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ABSTRACT

Drug discovery programs have had to deal with an avalanche of data
coming from both the adoption of new technologies such as high
throughput screening and combinatorial chemistry, as well as advances
in genomics and structural genomics which have facilitated a gene
family target approach to drug discovery. Although this data rich
environment has been a challenge to manage, it has provided an
opportunity for the development of informatics based tools and
solutions to extract information from this large body of data, and
convert this information into knowledge that can be used and reused for
drug discovery.

In the cheminformatics field there has been considerable focus on the
development of new tools to visualise and analyse the data, particularly
with relation to identifying new leads, and analysing SAR for lead
optimisation. While individual cheminformatics tools are critical for
analysing this data, a real opportunity exists to provide solutions that
synthesize results from these analyses into knowledge to support drug
discovery decisions. This remains largely a "manual" activity that takes
place within individual project teams.

This paper will describe some concepts and implementations of
cheminformatics solutions that begin to address the need for reusable
knowledge generation within drug discovery projects. The talk will
address requirements for the integration of chemical and biological data
as well as the integration of tools and models. The power of using
predictive tools for compound design will be highlighted as well as
methods to simultaneously consider multiple SAR's. We will describe
how providing such solutions
http://www.beilstein-institut.de/bozen2002/proceedings/Sage/Sage.pdf
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INTRODUCTION

The drug discovery process used to be less complicated. Teams of chemists and biologists (drug

discovery scientists) would work together on tens to hundreds of molecules to try to specifically

alter the function of their biological target. Things have changed. Because of changes in

available technologies and increases in fundamental understandings of biology, the drug

discovery scientist has to contend with thousands to millions of molecules interacting with

potentially thousands of targets. Therefore, the modern drug discovery scientist is awash in data.

However, the changes in available technologies haven't necessarily resulted in improvements in

the quality of the data. As a result, we have been flung into what might be a morass of

meaningless data, or discovery knowledge nirvana. How do we navigate?

COMPONENTS REQUIRED TO BUILD THE MAP

The first stage to approaching this information overload is by assembling the informatics

components necessary for integrating all the available data. Databases are an integral

component. This simple component may pose problems for some organisations since the default

drug discovery data repository has become Microsoft Excel. Once the data has been arranged

into databases, establishing a link between the data in the databases is an essential component.

This component does not have a trivial solution, since it involves linking data of different types

across different research areas. One obvious potential solution is to use the experimental assay

data as the common link between the genomics/bioinformatics/proteomics data and

cheminformatics data. Assuming that the data has been integrated to some extent, the next

required components are ways to visualise, analyse, and interrogate the data. Furthermore,

sophisticated computational approaches must also be taken in order to summarise collections of

data into reusable knowledge for prospective application. Finally, means to allow `rollup' of

these components for decision support, including tracking and knowledge management tools

are essential for efficient. Figure 1 illustrates the Lion Bioscience architecture.

Once an integrated system of data, analysis, and decision support tools has been created, then

the true power of the system can be exploited for more rational/informed decision making.

These systems can be used in all phases of the drug discovery process from target selection to

screening set selection to lead optimisation and lead selection for pre-clinical development.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Figure 1. Lion Bioscience integration architecture

The purpose of this paper is to illustrate the potential utility of these approaches in the post-

target selection region of drug discovery, and the next two figures illustrate a framework for

discussing the small molecule drug discovery process. Figure 2 defines our use of the terms

"Lead Identification" and "Lead Optimisation" since these terms may have different

connotations in different organisations.

Figure 2. Definitions and Assumptions for Drug Discovery project initiation.

A second concept illustrated in figure 2 are some of the operating assumptions and project

criteria that must be performed in order for this integrated approach to work most efficiently.

Project criteria are a key decision support / project tracking consideration. Figure 3 illustrates a

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf


182

Sage, C. R. et al.
version of a pre-clinical drug discovery (or lead candidate selection) workflow. It is important

to note that this entire workflow sits upon the foundation of knowledge/information gleaned

from other projects, and any and all data (both positive and negative) and knowledge generated

for a given project in this workflow is put back into this foundational "Knowledge Base".

Figure 3. Idealised project work/information flow for Pre-clinical Drug Discovery.

REUSING AND LEVERAGING EXISTING DATA THROUGH
COMPUTATIONAL MODELS (HYPOTHESES)

Leveraging data that exists at project initiation via computational means provides momentum

in the rational decision making early in the drug discovery process, and continues this

momentum as more data becomes available. The type, quantity, and quality of these data define

the extent to which computational approaches should be used. Figure 4 describes the potential

computational approaches that could be used in support of drug discovery projects given

defined sets of experimental data.

In the extreme, if the project under consideration has a liganded protein structure, related protein

structures and lead series data available, computational approaches including diversity,

similarity, QSAR/pharmacophore models, drug-likeness models, docking, cross-target (or

specificity) alert models, and project-specific ADME-models can be applied simultaneously to

best leverage all existing information in the compound prioritisation and compound assessment

phases of lead identification and lead optimisation (Figure 3).

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Figure 4. An example of an "available data / available application" matrix

ACCESSING INTEGRATED DATA

Once an integrated data/query system has been created, it must be delivered to the end user in

such a way that it actually enhances their work. Here the major challenge is a "people issue".

The interface must be simple and familiar, and should not require too much specific additional

training for the user to start using it. In our solution to this problem, we have chosen web pages

as an interface since it is familiar. has simple interfaces, and is easy to access. Figure 5

represents a "front door" to the system, the place where the end user chooses what task they want

to accomplish. Figure 6 demonstrates a simple interface for searching multiple databases

simultaneously using an sd, molfile, or sketched molecule.

Figure 5. Simple "front page" access to a set of integrated data, models, and tools.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Figure 6. Simple interface for performing a 2D similarity search of multiple databases simultaneously.

TURNING DATA INTO SHARABLE KNOWLEDGE

USING COMPUTATIONAL TOOLS

Figure 4 shows the computational methods available given a starting set of experimental data.

These approaches have been powerful in enabling complicated hypothesis-driven experimental

design in drug discovery project. However, the resultant models are usually "put on the shelf' as

projects are promoted or discontinued, leaving these synthesised data unused for future projects.

Having these computational models available, and using them appropriately could prove very

valuable in addressing specificity, ADME, and safety information of current and future projects,

especially in the case of organisations pursuing the target-class approach to drug discovery.

Figure 7 shows a matrix of potency/specificity receptor-relevant chemspace (Pearlman

reference) models created for a collection of nuclear receptors, representing a collection of

easily applicable knowledge about a large fraction of proteins in the nuclear receptor target

family. Though we have presented receptor-relevant chemspace models as our in silico

surrogates for potency/selectivity, any computationally derived model, from similarity

clustering methods to docking may be assembled, integrated, and applied in a cross-project

manner.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Figure 7. Distance matrix representing the relatedness between receptor relevant chemspace models.

APPROPRIATELY USING DATA IN THE FORM OF COMPUTATIONAL MODELS

Having data available in an integrated, searchable, analysable context, should be very valuable,

however, more value could be added to this data by the creation of robust computational

summaries (models) of the data, and applying them in appropriate ways. As an example, may

varied approaches and algorithms exist that take a set of compounds and experimental activity

data and derive a QSAR model that can often accurately predict the potential activity of a new

compound.

It should be possible to reuse these models as a component of a knowledge environment for in

silico evaluation of every compound against a surrogate for every potential experimental assay.

However, most of the approaches used to build these computational models are statistical in

nature, and therefore the performance of these models is only interpolative in nature, therefore,

the models will likely perform poorly outside of "chemical space" (extrapolation) they were

built upon. An approach to addressing this problem is illustrated in Figure 8 which shows the

results from a model to predict Caco-2 effective permeability, including measures of

uncertainty, using only the chemical structure of the compound as the only input. This caco-2

model was built using sophisticated statistical pattern recognition methods in which the output

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf


186

Sage, C. R. et al.
is a consensus prediction from 10 independent models. Each model is trained on a different

representation of chemical space. To calculate the prospective measure of uncertainty (M.O.U)

for the model, the upper and lower bounds of the chemical features (chemical descriptors) were

determined to represent the bounds of the multidimensional chemical space upon which each

model was trained. For each of the 10 independent (child) models, a new compound may have

features whose values are outside of he bounds of the training set.

Figure 8. Example application of prospective measures of uncertainty in a predictive model for caco-2 effective
permeability.

If the features are outside of the bounds for any feature for a child model, that model is

considered to be extrapolating. Figure 7 shows an example of the consequences of using

extrapolated increases, the error in prediction increases dramatically. Developing methods to

assess prediction confidence for all models could aid dramatically both in their successful first-

time use as well as enable appropriate reuse of the knowledge gleaned by their creation.

SIMULTANEOUS USE OF COMPUTATIONAL MODELS AND
INTEGRATED DATA FOR COMPOUND PRIORITISATION AND ASSESSMENT

During Lead Identification and Lead Optimisation, prioritisation or ranking of compounds to

acquire, plate, or synthesise can be cumbersome, and is often performed without using all

available information. Similarly, assessment of which compound or compound series to

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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promote to the next phase of research should also be performed using all available information

simultaneously. Figure 9 shows a simple compound prioritisation input screen for simultaneous

prediction of ADME and potency/specificity properties. In this input screen the user may

choose which properties to calculate, the criteria defining whether a given compound passes or

fails, and the weight of that property in the calculation of a summary score for a molecule.

Figure 9. Prioritisation Input Screen. The end user selects the models to run, the criteria required to pass, and
the weight each model contributes to the final score.

The summary score allows the composite ranking of all compound under consideration using

the same objective evaluation criterion. Figure 10 shows the results of a prioritisation in two

views. First, a compound-by-compound view, and second, a property distribution view, which

would likely be useful for selecting from commercially available compound collections of in

the evaluation of whether or not to synthesise a particular series of compounds versus another.

By including integrated data determined experimentally in this analysis, compoung assessment

can also be performed.

APPLICATION OF INTEGRATED APPROACHES AS A CHEMINFORMATICS 
SOLUTION FOR DECISION SUPPORT IN DRUG DISCOVERY:

A HYPOTHETICAL ESTROGEN RECEPTOR PROJECT

For this hypothetical example, we will assume that we have chosen Estrogen Receptor alpha

(Era) as the target of our Lead Identification (LI)/Lead Optimisation (LO) project. We perform

a search of the literature, and find several examples of compounds which have been shown to

interact with Era (Figure 11).

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Figure 10. Output from compound prioritisation. Compound dependent rollup of predictions, and compound
collection distributions of predictions.

Figure 11. Starting information for the hypothetical ER-a project.

In addition, since our organisation is using a target class approach to drug discovery, we also

retrieve all known NR-ligand pairs from the literature as an initial knowledge environment. ER-

a is an example of a data-rich project (Figure 11), and therefore almost every method available

for computational model generation would be at our disposal. Once the project criteria and

starting assumptions (Example shown in Figure 12) have been established, lead identification

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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(Figure 3) can begin. A starting potential screening set is selected by a search of the known

ligands against all available compounds (both virtual and existing - either in house or available

from vendors - example shown in Figure 6).

This screening set is further reduced by simultaneous parameter evaluation using integrated

computational tools. The project team decides where to cut off the screening collection, and

these compounds are assembled, synthesised or acquired, and are run in initial potency assays.

Figure 12. Project criteria and use example.

In this scenario, all evaluations can be performed by any and all members of the project team

through a web site with common default settings for project criterion. After the screening results

are returned and confirmed, the project team then must assess where the project is at that point

in time, and decide where to focus the available resources. In this example, three series of

compounds passed the requirements necessary for lead optimisation (Figure 13), however, the

project team has only enough synthetic resources to work on one series at at time, therefore, the

project team must decide which series has the most potential for success.

Figure 13. Hypothetical leads to choose between for prioritisation for optimisation.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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To evaluate the potential of each series, virtual libraries will be enumerated, and the resultant

products will be evaluated simultaneously (Figure 9). Then, to rate the potential of the libraries

in the context of the other libraries, the distributions the components are compared

simultaneously between the libraries representing the three scaffolds. Shown in Figure 14, this

analysis can be used as an evaluation of potential liabilities which are best compared by

analysing the fraction of each library that fails the project criteria for that component. 

In this analysis, series 1 has the fewest bad distribution of liabilities, and should be chosen by

the project team for further research, with series 2 representing a potential backup series.

Figure 14. Simultaneous library property distribution comparison.

As the project moves closer to lead selection fpr pre-clinical development, the data integration

components start to take priority over the in silico predictions. However, computational

approches still have tremendous value at this stage, allowing the project team to evaluate the

potential performance of candidate molecules in man. Figure 15 shows an analysis of the human

absorption potential for three compounds representative of candidate series, in which the

experimentally determined solubility and permeability values have been varied systematically.

As can be seen in the graphs, three classes of behaviors can be observed. In one example neither

increases in solubility nor permeability can increase the absorption potential, which remains

relatively low. In the second example, increases in solubility or permeabiltiy also have no effect

on the human absorption potential, which is high. In the final example, increases in solubility

and permeability show marked changes in the human absorption potential. The candidate

molecules from the second and third examples are therefore the compound series to bring

forward if all other factors besides absorption are equal. In addition, this analysis illustrates

which series deserve followup study for the development of second generation compounds.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf


191

Providing Cheminformatics Solutions
Figure 15. Use of sensitivity analysis for the evaluation of human absorption potential for lead selection.

SUMMARY/CONCLUSION

So what is different about this approach? The drug discovery process is a fairly evolved one.

Data has been shared and models developed for use in drug discovery process ever since

affordable computers showed up in the marketplace.

However, the primary storage locale for experimental data is still Microsoft Excel, and the

primary conduit of information is through individual interactions between project team

members. Unfortunately, humans do not work with complete fidelity in serving as data or

knowledge-sharing nodes. One could argue that modern drug discovery is using the ancient

means of folklore as the method of knowledge sharing - this clearly is not sufficient given the

ever exploding number of targets, hits, and interactions. This paper has described the initial

steps of building a system that uses integrated databases to store all the data determined for

discovery projects. It also indicates that this data is best used in synthesised from through the

appropriate application of computational model building  and their resultant use. Finally it

illustrates the potentional power of combining the data and computational models in a system

that allows the end user to simultaneously consider all available properties, and therefore make

more and presumable better decisions about prioritising resources in the support of drug

discovery and development.
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