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ABSTRACT
In recent years the focus of experimental biology has shifted from
reductionist towards more holistic approaches. This shift has been
driven by the development of genetic tools that have allowed the
creation of an unprecedented base of genetic diversity and by the
development of technologies allowing the rapid determination of the
genetic, transcript, protein and metabolite complements of biological
systems. Here we will describe experiences with broad-range
metabolite analysis of potato and tomato development over the last few
years: we will furthermore describe what information can be garnered
from these experiments as well as describing recent attempts to analyse
systems at the level of more than one molecular entity. Finally, the need
for interdisciplinary collaboration and a perspective for this research
field will be discussed.

METHODOLOGY

The landmark Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human

genome sequencings facilitated the emergence of systems biology - a science that is currently

progressing on both experimental and theoretical fronts. Experimentalists carry out

comprehensive and high-throughput analyses of the various molecule entities of the cell,

namely, mRNAs, proteins and metabolites (for a review see [1]), whereas theoreticians
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concentrate on the analysis of the regulatory interactions of these molecules and predicting the

effects of changing the state of the system (e.g.[ 2, 3]). Although complementary, these

approaches have normally been taken in isolation and for this reason we will discuss them

separately. Transcript analysis by hybridization is a relatively mature technology and has been

the focus of high quality studies in many biological systems [4-7]. These studies have allowed

the determination of differential gene expression under a range of environmental or

developmental conditions as well as the identification of the high level of co-ordinated,

correlated changes across genes and ultimately to the establishment of gene regulatory

networks. Furthermore, of the various levels of analysis it is the only one which can be said to

be truly comprehensive: with the current proportional coverage of profiling technologies

decreasing following the order mRNA > protein > metabolite. For this reason transcript

profiling is currently the experimental approach of choice for systems biology [8, 9]. That said,

the emergent technologies of proteomics [10-12] and metabolomics [13, 14] have made rapid

progress in recent years and methods such as ICAT (proteins) and mass spectrometry coupled

chromatography (metabolites) now allow rapid profiling of these molecules at high analytical

precision. Technical aspects of the most commonly used platforms have been reviewed

elsewhere (e.g.[15, 16]) so we will not detail them here but rather discuss their importance

within integrated approaches. 

SYSTEMS APPROACHES

Although a wealth of data can be obtained when using any of the genomic technologies

described above, it is clear that transcription, translation, post-translational modifications and

the turnover of mRNA, proteins and metabolites do not occur in isolation but are heavily

interconnected with one another (for an example of the level of complexity involved see [17]).

For this reason it makes sense to move toward integrated approaches wherein transcripts,

proteins and metabolites are measured from the same sample. Such approaches have been

carried out recently in the microbial and medicinal fields. In one recent study the transcriptome,

proteome and protein interactions of 20 systematic perturbations of galactose utilization in the

yeast Saccharomyces cerevisiae were monitored providing evidence that approximately 15 of

289 detected proteins are regulated post-transcriptionally, and identify explicit physical

interactions governing the cellular response to each perturbation [18]. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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A similar approach combining large-scale perturbation analyses, in combination with

computational methodologies, genomic data, cis-regulatory analysis, and molecular

embryology was used to define a regulatory network underpinning sea urchin development and

revealing how given cells generate their ordained fates in the embryo [8]. These experiments

are by nature multidisciplinary and multi-laboratory in that they combine molecular and cellular

biologies with protein biochemistry and bioinformatics. While this does not pose a problem in

itself, it is vital to note that in order to gain a meaningful insight into interactions between the

various molecular entities it is imperative that experiments are performed on samples that are

spatially, temporally and micro-environmentally identical. In the following section we intend to

describe similar approaches we have taken in plants, albeit on a smaller scale, and to propose a

framework by which large-scale systematic approaches can be achieved in plants.

Many recent plant studies have provided data sets comprising transcripts, enzyme activities and

metabolites including those focused on various aspects of carbon metabolism interactions

including the responses to nitrate [19, 20] and to diurnal changes [21], as well as studies of

individual branches of secondary metabolism such as the recent study of the early stages of

triterpene saponin biosynthesis [22]. Even though these studies are restricted in their coverage,

the potential of this approach is still visible. Whilst in some cases changes in transcripts are

accompanied by changes in enzyme activities and shifts in metabolism [20, 22], in other cases

they are not (for example the impact of sugars and light and carbon on nitrate reductase: [19]),

indicating a major role for post-transcriptional modification in the regulation of the pathways

involved. Expansion of such approaches using the tools at hand has vast potential in aiding the

understanding of the complex change underlying diverse patterns, such as development and

circadian rhythms. We have recently studied potato tuber development and plants exhibiting

altered sucrose metabolism using both metabolic and transcript profiling techniques [23]. A

comparison of the discriminatory power of metabolite and RNA profiling to distinguish

between different potato tuber systems suggests that metabolite profiling has a higher resolution

than RNA profiling. Furthermore, when performing comparisons across the molecular entities

we established a correlation between 571 of the 26, 616 possible metabolite: transcript pairs.

Most of these observations were novel and notably included several strong correlations to

nutritionally important compounds, such as vitamins and essential amino acids [23]. We

therefore believe that this combinatorial approach is of high potential value in the identification

of candidate genes for modifying the metabolite content of biological systems. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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INTERPRETATION OF RESULTS HARVESTED FROM 
SYSTEMS BIOLOGICAL APPROACHES

Although it is probably too early to comment on the effectiveness of reverse genetic versus

environmental system perturbation it is important to note that there is a fundamental difference

in the data obtained via these methods. Although genetic changes give insight into mechanisms

of system robustness and into gene/protein functionality, unless you have a range of gene

inhibitions, they do not allow an interrogation of control (since removal of a gene-product

merely tells you how well the system copes without it). In contrast, environmental perturbations

will result in effects at many genetic loci and it will therefore be very hard to attribute function

to any particular gene/protein. However, the ability to perturb the system to a variety of extents

may allow the identification of regulatory control points. The interpretation of data sets

resulting from the latter example is however clearly far more complicated. Ideally, as many

different (types of) system perturbation should be applied (see [18]) and in many instance the

use of transgenic lines expressing a range of activities of an enzyme would be preferable to

single knock-out mutants. A further advantage of using both environmental and genetic

perturbations, is that the identification of common patterns of changes following the different

experimental approaches, allows greater surety that the recorded response is a direct result of

the desired perturbation, rather than a pleiotropic artefact of the method used to elicit the

perturbation.

Inverting this argument, the use of systems perturbations can be utilized to infer common

mechanisms by which plant cells respond to different treatments, for example in studying the

metabolic complements of variously modified potato tuber systems, Roessner et al. [24]

revealed that those expressing a yeast invertase at an apoplastic location could be faithfully

phenocopied by feeding glucose (and to a lesser extent fructose) to potato tuber discs. Whilst

this example is somewhat trivial (since the resultant conclusions are what would be expected)

it highlights the possibilities open for large-scale systematic approaches.

WHAT ELSE DO WE NEED TO ASSAY?

As mentioned above proteomic and metabolomic coverage is far from complete. However, with

few exceptions the majority of pathways of plant primary metabolism can be studied in detail

with the tools presently available at the protein [25, 26] and intermediary metabolite level [14,

24] in addition to the RNA level. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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These studies have allowed description of the mitochondrial proteome and have uncovered new

molecular mechanisms involved in mitochondrial defence, as well as cataloging degradation of

sensitive protein components including TCA cycle enzymes in response to oxidative stress.

Such studies have also highlighted the degree of systemic change following a relatively simple

perturbation such as altered hexose supply. Furthermore, metabolic profiling of potato tubers

expressing more efficient pathways of sucrose degradation revealed that the tuber contained all

the necessary biosynthetic machinery for the de novo biosynthesis of amino acids - knowledge

that is a prerequisite for any rational attempt to modify free amino acid content in this tissue. In

the majority of instances approaches such as these are adequate to (or even preferable to sifting

through data from esoteric pathways) answer the biological question raised. That said, it is clear

that for certain approaches, such as unravelling circadian or developmental patterns, truly

holistic approaches are needed. For such questions further developments are required in the

areas of proteomics and metabolomics. 

Whilst new proteomic methodologies (e.g. MudPIT in conjunction with ICAT) dispense with

2D gels and allow high-throughput analysis of thousands of proteins [27, 28] and protein CHIP

technology may ultimately allow a simultaneous analysis of the entire proteome [29, 30],

increasing coverage of the metabolome presents a greater challenge. Indeed metabolite analysis

within systems approaches faces something of a dichotomy, since on the one hand it is

important to increase the scope of the metabolites measured (without compromising the

accuracy of the measurements) and on the other it is necessary to gain greater understanding of

the subcellular levels of metabolites.

Although LC-MS based methodologies have recently been developed allowing the

measurement of several important classes of secondary metabolites including alkaloids,

flavonoids, glucosinolates, isoprenes, oxylipins, phenylpropanoids, pigments and saponins, and

high-throughput spectrophotometric assays have been developed for GC-MS unfriendly

primary metabolites such as phosphorylated intermediates and acetyl CoA (reviewed in [16]),

it is clear that expansion of the coverage of metabolite profiling methods remains a daunting

task. The problem of obtaining information on subcellular information is particularly acute for

metabolites which lack the targeting signatures of proteins and turnover too rapidly to allow

measurement following aqueous fractionation procedures regularly used in protein analysis (see

[25]). 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Despite these problems, methods have been developed to obtain the subcellular information on

metabolite levels in intact plants - which is ultimately essential to allow accurate modelling of

metabolism. The first of these methods, non-aqueous fractionation of lyophilized material

involves the separation of small cell portions on an organic density gradient and the use of

simultaneous equations to estimate metabolite concentrations with respect to marker enzymes

of various organelles in the cell [31]. A second method involves the production of chimeric

proteins that differentially fluoresce upon the binding of a certain metabolite. Such proteins can

now be created by the fusion of periplasmic binding proteins to green fluorescent proteins and

subsequent monitoring of fluorescence energy resonance transfer (FRET), allowing imaging of

changes in the concentration of selected metabolites in real time [32]. Although both methods

have the potential to provide subcellular spatial information, they both have severe drawbacks

- current methods of non-aqueous fractionation only allow the discrimination of three

compartments the vacuole, plastid and cytosol, whereas multiple independent chimeric proteins

are required for each metabolite measured using the FRET approach - suggesting further

research effort will be needed to refine such procedures. However, it is clearly preferable to use

the estimated plastid metabolite concentrations than the average cellular concentrations when

modelling plastidial metabolism, and the coupling of the non-aqueous fractionation method to

GC-MS-based metabolite profiling methods, gave insight into the subcellular distribution of a

wider range of metabolites than had been determined to date [33].

In addition to understanding steady-state metabolite levels, it is imperative that high-throughput

methods of determining cellular flux between these metabolites are developed for plants.

Although frameworks for such experiments have existed for many years in medicinal and

microbial sciences (see [34], flux studies in plants are normally carried out using low resolution,

highly time consuming protocols based on following the redistribution of radiolabelled

substrates. Whilst these are useful in gaining information on the bulk flow through the major

pathways of primary metabolism (for an example see [35]) they offer little information about

other pathways and focus largely on pathway endpoints. More comprehensive methods that are

commonly used in microbial sciences, utilize a combination of stable carbon isotope labelling

and NMR or MS-based detection systems, in order to determine positional information of the

fed label throughout metabolism. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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This method offers the advantage that the labelling pattern of metabolic intermediates can be

studied and the position of labelling within the carbon skeleton of end products can allow

retrospective evaluation of the metabolic route by which they were formed. 

Although used to a limited extent in studies of substrate cycles in primary metabolism [36],

perhaps the best example of this technology to date is its use in understanding of the metabolism

of storage lipids and proteins in developing Brassica napus [37]. In this paper the authors

demonstrated the different bioenergetic contributions that amino acids make to the cytosolic and

plastidial acetyl CoA pools, highlighting the potential of flux analysis in the understanding of

both pathway importance and location. A further example of the importance of both flux

measurements and understanding of subcellular location is provided by our recent finding that

enzymes of glycolysis are functionally associated with the mitochondria in Arabidopsis [38].

We established this using a combination of proteomic analyses of a highly purified

mitochondrial fraction which we then confirmed by enzyme activity assays. The sensitivity of

these activities to protease treatments indicated that the glycolytic enzymes are present on the

outside of the mitochondrion. Furthermore, when supplied with appropriate cofactors, isolated,

intact mitochondria were capable of the metabolism of C-13-glucose to C-13-labelled

intermediates of the trichloroacetic acid cycle, suggesting that the complete glycolytic sequence

is present and active in this subcellular fraction. Whilst highly novel in plants such associations

have been previously reported in Tetrahymena pyriformis [39] and more recently in human

heart [40]. It is clear that the understanding of such localized pathways is of critical importance

for the design of reliable metabolic models.

In addition to the development of efficient flux phenotyping platforms is the continued

development of the analysis of higher order modules. Whilst protein-protein interactions which

inform assignation of gene function and represent another method of pathway definition have

been the focus of much recent research effort [41-43], others such as protein-DNA [44] and

protein-lipid [4] interactions have only just begun to be studied at this level. If the analysis of

these higher order modules can be carried out in parallel with analysis at the various

independent levels under a range of environmental and developmental conditions, then a far

greater understanding of factors governing metabolic regulation would be achieved. The hope

being that once regulatory properties of the system are known at this level we can build accurate

models of metabolism that could be interrogated in silico to facilitate the design of rational

engineering strategies to generate desired properties in plants.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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INTERPRETATION OF DATA SETS

The analysis of molecular entities in a high-throughput manner and on a global scale places a

particular premium on the extraction of meaning from extremely large data sets. Currently, the

largest data sets tend to be those that contain mRNA transcript abundances and many of the

techniques of data analysis that we will describe have been applied principally to transcriptomic

data. Nevertheless, it is worth pointing out that the problems and solutions are the same, whether

one is dealing with mRNA-transcripts, proteins or metabolites. Microarrays are now available

that can be plausibly described as genomic (the Affymetrix ATH1 genechip reports on some

24,000 Arabidopsis thaliana genes) and their use generates data sets that consist of tens of

thousands of data-points. With such a high data density, it is difficult to display the entire data

set in a way that allows meaningful interpretation. Instead, methods must be used to filter the

data to retrieve only that data which satisfies criteria relevant to the experimental query. These

criteria can be manifold, but generally the most informative are those based on either the degree

of change of the data value between two conditions or on similarity of change of data value. 

Many microarray-based experiments are a simple pairwise comparision between two

conditions, generally a control and a genetic variant or a different treatment (environmental

condition, pathogen attack etc.) and the aim is to identify genes that are differentially expressed

between the two conditions. These genes can be identified by filtering the data according to a

simple heuristic rule such as an expression cut off. Typically, this only considers genes to be

differentially expressed if there is a change in relative mRNA transcript abundance above a

defined threshold; typically 1.5-2.0 fold (see for example [6, 24]). While this method allows a

rapid filtering of the data, it will introduce a high number of false negatives since many

biologically-relevant changes may occur at a level that is below this arbitrary threshold. The

need to identify such changes has led to the application of more sophisticated statistical methods

to the analysis of array data [46]. These include: the nonparametric t-test, the Wilcoxon rank

sum test and the ideal discriminator method [47]. Each of these methods performs differently,

with some being more conservative than others. Such statistical approaches greatly reduce the

number of false negatives and impart some much needed rigour to the analysis of differential

gene expression on microarrays.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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While differential expression of genes (or indeed changes in protein and metabolite

abundances) provides the primary level of information as to the changes that accompany a

biological event, there is much more to be gained from such data sets than just establishing what

goes up and what goes down. Often, we are not so much interested in which genes are altered

in expression as we are in the relationships between those changes. In particular, statistical

techniques can be used to group data together on the basis of common patterns of changes. Such

groupings are particularly useful in the context of deciphering gene function, since it is likely

that elements that share the same function, or participate in the same process, are coordinately

regulated [48]. Co-responses of elements of unknown- and known-function allow novel

functional associations to be proposed [49]. This type of analysis has been used to propose novel

functions of genes [6], their protein products [49] and also to discriminate coordinately

regulated groups of metabolites [14] and is one of the principal ways in which system network

structure can be established. Two methods have been used to group data points: hierarchical

clustering analysis (HCA) [50] and principal components analysis (PCA) [51]. 

The former considers data objects as points in n-dimensional space or as n-dimensional vectors

(where n is the number of samples for comparison) and measures the distance (or similarity)

between these objects in n-dimensional space. This distance matrix can then be clustered using

standard clustering algorithms and the results presented as a dendrogram [52]. Recently, more

sophisticated clustering algorithms have been developed that automatically calculate the

optimal distribution of data objects over clusters and overcome problems related to robustness

and the establishment of optimal linear ordering of the cluster [53]. The complementary method

of PCA also establishes n-dimensional vectors and focuses on the vector that gives the greatest

separation between samples, the so-called principal component. The results are usually

displayed as a two-dimensional plot with the first principal component on the x-axis and the

second principal component on the y-axis. A refinement of this approach is to use a supervised

projection method such as discriminant function analysis (DFA) [54] which exploits user-

defined information (such as which samples are replicates of one another) to determine within-

and between-group variation. This information is then used in combination with principal

components to define discriminant functions that separate the groups.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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COMPUTATIONAL BIOLOGY

The ultimate aim of systems biology is the construction of a complete mathematical description

of the system. The idea is to exploit the increasing experimental knowledge of the behaviour of

the system in terms of different molecular entities, to devise a set of rules that accurately model

the behaviour of the system. There are clear advantages to such a mathematical approach. First,

such a model represents a way of storing and describing our current understanding of a system.

Second, mathematical models allow in silico interrogations of the behaviour of the system. Such

in silico experiments have the advantage of both speed and power over conventional "wet"

experimentation. Speed, in that any number of parameters can be varied and the effect of these

variations on the system behaviour or output can be calculated virtually instantaneously. The

power of the approach is derived from the fact that the effects of such changes are calculated in

the context of the entire system, the behaviour of which is too complex to be understood

intuitively. The realization of this aim of constructing a single model that describes an entire

system is still some way off. However, models are being devised that describe discrete parts of

the system and can be thought of as modules. It is likely that these modules can be joined

together to form a higher order model that represents a more complete coverage of the system.

Most of the mathematical models that have been devised, concentrate on describing the control

of flux through a metabolic pathway in terms of the amounts of the enzymes present and tend

to ignore other levels of the regulatory hierarchy (e.g. regulatory-gene expression). The reason

for this concentration on enzymes is that there are well established mathematical frameworks,

such as metabolic control analysis (MCA), that describe the control of metabolic pathways in

terms of enzymes and metabolites. Such frameworks are an essential starting point for

mathematical models. Indeed, most of the models of plant metabolism to date have used MCA

as the basic conceptual tool  (e.g. [55, 56]). These models generally use kinetic parameters of

enzymes to derive the control structure. An alternative approach is that of metabolic flux

analysis (MFA) which can be used to interpret in vivo metabolic flux data and derive the

metabolic network and its control structure [57]. Both approaches suffer from the fact that the

experimental inputs required are generally not known in their entirety for a given system. In the

case of models based on kinetic parameters of enzymes, a 'mix and match' approach is often

taken where kinetic constants of enzymes from different organisms are combined. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Although core pathways such as glycolysis are highly conserved, there are nevertheless key

differences in their regulation between different organisms and such an approach is unlikely to

adequately describe the subtleties of different control structures in different organisms. In the

case of metabolic flux analyses, the situation is slightly better as there are a number of

theoretical approaches such as metabolic-flux balancing [58] and optimization approaches [59]

that can be used to derive unknown fluxes. Recently, a new approach to the modelling of

metabolic pathways has emerged that is based upon the principle of stoichiometric analysis

[60]. 

The basis of this approach is to define elementary flux modes - non-decomposable sub-

networks that account for every possible flux within the network. Elementary flux modes are

non-decomposable in the sense that each mode contains a minimal set of enzymes such that if

only enzymes belonging to this set are operating, then complete inhibition of one of these

enzymes would lead to a complete cessation of pathway flux [2]. This approach allows one to

mathematically define and describe all metabolic routes that are both stoichiometrically and

thermodynamically feasible and is an extremely useful tool for the definition of network

structure [61]. When applied on a sufficiently large scale the approach allows cellular behaviour

to be reconstructed from network topology and thus represents a genuine systems analysis [62].

Although stoichiometric analysis concentrates on enzymes and metabolic pathways, the related

approach of gene circuit analysis [63] deals with regulatory modules that operate at the genetic

level. An integration of these two approaches would potentially describe the majority of

regulatory features that are known to occur in a metabolic network and bring us ever closer to

a truly holistic description of a biological system. However, to achieve such an integration will

require much concerted effort between experimentalists and theoreticians.

CONCLUSION

The availability and continued improvement of high-throughput analytical techniques has

brought about a distinct shift in the way biologists are approaching the solution of metabolic

control networks. Instead of the reductionist enzyme-by-enzyme approach, we are instead

attempting to take a more system-wide approach, in which a comprehensive analysis of a broad

range of molecular responses across the system are made and are used as the basis of a holistic

understanding of the system driven by computational methods. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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While this new approach has the potential to provide a quantum leap in our ability to understand

the control of metabolic networks, fulfilment of that potential will ultimately depend on a

number of key developments. First, several analytical challenges need to be met to ensure that

analysis of all types of molecular entity is as comprehensive as possible. These challenges

include a broadening of the coverage afforded by protein and metabolite profiling technologies

with the latter representing a considerable obstacle. In addition, the analysis of these molecules

needs to be refined to include single cells and different sub-cellular compartments. Second, the

field of computational biology needs to continue its progress in developing increasingly

sophisticated tools and approaches to the extraction of biological meaning from genomic data

sets. It is clear that the true success of the systems biology approach will be determined by the

extent to which theoretical and computational biologists can work together with experimental

biologists. The latter need to adopt new experimental strategies that are specifically tailored to

the systems approaches, while the former need to ensure that computational tools are made

available to the wider community such that the systems approach becomes a standard part of the

experimental arsenal and its use extends beyond a handful of test cases.

REFERENCES

[1]  Oliver, S.G. (2002) Functional genomics: lessons from yeast. Phil.  Trans. R. Soc. Lond.
B 357: 17-23.

[2]  Schuster, S., Dandekar, T., Fell, D.A. (1999) Detection of elementary flux modes in
biochemical networks: a promising tool for pathway analysis and metabolic
engineering. Trends Biotechnol. 17: 53-60. 

[3]  Brazhnik, P., de la Fuente, A., Mendes, P. (2002) Gene networks: how to put the
function in genomics. Trends Biotechnol. 20: 467-472.

[4]  Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F., Trent, J.M.,
Staudt, L.M., Hudson, J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D., Brown,
P.O. (1999) The transcriptional program in the response of human fibroblasts to serum.
Science 283: 83-87.

[5]  Furlong, E.E.M., Andersen, E.C., Null, B., White, K.P., Scott, M.P. (2001) Patterns of
gene expression during Drosophila mesoderm development. Science 293: 1629-1633.

[6]  Ramonell, K.M., Somerville, S. (2002) The genomics parade of defense responses: to
infinity and beyond. Curr. Opin. Plant Biol. 5: 291-294.

[7]  Ruuska, S.A., Girke, T., Benning, C., Ohlrogge, J.B. (2002) Contrapuntal networks of
gene expression during Arabidopsis seed filling. Plant Cell 14: 1191-1206.

[8]  Davidson, E.H. et al. (2002) A genomic regulatory network for development. Science
295: 1669-1678.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf


83

Broad-Range Metabolite Analysis
[9]  Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner,
R., Goodlett, D.R., Aebersold, R., Hood, L. (2001) Integrated genomic and proteomic
analyses of a systematically perturbed metabolic network. Science 292: 929-934.

[10]  Shevchenko, A., Jensen, O.N., Podtelejnikov, A.V., Sagliocco, F., Wilm, M., Vorm, O.,
Mortensen, P., Shevchenko, A., Boucherie, H., Mann, M. (1996) Linking genome and
proteome by mass spectrometry: Large-scale identification of yeast proteins from two
dimensional gels. Proc. Natl. Acad. Sci. USA 93: 14440-14445.

[11]  Mann, M., Hendrickson, R., Pandey, A. (2001) Analysis of proteins and proteomes by
mass spectrometry. Annu. Rev. Biochem. 70: 437-473.

[12]  Lilley, K.S., Razzaq, A., Dupree, P. (2002) Two-dimensional gel electrophoresis: recent
advances in sample preparation, detection and quantitation. Curr. Opin. Chem. Biol. 6:
46-50.

[13]  Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., Willmitzer, L. (2000)
Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18: 1157-1161.

[14]  Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., Fernie,
A.R. (2001) Metabolic profiling allows comprehensive phenotyping of genetically or
environmentally modified plant systems. Plant Cell 13: 11-29.

[15]  Celis, J.E., Kruhoffer, M., Gromova, I., Frederiksen, C., Ostergaard, M., Thykjaer, T.,
Gromova, P., Yu, J., Palsdottir, H., Magnusson, N., Ornoft, T.F. (2000) Gene expression
profiling: monitoring transcription and translation products using DNA microarrays and
proteomics. FEBS Lett. 480: 2-16.

[16]  Fernie, A.R. (2003) Metabolome characterization in plant system analysis. Funct. Plant
Biol. 30: 1-10.

[17]  Zhao, J., Williams, C.C., Last, R.L. (1998) Induction of Arabidopsis tryptophan
pathway enzymes and camalexin by amino acid starvation, oxidative stress and an
abiotic elicitor. Plant Cell 10: 359-370.

[18]  Ideker, T., Galitski, T., Hood, L. (2001) A new approach to decoding life: Systems
biology. Annu. Rev. Genom. Hum. Genet. 2: 343-372.

[19]  Muller, C., Scheible, W.R., Stitt, M., Krapp, A. (2001) Influence of malate and 2-
oxoglutarate on the NIA transcript level and nitrate reductase activity in tobacco leaves.
Plant Cell Environ. 24: 191-203.

[20] Scheible, W.R., Krapp, A., Stitt, M. (2000) Reciprocal diurnal changes of
phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate
synthase and NADP-isocitrate dehydrogenase expression regulate organic acid
metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ. 23: 1155-
1167.

[21]  Masclaux-Daubresse, C., Valadier, M.H., Carrayol, E., Reisdorf-Cren, M., Hirel, B.
(2002) Diurnal changes in the expression of glutamate dehydrogenase and nitrate
reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environ.
25: 1451-1462.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf


84

Fernie, A.
[22  Suzuki, H., Achnine, L., Xu, R., Matsuda, S.P.T., Dixon, R.A. (2002) A genomics
approach to the early stages if triterpene biosynthesis in Medicago trunculata. Plant J.
32: 1033-1048.

[23]  Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U.,
Willmitzer, L., Fernie,A.R. (2003) Parallel analysis of transcript and metabolic profiles:
a new approach in systems biology. EMBO Reports 4: 989-993.

[24]  Roessner, U., Willmitzer, L., Fernie, A.R. (2001) High-resolution metabolic
phenotyping of genetically and environmentally diverse potato tuber systems.
Identification of phenocopies. Plant Physiol. 127: 749-764.

[25]  Sweetlove, L.J., Heazlewood, J.L., Herald, V., Holtzapffel, R., Day, D.A., Leaver, C.J.,
Millar, A.H. (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant
J. 32: 891-904.

[26]  Millar, A.H., Sweetlove, L.J., Giege, P., Leaver, C.J. (2001) Analysis of the Arabidopsis
mitochondrial proteome. Plant Physiol. 127: 1711-1727.

[27]  Whitelegge, J.P. (2002) Plant proteomics: BLASTing out of a MudPIT. Proc. Natl.
Acad. Sci. USA 18: 11564-11566.

[28] McDonald, W.H., Ohi, R., Miyamoto, D.T., Mitchison, T.J., Yates, J.R. (2002)
Comparison of three directly coupled HPLC MS/MS strategies for identification of
proteins from complex mixtures: single-dimension LC-MS/MS, 2-phase MudPIT, and
3-phase MudPIT. Intl. J. Mass Spec. 219: 245-251.

[29]  Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D.,
Gerstein, M., Reed, M.A., Snyder, M. (2000) Analysis of yeast protein kinases using
protein chips. Nat. Genetics 26:283-289.

[30] Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N.,
Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein,
M., Snyder, M. (2001) Global analysis of protein activities using proteome chips.
Science 293: 2101-2105.

[31] Gerhardt, R., Stitt, M., Heldt, H.W. (1983) Subcellular metabolite determination in
spinach leaves through non-aqueous fractionation. Physiol. Chem. 364: 1130-1131.

[32]  Fehr, M., Frommer, W.B., Lalonde, S. (2002) Visualisation of maltose uptake in living
yeast cells by fluorescent nanosensors. Proc. Natl. Acad. Sci. USA 99: 9846-9851.

[33]  Farre, E.M., Tiessen, A., Roessner, U., Geigenberger, P., Trethewey, R.N., Willmitzer,
L. (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides,
sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a non-
aqueous fractionation method. Plant Physiol. 127: 685-700.

[34] Szyperski, T. (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology
research. Quarterly Rev. Biophys. 31: 41-106.

[35] Lytovchenko, A., Sweetlove, L., Pauly, M., Fernie, A.R. (2002) The influence of
cytosolic phosphoglucomutase on photosynthetic carbohydrate metabolism. Planta
215: 1013-1021.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf


85

Broad-Range Metabolite Analysis
[36]  Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradet, A., Raymond, P. (1995)
Quantification of  compartmented metabolic fluxes in maize root tips using isotope
distribution from 13C- or 14C- labeled glucose. J. biol. Chem. 270: 13147-13159.

[37]  Schwender, J., Ohlrogge, J.B. (2002) Probing in vivo metabolism by stable isotope
labeling of storage lipids and proteins in developing Brassica napus embryos. Plant
Physiol. 130: 347-361.

[38]  Giege, P., Heazlewood, J.L., Roessner-Tunali, U., Millar, A.H., Fernie, A.R., Leaver,
C.J., Sweetlove, L.J. (2003) Enzymes of glycolysis are functionally associated with the
mitochondrion in Arabidopsis cells. Plant Cell 15: 2140-2151.

[39]  Srere, P.A. (1987) Complexes of sequential metabolic enzymes. Annu. Rev. Biochem.
56: 89-104.

[40]  Taylor, S.W., Fahy, E., Zhang, B., Glenn, G.M., Warnock, D.E., Wiley, S., Murphy,
A.N., Gaucher, S.P., Capaldi, R.A., Gibson, B.W., Ghosh, S.S. (2003) Characterisation
of the human heart mitochondrial proteome. Nat. Biotechnol. 21: 281-286.

[41]  Panicot, M., Minguet, E.G., Ferrando, A., Alcazar, R., Blazquez, M.A., Carbonell, J.,
Altabella, T., Koncz, C., Tiburcio, A.F. (2002) A polyamine metabolon involving
aminopropyl transferase complexes in Arabidopsis. Plant Cell 14: 2539-2551.

[42]  von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.
(2002) Comparative assessment of large-scale data sets of protein-protein interactions.
Nature 417: 399-403.

[43]  Gavin, A.C. et al. (2002) Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 415: 141-147.

[44]  Smith, J., Khin, E.K., Zaitseva, E.M., Freebern, W., Dzekunova, I., Gardner, K. (2002)
Genome wide analysis of protein/DNA interactions. FASEB J. 16: A1104.

[45] Howell, N.K., Herman, H., Li-Chan, E.C.Y. (2001) Elucidation of protein-lipid
interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy. J.
Agric. Food Chem. 49: 1529-1533.

[46]  Pan, W. (2002) A comparative review of statistical methods for discovering
differentially expressed genes in replicated microarray experiments. Bioinformatics 18:
546-554.

[47]  Troyanskaya, O.G., Garber, M.E., Brown, P.O., Botstein, D., Altman, R.B. (2002)
Nonparametric methods for identifying differentially expressed genes in microarray
data. Bioinformatics 18: 1454-1461.

[48]  Walhout, A.J., Reboul, J., Shtanko, O., Bertin, N., Vaglio, P., Ge, H., Lee, H., Doucette-
Stamm, L., Gunsalus, K.C., Schetter, A.J., Morton, D.G., Kemphues, K.J., Reinke, V.,
Kim, S.K., Piano, F., Vidal, M. (2002) Integrating interactome, phenome, and
transcriptome mapping data for the C. elegans germline. Curr. Biol. 12: 1952-1958.

[49]  Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M.C.,
Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., Westerhoff, H.V., van Dam, K.,
Oliver, S.G. (2001) A functional genomics strategy that uses metabolome data to reveal
the phenotype of silent mutations. Nat. Biotechnol. 19: 45-50.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf


86

Fernie, A.
[50]  Brazma, A., Vilo, J. (2000) Gene expression data analysis. FEBS Lett. 480: 17-24.

[51]  Jolliffe, I.T. (1986) Principal Components Analysis. Springer-Verlag, New York.

[52]  Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D. (1998) Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863-
14868.

[53]  Lukashin, A.V., Fuchs, R. (2001) Analysis of temporal gene expression profiles:
clustering by simulated annealing and determining the optimal number of clusters.
Bioinformatics 17: 405-414.

[54]  Windig,W., Haverkamp, J., Kistemaker, P.G. (1983) Interpretation of sets of pyrolysis
mass spectra by discriminant-analysis and graphical rotation. Analyt. Chem. 55: 81-88.

[55] Pettersson, G. Ryde-Pettersson, U. (1988) A mathematical model of the Calvin
photosynthesis cycle. Eur. J. Biochem. 175: 661-672.

[56]  Thomas, S., Mooney, P.J., Burrell, M.M., Fell, D.A. (1997) Metabolic Control Analysis
of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low
control coefficient of phosphofructokinase over respiratory flux. Biochem. J. 322: 119-
127.

[57] Wiechert, W., Mollney, M., Isermann, N., Wurzel, M., de Graaf, A.A. (1999)
Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of
isotopomer labeling systems. Biotechnol. Bioengng. 66: 69-85.

[58]  Bonarius, H., Schmid, G., Tramper, J. (1997) Flux analysis of underdetermined
metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15: 308-
314.

[59] Torres, N., Voit, E., Gonzalez-Alcon, C. (1996) Optimization of nonlinear
biotechnological processes with linear programming: application to citric acid
production by Aspergillus niger. Biotechnol Bioengng. 49: 247-258.

[60]  Cornish-Bowden, A., Cardenas, L. (2002) Systems biology: Metabolic balance sheets.
Nature 420: 129-130.

[61]  Schuster, S., Fell, D.A., Dandekar, T. (2000) A general definition of metabolic
pathways useful for systematic organization and analysis of complex metabolic
networks. Nat. Biotechnol. 18: 326-332.

[62]  Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D. (2002) Metabolic
network structure determines key aspects of functionality and regulation. Nature 420:
190-193.

[63]  de la Fuente, A., Brazhnik, P., Mendes, P. (2002) Linking the genes: inferring
quantitative gene networks from microarray data. Trends Genet. 18: 395-398.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf

	Broad-Range Metabolite Analysis: Integration into Genomic Programs
	Methodology
	Systems Approaches
	Interpretation of Results Harvested from Systems Biological Approaches
	What Else do we Need to Assay?
	Interpretation of Data Sets
	Computational Biology
	Conclusion
	References

