tree,  kD Murtagh

minimal spanning Murtagh
multidimensional binary Murtagh
recursive partitioning Young
root labeled Murtagh

Triangular inequality Murtagh
Trimethylamine Clark
Tumor Young

U
Ultrametric spaces Murtagh
Unweighted group average method Murtagh
UPGMA Murtagh

V
Valence-Bond theory Herges
VAMP Clark
Vapor pressure Clark
Variational method Clark
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VB-theory Herges
Vector quantization Murtagh

VESPA Clark
Virtual library Gillet
Virtual screening Gillet
Virulence factors Wallmeier
Visualization Herges, Saffer
Voronoi diagram Murtagh

W
Ward’s clustering Gillet
Ward’s minimum variance criterion Murtagh
Water, TIP4P Jorgensen
WDI Gillet
Web crawler Croft
Web search engines Croft
Weighted group average method Murtagh
World Drugs Index Gillet
WPGMA Murtagh

X
XML Croft
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