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ABSTRACT
Inductive databases are a new generation of databases, that are capable
of dealing with data but also with patterns or regularities within the data.
A user can generate, manipulate and search for patterns of interest using
an inductive query language. Data mining then becomes an interactive
querying process.

The inductive database framework is especially interesting for bio- and
chemoinformatics, because of the large and complex databases that
exist in these domains, and the lack of methods to gain scientific
knowledge from them. In this article we present an example for
inductive databases: Molfea is the Molecular Feature Miner that mines
for linear fragments in the 2D-structure of chemical compounds. In the
methodological part we will explain the inner working of the Molfea
algorithm, using a simple example. In the second part we will present
applications to the NCI DTP AIDS Antiviral Screen database and
several benchmark Structure-Activity Relationship problems in
toxicology. 

INTRODUCTION 

The automation of experimental techniques in biology and chemistry has led to an enormous

growth of biochemical databases. But the generation of data is only the first step towards a better

understanding of the underlying biochemical mechanisms and processes. The second step –

where computer science plays a central role – is the analysis of the data in order to find patterns

and regularities of scientific interest. In a third step, these patterns have to be interpreted and

related to current knowledge, in order to obtain new hypothesis and scientific insights. The

whole process of identifying valid, novel, potentially useful and ultimately understandable

patterns and models is called Knowledge Discovery (1). 
http://www.beilstein-institut.de/bozen2002/proceedings/deRaedt/deRaedt.pdf
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Data Mining is a step in the Knowledge Discovery process, that consists of the application of

statistics, machine learning and database techniques to the data. During the last few years, it

became obvious, that a tight integration of advanced database technologies and data mining

techniques would be very desirable. One of the most interesting proposals in this respect are

Inductive Databases (2, 3, 4, 5). Inductive databases tightly integrate data and patterns, i.e.

generalizations or regularities within the data, in a database. They provide also a query language

and an inductive database management system that supports the querying of both patterns and

data. 

The query language allows the user to specify the patterns that are of interest (using a number

of constraints e.g. on frequency, generality, syntax, etc., cf. below), the inductive database

management system searches efficiently for the patterns that satisfy these constraints.

The inductive database framework is extremely attractive for bio- and cheminformatics because

it provides a tool to support scientists in each of the three steps sketched above. Our favourite

view of an inductive database user is a scientist who queries interactively an inductive database

(possibly with the help of a graphical interface), who inspects the resulting patterns, obtains new

ideas, and reformulates the original query until a new scientific insight is obtained. 

In this paper, we present a domain specific inductive database called MOLFEA (Molecular

Feature Miner). MOLFEA is an instance of the general Inductive Database Framework. Another

instance is e.g. PROFEA, the Protein Feature Miner, an inductive database for the analysis of

the secondary structure of proteins (6). In the next section we will explain the basic concepts of

the MOLFEA algorithm using examples and analogies, readers who are interested in a formal

presentation are referred to the original literature (7, 8). In the third section we will present some

applications of MOLFEA to biomedical and toxicological databases. Finally we will discuss

related work, limitations and future extensions in the last section. 

METHODS

MOLFEA mines databases with chemical structures for fragments, i.e. linear sequences of atoms

and bonds, that fulfil user defined criteria. Within MOLFEA, the user can specify the fragments

of interest using simple but powerful primitives. Primitives may require e.g. that fragments have

a minimum (resp. maximum) frequency on a set of compounds, or that they contain a given

subfragment. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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A query might request, for example, all fragments that are present in at least 90% of the active

molecules but in less than 5% of the inactives. MOLFEA efficiently computes the solutions to

these inductive queries using the level wise version space algorithm (8). 

MOLECULAR FRAGMENTS

Fragments are linear sequences of non-hydrogen atoms and bonds that are present in molecules.

N-C-C-O, for instance, is a fragment meaning: “a nitrogen connected with a single bond to a

carbon connected to a carbon connected to an oxygen”. A molecular fragment f matches an

example compound e if and only if f is a substructure of e. For instance, fragment N-C-C-C
matches the first example compound in the dataset A of Fig. 1.

In computer science terms, fragments are strings over an alphabet consisting of elements and

bond types. The language of molecular fragments Μ has some interesting properties, which can

be used to develop efficient algorithms: 

- Generality: One fragment g is more general than a fragment s (Notation: g ≤ s) if g is a sub-
structure of s (e.g. C-O is more general than N-C-C-O). This has the consequence that g
matches whenever s does. 

- Symmetry: Two syntactically different fragments are equivalent, when they are a reversal of
one another (e.g. C-C-O and O-C-C denote the same substructure).

- Summary: g ≤  s if and only if g is a subsequence of s or g is a subsequence of the reversal
of s (e.g. C-O ≤ C-C-O and O-C ≤  C-C-O).

CONSTRAINTS ON FRAGMENTS 

The fragments of interest can be specified by declaring constraints. Using the example datasets

from Figure 1, it is e.g. possible to ask for fragments, that are present in at least two molecules

from A and in not more than one compound from B. In more formal terms, one would formulate

a query:

freq (f, A) ≥ 2 ∧  freq (f, B) ≤ 1

The whole query consists of a conjunction of primitive constraints c1 ∧ ... ∧ cn. Presently the

following primitive constraints ci are implemented in MOLFEA: 

- f ≥ p, p ≥ f, ¬ (f ≥ p) and ¬ (p ≥ f): where ƒ is the unknown target fragment and p is a predefined
fragment; this type of primitive constraint denotes that f should (not) be more specific (gen-
eral) than the specified fragment p; e.g. the constraint f ≥ C-O specifies that f should be more
specific than C-O, i.e. that f should contain C-O as a subsequence;

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Figure 1. Example datasets A and B for the query freq(f, A) ≥ 2 ∧  freq(f, B) ≤ 1.

- freq(f, D) denotes the frequency of a fragment f on a set of molecules D; the frequency of a
fragment f in a database D is defined as the number of molecules in D that f matches;

- freq(f, A) ≥ t, freq(f, B) ≤ t where t is a positive number and A and B are sets of molecules;
this constraint denotes that the frequency of ƒ on the dataset A or B should be larger than (resp.
smaller than) or equal to t; e.g. the constraint freq(f, A) ≥ 2 denotes that the target fragments
f should match at least 2 molecules in the A set of active molecules. The first type of primitive
is called a maximum frequency constraint, the second one a minimum frequency constraint.

These primitive constraints can be combined conjunctively in order to specify the fragments of

interest. Note that the conjunction may specify constraints with respect to any number of

datasets, e.g. imposing a minimum frequency on a set of active molecules, and a maximum one

on a set of inactive ones. E.g. the following constraint: 

(C-O ≤ f) ∧ ¬ (f ≤ N-C-C-C-O) ∧  freq (f, X) ≥ 200 ∧  freq(f, Y) ≤ 10

queries for all fragments that include the sequence C-O, are not a subsequence of N-C-C-C-
O, match more than 200 molecules in X and less than 10 molecules in Y . 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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SOLVING CONSTRAINTS: THE MOLECULAR FEATURE MINER MOLFEA

In this section we will demonstrate, how MOLFEA solves queries for fragments efficiently. A

naive approach would possibly generate all fragments, that are present in the dataset and check,

which of the fragments fulfil the given criteria. This method is, of course, computationally very

expensive and infeasible for large datasets. But there are more efficient ways to accomplish the

same goal. 

We will start with a simple minimum frequency constraint freq(f, D) ≥ t. This constraint has the

important property of anti monotonicity. To illustrate anti-monotonicity let us assume, we have

two fragments g and s and we know that:

- g is more general than s (i.e. g ≤ s; e.g. g: C-O, s: C-O-S), and that 

- s is a solution to our constraint (i.e. s matches at least t times in D)

Then the anti-monotonicity allows us to conclude, that g is also a solution. According the

definition of generality, general fragments match whenever the specific ones do. The general

fragment g must be therefore at least as frequent as the specific fragment s. Anti-monotonicity

is also the reason, why we do not have to determine all solutions for a query. For anti-monotonic

constraints, it is sufficient to know the set of the most specific fragments S, all fragments that

are more general than an element in S, will also fulfil the constraint. 

Maximum frequency constraints freq(f, D) ≤ t, in contrast are monotonic. If g is more general

than s and g is a solution, we know, that s must be a solution, because whenever g does not

match, s will also not match. In this case we have to determine the most general set of fragments

G, to determine all solutions.

The concept of determining borders, that completely characterize the set of solutions, is a well

known idea in Machine Learning and Data Mining (9, 10, 11). It is especially useful, when we

want to solve conjunctive queries, consisting of several primitive constraints ci. In this case we

can take advantage of their independency. 

sol(c1 ∧ ... ∧ cn) = sol(c1) ^...^ sol(cn)

So, we can find the overall solutions by taking the intersection of the primitive ones. In practice,

we determine S1 and G1 for the first primitive constraint, and update Si and Gi sequentially for

each constraint, depending on the monotonicity of the primitive. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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The basic anti-monotonic constraints in the MOLFEA framework are presently: (f ≤ p), freq(f, D)

≥ m, the basic monotonic ones are (p ≤ f),  freq(f, D) ≤ m. Furthermore the negation of a

monotonic constraint is anti-monotonic and vice versa. 

So far we have not yet explained, how to find S or G for the primitive constraints. We will use

the datasets A and B from Figure 1 as an example. If we are interested in finding all fragments,

that occur at least twice in compounds A but not more than once in B, we can formulate the query

 freq(f, A) ≥ 2 ∧  freq(f, B) ≤ 1

We will use the MOLFEA output in Figures 2 and 3 to illustrate the following procedure. Let’s

start with the first primitive constraint freq(f, A) ≥ 2 . The MOLFEA algorithm uses the set of the

simplest possible fragments, the elements, as a starting point. These are the candidates for the

first level. The next step is to eliminate those, that are too infrequent (i.e. freq(f, A) < 2). The

remaining ones (C,N,O and aromatic carbon) fulfil our constraint, but they are not the most

specific solution (i.e. there are longer fragments, containing the same elements, that are also

frequent). So we have to generate more specific (i.e. longer) fragments for the next level. 

Considering the generality relationship, we can take an important shortcut: It is not necessary

to elongate the frequent fragments with all possible elements, but we have to consider only the

frequent fragments {C,N,O,C}. Chemistry is not considered in this step, because “wrong”

fragments are removed in the next elimination step. Again we check for frequencies, eliminate

infrequent fragments and generate candidates for the next level by combining frequent

fragments of the present level, under consideration of the symmetry relationship.

This process is repeated until no more specific fragments can be generated. The union of the

most specific fragments is the new S1 set {C-C-C-O, N-C-C-O, C-C-C-C-C-C-C-C-
C, N-C-C-C-C-C-C-C-C}, the smallest (i.e. most general) fragments, that fulfil the

constraint are the new G1 set {C, N, O, C}. 

The solution for the first primitive constraint G1 and S1 sets are the input for the algorithm that

solves the second constraint freq(f, B) ≤ 1. In this case, we have to remove those fragments that

are too frequent in the dataset B. In other words, we have to update G to remove fragments that

match more than one compound in the dataset B. Figure 3 shows the MOLFEA output for this toy

example. We end up with a final G set {C-C, C-O, C-C-C-C} and S set {C-C-C-O, N-
C-C-O, C-C-C-C-C-C-C-C-C, N-C-C-C-C-C-C-C-C}.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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LEVEL 1:
Candidates: [Li], [Be], B, C, N, O, F, [Na], [Mg], [Al], [Si], P, S, Cl, [K],

[Ca], [Sc], [Ti], [V], [Cr], [Mn], [Fe], [Co], [Ni], [Cu], [Zn],
[Ga], [Ge], [As], [Se], Br, [Rb], [Sr], [Y], [Zr], [Nb], [Mo],
[Tc], [Ru], [Rh], [Pd], [Ag], [Cd], [In], [Sn], [Sb], [Te], I.
[Ca], [Ba], [Lu], [Hf], [Ta], [W], [Re], [Os], [Ir], [Pt], [Au],
[Hg], [Tl], [Pb], [Bi], [Po], [At], [Rn], [Fr], [Ra], [Lr], c, n,
s, o, p  (78)

Frequent: C, N, O, c  (4)
==
LEVEL 2:
Candidates: C-C, C-N, C-O, C-c, C=C, C=N, C=O, C=c, C#C, C#N, C#O, C#c, N-N,

N-O, N-c, N=N, N=O, N=c, N#N, N#O, N#c, O-O, O-c, O=O, O=c, O#O,
O#c, c-c, c=c, c#c  (30)

Frequent:  C-C, C-N, C-O, C-c, c-c  (5)
==
LEVEL 3:
Candidates: C-C-C, C-C-N, C-C-O, C-C-c, N-C-N, N-C-O, N-C-c, C-N-C, O-C-O,

O-C-c, C-O-C, C-c-c, c-C-c, C-c-C, c-c-c  (15)
Frequent: C-C-C, C-C-N, C-C-O, C-C-c, C-c-c, c-c-c  (6)
==
LEVEL 4:
Candidates: C-C-C-C, C-C-C-N, C-C-C-O, C-C-C-c, N-C-C-N, N-C-C-O, N-C-C-c,

O-C-C-O, O-C-C-c, C-C-c-c, c-C-C-c, C-c-c-c, C-c-c-C, c-c-c-c  (14)
Frequent: C-C-C-O, C-C-C-c, N-C-C-O, N-C-C-c, C-C-c-c, C-c-c-c, c-c-c-c  (7)
==
LEVEL 5:
Candidates: O-C-C-C-O, O-C-C-C-c, C-C-C-c-c, c-C-C-C-c, N-C-C-c-c, C-C-c-c-c,

C-c-c-c-c, C-c-c-c-C, c-c-c-c-c  (9)
Frequent: C-C-C-c-c, N-C-C-c-c, C-C-c-c-c, C-c-c-c-c, c-c-c-c-c  (5)
==
LEVEL 6:
Candidates: C-C-C-c-c-c, N-C-C-c-c-c, C-C-c-c-c-c, C-c-c-c-c-c, C-c-c-c-c-C,

c-c-c-c-c-c  (6)
Frequent: C-C-C-c-c-c, N-C-C-c-c-c, C-C-c-c-c-c, C-c-c-c-c-c, c-c-c-c-c-c  (5)
==
LEVEL 7:
Candidates: C-C-C-c-c-c-c, N-C-C-c-c-c-c, C-C-c-c-c-c-c, C-c-c-c-c-c-c,

C-c-c-c-c-c-C, c-c-c-c-c-c-c  (6)
Frequent: C-C-C-c-c-c-c, N-C-C-c-c-c-c, C-C-c-c-c-c-c, C-c-c-c-c-c-c  (4)
==
LEVEL 8:
Candidates: C-C-C-c-c-c-c-c, N-C-C-c-c-c-c-c, C-C-c-c-c-c-c-c-c.

C-c-c-c-c-c-c-C  (4)
Frequent: C-C-C-c-c-c-c-c, N-C-C-c-c-c-c-c, C-C-c-c-c-c-c-c  (3)
==
LEVEL 9:
Candidates: C-C-C-c-c-c-c-c-c, N-C-C-c-c-c-c-c-c  (2)
Frequent: C-C-C-c-c-c-c-c-c, N-C-C-c-c-c-c-c-c  (2)
==
LEVEL 10:
Candidates: (0)
Frequency (0)

G: C, N, O, c  (4)
S:  C-C-C-O, N-C-C-O, C-C-C-c-c-c-c-c-c-c, N-C-C-c-c-c-c-c-c-c  (4)

Figure 2. MOLFEA output for the first constraint of the query freq(f, A) ≥ 2 ∧ freq(f, B) ≤ 1.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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The complete solutions for the example query is defined by these boarders. This means, that all

subfragments of fragments in S that contain one of the fragments in G, are part of the solution

sol = {C-C, C-C-C, C-C-C-O, C-O, C-C-O, …}. Thus S and G together compactly

represent the set of all solutions. 

RESULTS AND DISCUSSION 

In this section, we briefly summarize our experiments with the DTP AIDS Antiviral Screen

(http://dtp.nci.nih.gov) dataset and with toxicological Structure-Activity Relationships (SARs)

using MOLFEA-generated features.
LEVEL 1:
Candidates: C, N, O, c (4)
Frequent: C, N, O, c (4)
Infrequent: (0)
==
LEVEL 2:
Candidates: C-C, C-N, C-O, C-c, C=C, C=N, C=O, C=c, C#C, C#N, C#O, C#c, N-N,

N-O, N-c, N=N, N=O, N=c, N#N, N#O, N#c, O-O, O-c, O=O, O=c, O#O,
O#c, c-c, c=c, c#c (30)

Frequent: C-N, C-c, c-c  (3)
Infrequent: C-C, C-O (2)
==
LEVEL 3:
Candidates: N-C-N, N-C-c, C-N-C, C-c-c, c-C-c, C-c-C, c-c-c  (7)
Frequent: C-c-c, c-c-c  (2)
Infrequent: (0)
==
LEVEL 4:
Candidates: C-c-c-c, C-c-c-C, c-c-c-c  (3)
Frequent: c-c-c-c  (1)
Infrequent: C-c-c-c (1)
==
LEVEL 5:
Candidates: c-c-c-c-c  (1)
Frequent: c-c-c-c-c  (1)
Infrequent: ( 0 )
==
LEVEL 6:
Candidates: c-c-c-c-c-c  (1)
Frequent: c-c-c-c-c-c  (1)
Infrequent: (0)
==
LEVEL 7:
Candidates: c-c-c-c-c-c-c  (1)
Frequent: (0)
Infrequent: (0)

G:  C-C, C-O, C-c-c-c  (3)
S:  C-C-C-O, N-C-C-O, C-C-C-c-c-c-c-c-c-c, N-C-C-c-c-c-c-c-c  (4)

Figure 3. MOLFEA output for the second constraint of the query freq(f, A) ≥ 2 ∧ freq(f, B) ≤ 1. In dealing with
this constraint MOLFEA starts from the results in Figure 2.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
http://dtp.nci.nih.gov
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NCI DTP AIDS ANTIVIRAL SCREEN DATABASE 

The NCI DTP AIDS Antiviral Screen program has checked more than 40,000 compounds for

evidence of anti-HIV activity. The screen utilizes a soluble formazan assay to measure

protection of human CEM cells from HIV-1 infection (12). Compounds were classified as either

confirmed active (CA, providing protection), confirmed moderately active (CM, not

reproducibly providing protection), or confirmed inactive (CI). In our experiments, class CA

consisted of 417 compounds, class CM of 1069 compounds, and class CI of 40,282 compounds.

The available database (October 1999 Release) contains the screening results for 43,382

compounds. 

The aim of this experiment was to find fragments that are, statistically significant, over

represented in the active class (CA) and under-represented in the inactive (CI). 

The following query was posed to the system: (freq(f, CA) ≥ 13) ∧ (freq(f, CI) ≤ 516). The

thresholds in the queries were determined as follows: The minimum frequency threshold in

these queries corresponds to 3 % of the active molecules. In order to determine the maximum

allowable frequency in the non-active molecules, we used the Χ2-Test applied to a 2 × 2

contingency table with the class as one variable and the occurrence of the fragment as the other

one. In this way, we obtained a maximum frequency of 516 in inactive compounds for the first

task, and a maximum frequency of 8 in the moderately actives for the second. Given these

frequencies, the occurrence of a fragment in the active class is not due to chance at a significance

level of 0.999. 

For this task, the total computation time was 19,212.31 CPU seconds (measured in CPU

seconds on a Linux PC with a Pentium III 600 MHz processor). The first part (the minimum

frequency query) took only 1,544.09 CPU seconds, and the second part (the maximum

frequency query) took 17,668.22 CPU seconds. The boundary set G contained 222 elements,

and S contained 314 elements. This contrasts with a total of 1,623 patterns in the solution space

bounded by G and S, which demonstrates the utility of G and S sets (version spaces) in this kind

of application. 

In the minimum frequency part of the query, the longest solution fragment had a length of 24

atoms, the longest fragment found in the maximum frequency part had a length of 22 atoms. So,

it has been shown that MOLFEA can search for very long patterns in a structural database of over

40,000 compounds. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Table 1.

From the boundary sets G and S, we picked fragments based on their class distribution

(statistical significance and accuracy). Table 1 summarizes the most significant samples. The

majority of these fragments, e.g.

N=N=N-C-C-C-n:c:c:c=O and N=N=N-C-C-C-n:c:n:c=O
indicate compounds that are derivatives of Azidothymidine (AZT, Retrovir, Zidovudine, 3’-

Azido-3’-deoxythymidine, CAS 30516-87-1, see Figure 4), a potent inhibitor of HIV-1

replication, which is widely used in the treatment of HIV infection. Other fragments indicate

another class of reverse transcriptase inhibitors, mainly thiocarboxanilide derivatives, which

are, according to our knowledge, drugs that are still in an experimental phase. The automated

rediscovery of the most important classes of anti-HIV drugs indicates the utility of the presented

approach

Figure 4. Chemical Structure of Azidothymidine (AZT)

G S

O-C-n:c:n:c=O N=N=N-C-C-C-n:c:c:c:n:c=O
O-C-C-C-C-C-n:c=O N=N=N-C-C-C-n:c=O
C-C-C-O-C-n:c:n:c:c:c c:c:c:n:c:n-C-C-C-N=N=N
C-c:c:n:c:n:c=O C-c:c:n:c:n-C-C-C-N=N=N
N-c:c:c-S C-c:c:n-C-C-C-N=N=N
N-C-C-C-O-C-C-O C-C-O-C-C-N=N=N
C-C-C-O-C-n:c=O N=N=N-C-C-O-C-n:c:n:c=O
O-C-n:c:c:c:n:c=O N=N=N-C-C-O-C-n:c:c:c=O
N=N=N N=N=N-C-C-C-n:c:n:c=O
N-c:c:c:c:c-s N=N=N-C-C-C-n:c:c:c=O

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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USE OF MOLFEA FEATURES FOR SAR

In a series of other experiments (11), we have employed MOLFEA-generated features in

structure-activity relationship prediction. SAR prediction in this context works in three steps. In

a first step, MOLFEA queries are used to construct a set of fragments. These queries can be class-

blind (e.g. when we require a minimum frequency on the whole dataset), or class-sensitive,

when we consider separate criteria for active and inactive molecules. 

The resulting fragments are used as binary features or fingerprints (a fragment either occurs in

a molecule or it does not) to describe the molecules. The resulting data sets can be fed into a

traditional data mining system [such as e.g. WEKA (13)], to obtain a predictive model for the

biological effect under investigation. This method can be combined with virtually any data

mining technique; we have induced decision trees, classification rules, regression models and

Support Vector Machines (SVMs). 

In the experiments sketched in (11), we have investigated the effects of class-sensitive vs. class-

blind fragment construction on benchmark datasets for biodegradability, mutagenicity and

carcinogenicity prediction (14, 15, 16). Class-sensitive feature construction is performed using

combined minimum and maximum frequency queries as described above. Class-blind feature

construction is performed by a simple minimum frequency query. 

The predictive accuracies obtained with MOLFEA generated features turned out to be at least

competitive with the best published results in the literature so far. Support Vector Machines

were able to take advantage of a large number of features (fragments) constructed in a class-

blind manner, whereas classical inductive Machine Learning approaches (decision trees and

rules) seemed to benefit from class-sensitive feature construction. Summing up, these

experiments clearly demonstrated the utility of MOLFEA-generated features in the induction of

SARs.

RELATED WORK 

Molecular fragments are, among other purposes, useful and important for the the induction of

Structure-Activity Relationships. The use of automatically derived structural fragments in

SARs originates from the CASE/MultiCASE systems developed by (17).With more than 150

published references, the CASE/MultiCASE systems are the most extensively used SAR and

predictive toxicology systems. Previous approaches in these areas are based on the

“decomposition” of individual compounds: these methods generate all fragments occurring in
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a given single compound. In this regard, our contribution is a language that enables the

formulation of complex queries regarding fragments – users can specify precisely which

fragments they are interested in. We also implemented a solver to answer queries in this

language. Thus, from the algorithmic point of view, it is no longer necessary to process the

results of queries post-hoc. 

Molecular fragment finding has also been studied within the context of inductive logic

programming and knowledge discovery in databases. For instance, WARMR (18) and the

approach by Inokuchi et al. (19) have been used in this context. WARMR is a system

discovering requently succeeding Datalog queries, and thus is not restricted to fragments. The

approach by Inokuchi et al. deals with arbitrary frequent subgraphs, and thus is not restricted to

linear ragments. Both approaches differ in that their pattern domain is more expressive, but

finding requent patterns is likely to be more expensive and complex than for linear fragments. 

Finally we want to stress again, thatMOLFEA is only one instance of the general Inductive

Database Framework. It is quite easy to adapt Inductive Databases for a new application

domain. We have presently implemented PROFEA(6), that analyses the secondary structure of

proteins and we are working on a further instance for gene expression data.

Table 2.

FURTHER DEVELOPMENTS

MOLFEA is presently capable to find linear sequences of atoms in databases with chemical

structures. It is presently impossible, to identify stereochemical effects, or arrangements in

three-dimensional space. We are therefore working on several extensions to the MOLFEA

framework. 

Domain
Learning

Algorithm
Class

Blind Sensitive

Carcinogenicity C4.5 64.3 65.9
PART 67.4 65.9
Log 65.6 65.3

1. SVM 65.3 65.0

Mutagenicity C4.5 90.4 87.2
PART 91.5 93.1
Log 94.7 95.7

1. SVM 94.7 92.0

Biodegradation C4.5 77.7 76.5
PART 77.1 79.9
Log 80.2 75.9

1. SVM 81.1 75.9
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Abstractions The concept of fragments is not limited to sequences of elements. It is fairly easy

to define abstract atom types, that can be more general (e.g. H-bond donor/acceptor) or more

specific (e.g. oxygen in a carbonyl group) than the elements. Another addition will be the

introduction of wildcards for atoms. With these extensions it will be possible to find fragments

like “two H-bond donors separated by 5 heavy atoms”. 

Branched Fragments The extension towards branched fragments is conceptually easy, from a

computer science viewpoint, but it might result in increased search times. The use of branched

fragments is particularly attractive from a chemist’s viewpoint, because with their help it will

be possible to identify stereochemical effects. 

3D Fragments Another extension of MOLFEA is the consideration of three-dimensional

arrangement of atoms in fragment finding. Work on this topic is almost completed and will be

the subject of a separate publication.

CONCLUSIONS 

We have presented a novel database and data mining approach based on the concept of inductive

databases. Even though our framework was presented for string-like patterns, it should be clear

that one could easily adapt it towards richer data structures such as e.g. graphs, or towards other

application domains in bio- and chemo-informatics. We have also argued that the inductive

database framework is useful for knowledge discovery in databases in general and in bio- and

chemo-informatics in particular. The authors hope that the work on MOLFEA and PROFEA will

stimulate other researchers to add inductive query languages to the many existing databases in

bio- and chemo-informatics. This in turn should allow scientists to understand their data more

easily and to discover new knowledge more effectively. 
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