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ABSTRACT
The genomic data available to computational biologists represents the
product of the complex processes of evolution. In particular, the forces
of mutation, duplication, and selection have acted to sculpt modern
protein sequence and structure in the context of changing functional
requirements. Just as crystallographers are able to determine protein
structures through an analysis of X-ray diffraction patterns, we wish to
read the evolutionary history of proteins in order to understand their
structures, functions, and interactions. To this end, we have been
developing models of natural site substitutions that are informed by the
protein structure and function and the resulting variations in selective
pressures, even when the structure and function of the protein are
unknown. By phrasing the substitution process in terms of the
underlying properties of the constituent amino acids we can build
models that are both much more accurate and more interpretable.  The
model is applied to a large set of globular proteins as well as a set of G-
protein coupled receptors, identifying general structural and functional
features of these biomolecules.

INTRODUCTION

The various genome projects have produced a plethora of gene sequences encoding proteins for

which we have little information. While there are extensive experimental efforts to characterize

the structure, function, and other characteristics of these proteins, there still remains a

substantial backlog. In addition, many proteins of major interest are resistant to many of these

experimental techniques. This has helped to spur the development of techniques to predict the

characteristics of these proteins based only on sequence information. Often we have multiple

sequences of related proteins from different organisms. 
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It has been long recognized that these multiple sequences provide us with a valuable

opportunity, that a set of related sequences convey more information than just a single example.

The challenge has been to extract meaningful information from these multiple sets. 

Given an alignment, it is possible to identify the conserved residues, to characterize the amount

of sequence variation at each location using such concepts as “sequence entropy”, and to look

for correlated changes between different locations in the protein. These approaches generally

treat the observed protein sequences as a random sampling from the space of all possible

sequences. This, of course, is false. One obvious problem is the uneven distribution of proteins

among different organisms, depending upon the relative importance of the species to individual

scientific investigators. More insidiously, homologous proteins are related by a phylogenetic

structure that can induce confounding tendencies in the data. For example, Figure 1 shows a

phylogenetic pattern where two substitutions occurred in different branches of the tree. In this

simple example, there is a complete correlation between the third and seventh positions, even

though this does not represent the effect of compensatory substitutions. One approach to

handling these complications is to model the evolutionary process explicitly. This is the

approach that we take here.

Figure 1. Example of an evolutionary trajectory producing an artificial correlation between sequence locations.

The standard method to model the site substitutions that occur during evolution is through a

“substitution matrix”, a 20 x 20 matrix representing the probability that one amino acid would

be replaced by another in a given length of evolutionary time. Standard approaches generally

use a single substitution matrix for all locations in the protein, implicitly assuming that all
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locations in the protein can be represented by the same model, that is, are under similar selective

pressure. This is, of course, unrealistic. It has been shown that substitution rates vary with

surface accessibility, secondary structure, and functional significance. One method to approach

this problem is to subdivide the various locations in proteins according to their local structure,

constructing and using structure-dependent substitution matrices (1, 2, 3, 4). This approach still

assumes that all locations with the same local structure are under similar selective pressure,

ignoring differences based on the inevitable “coarse graining” of the structural classifications

as well as selective pressure due to function.

Recently we developed an approach, which we call a Hidden States Model (HSM), for dealing

with these differences in selective pressure (5, 6, 7, 8). In this model, each location is assumed

to belong to one of a set of possible “site classes”, each corresponding to a single substitution

matrix. The various substitution matrices are unknown, as is the site class to which each location

belongs. Instead, each location in the protein has the same set of a priori probabilities for

belonging to each site class. The a priori probabilities as well as the set of substitution matrices

are determined based on a set of related proteins through a maximum likelihood formulation.

The result of this procedure is a set of site classes with corresponding substitution matrices, as

well as the ability to calculate the a posteriori probability that any given location is a member

of any particular site class. This then provides us with information regarding 1) which locations

are under related selective pressure, 2) what is the nature of this selective pressure, and 3) when

is the selective pressure different for different subsets of proteins.

The central challenge in this approach is the total number of parameters that must be adjusted

in the optimization process. We deal with this situation by representing the entire substitution

matrix with a biologically-inspired reduced set of parameters. In general, we consider the local

propensity, or fitness, of each amino acid for any location described by a given site class, and

then represent the probability of substitution of one amino acid for another in terms of the

differences in these local fitnesses. The functional forms of this representation can be quite

general, with additional parameters that can be optimized based on the observed data.

In this paper, we first investigate the nature of the substitution process at different types of

locations in a set of globular proteins. We then demonstrate the application of these models for

understanding the selective pressure acting on one particular set of proteins, G-protein coupled

receptors (GPCRs).
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METHODS

We first recap our model for site substitutions, as described elsewhere (5, 7, 8). We first

consider that there are a number of different site classes, which characterize locations in the

protein under similar selective pressure. As described above, the model does not assign

locations to site classes; instead we define an unknown prior probability P(k), that any given

location belongs to site class k. As all locations must belong to a site class, ΣkP(k) = 1. 

We need to reduce the number of adjustable parameters that characterize each particular

substitution matrix. In order to do this, we first consider that there is a relative fitness Fk(Ai) of

amino acid Ai for any location described by a particular site class k, related to the logarithm of

the probability of finding such an amino acid at this location described by this site class. The

instantaneous rate of substitution Qk
ij from amino acid Ai to Aj at site class k is then reflected by

the relative changes in fitness. In this paper, we use a few different models. In our analysis of a

general set of globular proteins, we use so-called Metropolis kinetics, where advantageous

substitutions (∆F ≡ Fk(Aj) - Fk(Ai) ≥ 0) are accepted at a maximum site-class dependent rate νk,

while disadvantageous substitutions (∆F < 0) are accepted with a probability that decreases

exponentially with the resulting change in fitness.

The Metropolis scheme is the only kinetics scheme ensuring detailed balance, and where a

favorable substitution is always accepted at the maximum rate.

In addition, as we were most interested in modeling the general nature of the selective pressure

at different locations, we further parameterized the fitness of each amino acid at a given site

class as a function of the physical-chemical properties of the amino acids:

where ql(Ai) represents the value of physical-chemical property l of amino acid Ai, and  and

 represent site-class specific adjustable parameters. In this study, we used the four
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orthogonal property indices developed by Scheraga and coworkers (9). The first property is

positively correlated with turn propensity and negatively correlated with α-helix propensity; the

second is positively correlated with size and bulk, the third is positively correlated with β-sheet

propensity, and the last is negatively correlated with hydrophobicity, meaning hydrophilic

residues have high positive values in this index.

For the analysis of the G-Protein Coupled Receptors, we used a more general function of the

form:

where νk
  again characterizes the overall substitution rate for site class k, and λk and βk are

parameters of the function. Note that this model is equivalent to the Metropolis scheme under

the conditions λk = 0 and βk » 1. In contrast to the case for the general set of globular proteins,

we left the values of Fk(Aj) as independently adjustable parameters.

To determine the substitution matrix M, representing the possible substitutions from amino acid

Ai to Aj for any particular amount of evolutionary time t, the Q matrix is exponentiated:

The model involves a large number of adjustable parameters. We will notate the parameters for

site class k, including the prior probability P(k), as {θ}k. For the study of the large set of globular

proteins, this includes P(k), νk, and αl
k and φ l

k for the four different physical-chemistry

parameters (the values of ql(Ai) for the twenty amino acids are measured, not adjustable,

parameters). For the GPCR study, these parameters include P(k), νk, λk and βk, and the twenty

fitness parameters of the amino acids Fk(Ai) (as the fitness values are relative, one of these

parameters is set to zero). We will notate the entire set of all parameters, including the

parameters for all of the site classes, as Θ. 

These parameters are adjusted in order to maximize the log likelihood, that is, the log of the

conditional probability that the observed data would result if the model were correct. At each

location l, we first calculate the probability P(Dl| θk, T) of the observed amino acids at that
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location, Dl, resulting from the evolutionary dynamics if the location was assigned to site class

k with model parameters θk. given the evolutionary tree topology and branch lengths T. Since

each location can be represented by any of the site classes and each site class has distinct

parameters θk we have to sum over all possible site classes to calculate the total likelihood for

that location, Ll:

The log-likelihood for the entire set of proteins is calculated as the sum of the log of this

likelihood at each location in the alignment. 

While we do not know to which site class a location belongs a priori, following optimization of

the model we can calculate a posteriori probabilities. The conditional probability that a location

l belongs to site class k is given by:

DATASETS

A general protein data set was constructed by selecting 42 proteins of length greater than 80

residues from the list constructed by Hobohm and Sander (10), all with 6 to 11 homologs of 30%

or greater sequence identity listed in the HSSP database (11). The average number of homologs

for each protein was 10.5. A multiple alignment and phylogenetic tree was created for each set

using the program ClustalV (12). The sequence, structure, and surface accessibilities were

found by use of the DSSP program on the corresponding PDB files (13, 14). Residues were

considered exposed if greater than 18% of their surface area was exposed to solvent.

Models with two site classes were optimized where Fk(Ai) was a function of all four of

Scheraga's orthogonal indices. Separate analyses were performed for buried and exposed

residues. In each case, we calculated how much each physical chemical parameter contributed

to the variance of the fitness values of the different amino acids for each of the site classes. 

For the GPCR project, we selected a group of 185 amine-binding proteins, obtaining the

multiple alignment from GPCRdb (15). We used PHYLIP (16), which uses a parsimony

approach to calculate the best tree from a given set of data. Resulting trees were optimized for

(5)
Ll = Σ P (Dl | θk , T) P(k)

k

(6)

P (k | Dl) = 
P (Dl | θk ) P(k)
Σ P (Dl | θk ) P(k)
k
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their branch lengths using PAML (17). A model consisting of 5 site classes was optimized. We

then calculated the posterior probabilities of the site classes for each location In order to

interpret the selective pressure described by each site class, we calculated the correlation

coefficient between the fitness values and physicochemical properties of amino acids. These

properties were derived from the AAindex database (18), which contains 434 different amino

acid indices. We avoided indices related to spectroscopic methods and selected 145

physicochemical indices (see supplement for AAindex database codes of the used indices).

Solvent accessibility calculations for rhodopsin were done using the publicly available software

GETAREA 1.1 (19). 

RESULTS

General properties for globular proteins

Representations for the selective constraints on exposed locations is shown in Figure 2. The

optimization resulted in two distinct site classes, one site class representing the majority of sites

(represented by the relative size of the pie charts for the two site classes), with a faster rate of

variation (larger νk), with the fitness of the amino acids primarily determined, unsurprisingly,

by the hydrophilicity. In addition, there was a preference for small residues as well as a slight

preference for residues with high turn propensity. The less common site class, conversely, had

a slower rate of variation (smaller νk), and had a strong preference for hydrophobic residues. 

Figure 2. Pie charts representing the various contributions to the selective pressures acting on surface locations
belonging to the two site classes. The relative sizes of the charts represents the percentage of the surface locations
assigned to these classes.  The color scheme represents the various Scheraga factors, including hydrophilicity (red),
α-helix or turn propensity (blue), bulk (green), and ß-sheet propensity (magenta). Solid colors represent a positive
correlation with the Scheraga factor, while a striped pattern represents a negative correlation.
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Helical propensity was also important, with smaller preferences for bulkier residues and

residues with a larger sheet propensity.

The situation for buried residues is portrayed in Figure 3. The faster-varying locations actually

occupied a minority of the buried locations, and predictably preferred hydrophobic residues,

although this preference was less strong than the tendency for faster-varying exposed locations

for hydrophilic residues. Equally strong was a tendency for residues with propensity for β

sheets, as well as a moderate preference for residues with α-helical preferences, as well as large

residues. The larger group of locations were in a slower-varying site class with a strong

tendency towards small residues, and smaller preferences for hydrophilicity, turn propensity,

and β-sheet propensity. 

Figure 3. Pie charts representing the various contributions to the selective pressures acting on buried locations
belonging to the two site classes. The relative sizes of the charts represents the percentage of the surface locations
assigned to these classes. The color scheme is as for Figure 2.

G-Protein Coupled Receptors

The various parameters for the five site-class model obtained for the amine-binding GPCRs are

listed in Table 1.

By mapping the locations in the amine-binding proteins to the known structure of Bovine

bacteriorhodopsin, we can identify which locations are assigned to different site classes.

Locations which are likely to reside in the membrane are largely assigned to site classes 1, 2,

and 3, while loop locations are almost entirely assigned to classes 4 and 5. In addition,

transmembrane locations in site classes 3 and 4 are generally in areas exposed to the membrane,

while locations in site classes 1 and 2 generally face into the interior of the protein.
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Table 1. Overall substitution rates and properties of preferred amino acids for the five site-class model
optimized on the set of amine-binding GPCRs

DISCUSSION

Both the buried and exposed locations can be divided into two different site classes, a faster-

varying set of locations and a slower-varying set. It is not surprising that the faster varying

locations on the exterior prefer hydrophilic residues, while the faster-varying locations on the

interior prefer hydrophobic. It is surprising, however, that for the slower-varying sites in both

contexts these preferences are reversed. It is likely that the faster-varying sites are under less

purifying selective pressure than the sites that vary more slowly. While most locations in the

inside would be under some selective pressure to remain hydrophobic, the other, more

specialized forms of selective pressure acting on some locations may favor conservation of such

things as particular hydrogen bond or ionic bond formations. In these locations, this specialized

selective pressure may well favor hydrophilic residues in a way that “trumps” the more general

forms of selective pressure felt by more average locations in the protein. These locations would

have slower substitution rates as well as more complex forms of the selective pressure.

Similarly, these locations may be involved in specific packing or aromatic stacking interactions,

so the preference for larger residues might be explainable. Conversely, the locations on the

protein exterior that change slowly might be under more specific forms of selective pressure that

prefer hydrophobic residues. In both instances, the needs of stabilizing a specific conformation

may result in a tendency for specific locations to have selective pressure opposite in form to that

of other, seemingly similar locations. One interesting point to note is that, for buried locations,

the majority of sites are slower varying. Another observation is that the dominant hydrophobic

selective pressure is on faster-varying external locations to remain hydrophilic. This provides

further evidence for the reverse hydrophobic effect, that is, the need to avoid stabilizing

alternative conformations where these particular locations are buried (20). 

The analysis of the GPCRs demonstrate that we can obtain specific structural information from

sets of aligned sequences, even identifying trans-membrane residues facing into the protein

site class (k) Rate Preferences

1 0.01 alpha-helical propensity
2 0.12 Hydrophobic
3 0.41 Hydrophobic, membrane
4 0.97 Flexible, buried
5 2.64 Polarizable
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interior or out into the lipid membrane. All this information is gathered as a result of the

optimization procedure, with no a priori knowledge about structure or function. As such, it is a

powerful way of generating important information about the new proteins whose sequences are

becoming available.
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