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ABSTRACT
This paper deals with the identification of kinetic parameters in enzyme
catalytic processes. Experience shows that the experiments performed
do no deliver measurement data sufficient for the identification of
parameters. New optimal experiments are needed. We suggest effective
algorithms and software for parameter estimation and design of optimal
experiments, based on multiple shooting and specially tailored,
structure-exploiting reduced Gauss-Newton and SQP methods. The
methods are applied to optimal experimental design and parameter
estimation in enzyme catalytic processes. 

INTRODUCTION

We consider the problem of identifying enzyme operating stability which is very important e.g.

in industrial production of enzymes or in understanding enzymatic pathways in a living system.

Traditionally enzyme stability is determined empirically by time-consuming experiments:

under constant reaction conditions (temperatures) the half-life of the catalyst is measured [1].

This procedure is repeated under different temperatures. Another approach for faster

identification of enzyme operating stability is suggested in [2]. In an instationary operated

reactor the reaction temperature is increased linearly and parameters of a kinetic model based

on Arrhenius equations are estimated. Then the stability properties of enzymes are estimated as

functions of the kinetic parameters. Experience shows however that such experiments do not

deliver enough data to identify the kinetic parameters reliably. 
http://www.beilstein-institut.de/ESCEC2003/proceedings/Bock/Bock.pdf

http://www.beilstein-institut.de/bozen2002/proceedings/Kettner/Kettner.pdf


46

Bock, H.G. et al.
Optimal experiments (temperature profiles) are necessary that allow

the estimation of the kinetic parameters of enzyme catalytic processes and thus stability

properties. This paper focuses on numerical methods for parameter estimation and design of

optimal experiments. 

The paper is organized as follows. Firstly, we describe parameter estimation problems in

ordinary differential equations as well as specifying the model of enzyme reaction under

consideration. Secondly, the method used for parameter estimation is described. It follows a

very successful solution approach, namely the boundary value problem (BVP) approach, which

combines infeasible point optimization algorithms like the generalized Gauss-Newton method

with BVP techniques like multiple shooting to discretize the dynamic system. The discretized

equations are then treated as nonlinear equality constraints. We solve the resulting finite-

dimensional, possibly large-scale, nonlinear constrained least squares problem with the

generalized Gauss-Newton method. Under certain regularity assumptions the method shows the

final linear rate of local convergence. To ensure global convergence, a newly developed

efficient step-size strategy is used. Special attention is paid to the discussion of why the

generalized Gauss-Newton method is particularly appropriate for parameter estimation and

does not converge to solutions with large residuals. The quality of parameter estimates is

defined by statistical analysis, and the results of parameter estimation for an immobilized

enzyme system finish this part of the paper. Thirdly, theoretical justification methods for the

design of optimal experiments as well as numerical and experimental results are presented.

Optimal experiments are designed for the nominal values of parameters which are known only

to lie in a confidence region. Fourthly, the design of experiments that are less sensitive to

parameter uncertainty is described. The paper is finished by conclusions.

PARAMETER ESTIMATION PROBLEM FOR ENZYME CATALYTIC PROCESSES

Parameter estimation problems in dynamic processes

The problem of identification of unknown parameters in dynamic models is among the most

important tasks in mathematical modelling of dynamic processes. It can be described as follows.

Let the dynamics of the model be described by a system of ordinary differential equations

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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where the right-hand side f depends on an vector of unknown parameters  , given

control functions u :   and given control variables  . It is assumed, that

at the given times tj, j = 1,..., Μ,  measurements  ηij, i = 1,..., Mj, j = 1,..., M, of the observation

functions bij are available

which are subject to measurement errors εij. Here ptrue are the ''true'' values of the parameters.

Note, that several model quantities can be measured at a time tj. According to the common

approach, in order to determine the unknown parameters an optimization problem is solved. The

possible constraints of this problem describe the specifics of the model (constraints on the initial

and terminal states, constraints on parameters, etc.) and can be formally written as constraints

at times  

As an objective functional in the optimization problem, typically a norm of the measurement

errors is used. The type of the norm is motivated by the statistical distribution of the

measurement errors. If the errors are independent, normally distributed with zero mean and

known variances  , minimizing a weighted least squares function

yields a maximum likelihood estimate.

y· f t y t ) p q u t( ), , ,(,( ) t t0 tend,[ ]∈,=

p R
np∈

t0 tend;[ ] R
nu→ q R

nq∈

ηij bij y tj( ) ptrue q, ,( ) εij+=

θ1 … θκ t[ 0 tend ],∈, ,

rcon y θ1( ) …y θκ ) p q ), ,(,( 0=

N 0 σij
2 ) ),((

min
∑
i,j

(ηij − bij(y(tj), p, q))
2/σ2

ij
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Summing up, mathematically the problems of parameter estimation can be written as follows:

Minimize the deviation of model response to measurement values such that the dynamics and

the inital conditions of the dynamic process are fulfilled and possible further constraints are

satisfied:

Model for enzyme catalytic processes

We consider parameter estimation for the catalytic reaction of enzymes [3]. The native (N),

unfolded (U), and deactivated (D) enzymes are involved in the reaction which takes place in a

reactor with a continuous inflow and a corresponding outflow. The reaction scheme is the

following

where kNU, kUN, kUD, kND denote rates of the corresponding reactions. Additionally a substrate

S is involved, which is contained in the inflow and is degraded depending on the concentration

of native enzymes.

Our mathematical model of this reaction scheme is based on the following assumptions: 

- The concentrations CN, CU, CD of the native, the unfolded and the deactivated enzymes

   respectively satisfy a conservation law: 

min
y,p

M∑
j=1

Mj∑
i=1

(ηij − bij(y(tj), p, q))
2/σ2

ij

s.t. ẏ(t) = f(t, y(t), p, q, u(t)), t ∈ [t0, tend]

rcon(y(θ1), ..., y(θK), p, q) = 0.

(1)
(1)

kNU

N −→
←− U

kUN

kND ↘ ↙ kUD

D

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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where CE0 denotes an initial amount of active enzymes.

- Native and unfolded enzymes are in a quasi-steady-state:

with some constant KU.

- A biochemical reaction involving the substrate S takes place. This reaction is described

  by the Michaelis-Menten kinetics:

where CS is the concentration of the substrate,  km is the Michaelis-Menten constant, rmax

is the maximal rate of the biochemical reaction,  kr is a proportionality coefficient

depending on the temperature T.

- The reactions rates kNU, kUN, kUD, kND, as well as the steady state constant KU and the

   proportionality factor kr depend on the temperature T according to the Arrhenius law:

where R is the gas constant. 

CN CU CD+ + CE0
=

CU
CN
------- KU=

r rmax
CS

km CS+
------------------ rmax krCN=,=

k = k1 exp

(−k2

RT

)
(2)

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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In particular:

where

- A denotes the activation constant,

- ∆h*
E  denotes the activation enthalpy,

- ∆S0
u   denotes the deactivation entropy,

- ∆h0
u  denotes the deactivation enthalpy,

- k0
d    denotes the decay constant,

- ∆h*
u  denotes the activation enthalpy,

- k0
N   denotes the native enzyme decay constant,

- ∆h*
N   denotes the native enzyme activation enthalpy.

- The change of the substrate concentration CS due to the inflow and the outflow of the

   substrate is defined by

where V ist the volume of the reactor,  is the rate of the substrate inflow, C0
S  is the

inflow concentration of the substrate.

Taking into account these assumptions one can derive the mathematical model for the enzyme

catalytic reaction

kND = k0
N exp

(−∆h∗
N

RT

)
, kUD = k0

d exp

(−∆h∗
u

RT

)
,

KU = exp

(−∆h0
u

RT

)
exp

(
∆S0

u

R

)
, kr = A exp

(−∆h∗
E

RT

)
,

V̇

V

(
C0

S − CS

)
,

V·
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with

Summing up, the catalytic reaction is modelled by a system of two differential equations (3)

where

- the state variables are the concentration of the deactivated enzyme CD and the

  concentration of the substrate CS,

- the parameters to be estimated are

The process may be controlled by the temperature, this means that the control function u is a

temperature profile T. 

For numerical stability and better scaling we reformulate the Arrhenius kinetic terms (2) as

follows:

d CD

d t
=

(
k0

d exp

(−∆h∗
u

RT

)
KU +

k0
N exp

(−∆h∗
N

RT

))
(CE0 − CD)

1

1 + KU
, CD(0) = 0,

d CS

d t
=

V̇

V

(
C0

S − CS

)
− rmax

CS

km + CS
, CS(0) = C0

S.

(3)

KU = exp

(−∆h0
u

RT

)
exp

(
∆S0

u

R

)
, rmax = A exp

(−∆h∗
E

RT

)
CE0 − CD

1 + KU

.

p1 = lnA, p2 = ∆h∗
E , p3 = ∆S0

u, p4 = ∆h0
u,

p5 = k0
d, p6 = ∆h∗

u, p7 = k0
N , p8 = ∆h∗

N .
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where T1 and T0 are some temperature values to be chosen by the use, e.g. maximal and minimal

temperature used in the experiments. Physically the coefficients k1new and k2new describe the

rate of the corresponding reaction at T1 and T0 respectively.

We use this transformation for parameters describing reactions and  :

- instead of the parameters p5 and p6 we introduce the paramters p5new and p6new

  according to the formulae:

- and analogously instead of the parameters p7 and p8, we introduce the parameters p7new

  and p8new according to the formulae:

For the reader's convenience, we give the explicit relation between "old" and "new" parameters:

k1 exp

(
− k2

RT

)
= exp

(
k1new

T−1 − T−1
0

T−1
1 − T−1

0

+ k2new
T−1

1 − T−1

T−1
1 − T−1

0

)
,

N D→ U D→

k0
d exp

(
−∆h∗

u

RT0

)
= exp(p6new), k0

d exp

(
−∆h∗

u

RT1

)
= exp(p5new),

k0
N exp

(
−∆h∗

N

RT0

)
= exp(p8new), k0

N exp

(
−∆h∗

N

RT1

)
= exp(p7new).

p5new = ln(k0
d) − ∆h∗

u

RT1
,

’new’ parameters

p6new = ln(k0
d) − ∆h∗

u

RT0
,

p7new = ln(k0
N) − ∆h∗

N

RT1
, p8new = ln(k0

N) − ∆h∗
N

RT0
;
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Half-life

The important stability feature of enzymes is characterized by half-life [2]. 

Half-life (HL) is a time required to reduce the amount of a native enzyme to a half of the initial

amount at a constant temperature. 

Mathematically half-life is given by

Measurement function

The observation function - velocity of consumption of base necessary to neutralize the acidic

reaction product - is given by the dosage of base

where B0 is the given concentration of base. Note that in the model under consideration we

measure one quantity at a time.

k0
d = exp

(
T1p5new−T0p6new

T1−T0

)
, ∆h∗

u = RT1T0(p5new−p6new)
T1−T0

,

k0
N = exp

(
T1p7new−T0p8new

T1−T0

)
, ∆h∗

N = RT1T0(p7new−p8new)
T1−T0

.

’old’ parameters

HL(T ) = ln 2(1 + KU)/

(
KUk0

d exp

(−∆h∗
u

RT

)
+ k0

N exp

(−∆h∗
N

RT

))
.

b :=
V̇ (C0

S − CS(t))

B0
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BOUNDARY VALUE PROBLEM METHODS FOR PARAMETER ESTIMATION

A typical solution approach to parameter estimation which is found very often in practice is the

initial value or single shooting approach: the ODE system is repeatedly solved as an initial value

problem, and unknown parameters including possibly initial values are iteratively improved by

some optimization procedure.

In contrast to that, our numerical solution of the parameter estimation problem is based on the

Boundary Value Problem (BVP) approach going back to [4]. The basic idea consists in

parameterizing the dynamic equations (initial or boundary value problem) like a boundary value

problem (e.g., by multiple shooting) and then performing simultaneously (in one iteration loop)

the minimization of the cost function and the fulfilment of the constraints given by the

discretized boundary value problem. It has been shown [4,5], that BVP methods (based on

multiple shooting or collocation) are much more stable and efficient than the single shooting

approach when solving parameter estimation problems.

Multiple shooting

The scheme of multiple shooting consists of the following. First one chooses a suitable grid of

multiple shooting nodes τj

covering the interval where measurements are given.

Figure 1.  Multiple shooting approach.

t0 τ0 τ1 … τm< < < tend= =

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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At each grid point the values of the state variables sj are chosen as additional unknowns and m

ODE initial value problems

are solved on each subinterval Ij:=[τj, τj+1] to yield a solution y(t; sj, p, q, u) for .

Solutions of dynamic systems, generated by this procedure, are usually not continuous at τj.

This has to be enforced by additional matching conditions. Inserting the computed values 

y(t, sj, p, q, u),   into problem (1) one obtains a constrained optimization

problem in the variables (s, p) := (s0,...,sm, p)

Multiple shooting possesses several advantages: 

1. It is possible to include a priori information about the state variables, e.g. from the

measurements or from expert knowledge, by a proper choice of initial guesses for the

additional variables sj. Thus, it can be ensured that the initial solutions y(t;sj, p, u) remain

close to the observed data. It can be shown that this damps the influence of poor

parameter guesses. 

2. The adequate choice of initial guesses for the state variables (and the application of a

Gauss-Newton method for the solution of the constrained least squares problem) 

typically avoids convergence to local minima with large residuals. 

3. The scheme is numerically stable. The splitting of the integration interval limits error

propagation and makes it possible to solve parameter estimation problems even for

unstable or chaotic systems. 

4. The BVP discretization induces a very specific structure in the problem equations,

which can be exploited in particular for parallelization.

ẏ = f(t, y, p, q, u), y(τj) = sj

t Ij∈

τj t τ1 1+≤ ≤

M∑
j=1

Mj∑
i=1

(ηij − bij(y(tj), p, q))
2/σ2

ij ,

hj(sj , sj+1, p) := y(τj+1; sj, p, q, u) − sj+1 = 0, j = 1, .., m − 1,

rcon(y(θ1), ..., y(θK), p, q) = 0.

(4)

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Gauss-Newton method

Parametrization of the dynamics yields a finite dimensional, possibly large-scale, nonlinear

constrained least squares problem which can be formally written as

Note, that the equalities F2(χ) = 0 include the matching conditions induced by multiple

shooting. We assume that the functions Fi : , i = 1, 2, are twice continuously

differentiable. The number of variables in problem (5) is equal to number of differential

equations multiplied by the number of multiple shooting nodes plus the number of parameters.

To solve problem (5) we use a generalized Gauss-Newton method according to which a new

iterate is (basically) generated by

where the increment ∆χ is the solution of the following linear constraint l2 problem at χ = χk

Here, J1(χ) and J2(χ) denote the Jacobians of F1(χ) and F2(χ) respectively.

then a linearized problem (7) has a unique solution ∆χk and a unique Lagrange vector λk

satisfying the following optimality conditions

D Rn R
mi→⊂

xk+1 = xk + tk∆xk, 0 < tk ≤ 1,    (6)

min
∆x∈Rn

||F1(x) + J1(x)∆x||22,
s.t. F2(x) + J2(x)∆x = 0.

(7)

rankJ2(x) = m2, rank J = n, J = J(x) =

(
J1(x)
J2(x)

)

min
x∈Rn

||F1(x)||22,
s.t. F2(x) = 0.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Using (8) one can easily show that ∆χk can be formally written with the help of a solution

operator J+

The solution operator J+ is a generalized inverse, that is it satisfies J+J J+ = I, and is explicitly

given by

Choosing the step lenght tk by means of classical line search methods based on the exact penalty

function

with sufficiently large weights αi < 0, i = 1,..., m2,  ensures global convergence. However, it is

well known that already in mildly ill-conditioned problems such a step-size strategy may be

very inefficient since it may produce very small step-sizes. Therefore we use the "restrictive

monotonicity test", see [5,6], that has proved to be very effective in practical applications. 

Note, that the generalized Gauss-Newton method (6) - (7) has several advantages. First it does

not use second order derivative information and the local linearized problems are linear

constrained least squares problems. Under certain regularity assumptions at the solution, the

method shows a good linear rate of local convergence. There are problems, however, for which

the Gauss-Newton method may have a rather slow local convergence rate or may even fail. The

reason is that the linearized model (7), which forms the basis of the Gauss-Newton method, is

an inadequate representation of such nonlinear problems, since the second-order information

cannot be ignored. These problems are called problems with large residuals. 

JT
1 (x)J1(x)∆xk −JT

2 (x)λk = −JT
1 (x)F1(x),

J2(x)∆xk = −F2(x). (8)

∆xk = −J+(xk)F (xk), F (x) =

(
F1(x)
F2(x)

)
.

J+(x) =
(

I 0
) (

JT
1 (x)J1(x) J2(x)T

J2(x) 0

)−1 (
J1(x)T 0

0 I

)
.

T1(x) := ||F1(x)||22 +
m2∑
i=1

αi|F2i(x)|

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Using SQP-type methods for the nonlinear constrained l2 parameter estimation problem one

could force convergence to a solution even in such a case. However, such solutions are

undesirable in a certain sense. We can show that a solution of this type, even if it is a strict

minimum of the nonlinear constrained l2 problem (5), cannot be expected to be a continuous

deformation of the "true" parameter values under perturbations caused by the measurement

errors. Thus, slow local convergence of the full-step  Gauss-Newton indicates

deficiencies in the model or lack of data and can be considered as an advantage of the method.

For a detailed analysis see [5].

Solving the linear l2 problem

At each iteration of a Gauss-Newton method a linear least squares problem (7) has to be solved.

First, we make use of the special block structure of the Jacobian J(χ) which is induced by

multiple shooting:

Every block column corresponds to the derivatives with respect to the discretization variables

and parameters in one subinterval. The block rows with G-matrices are the derivatives of the

continuity conditions

The block rows with D-matrices correspond to the derivatives of the functions Fi of the cost

functional and the constraints of the nonlinear problem (5) excluding the continuity conditions.

We use a fast, stable and efficient structure exploiting decomposition (see [4, 5]) to reduce the

large linear least squares problem to a linear least squares problem with smaller dimension. 

tk 1≡( )

J =




D0 D1 . . . Dm Dp

Gl
0 Gr

0 Gp
0

. . .
. . . 0

...
. . .

. . .
...

0
. . .

. . .
...

Gl
m−1 Gr

m−1 Gp
m−1




.

Gl
j := ∂hj/∂sj Gr

j := ∂hj/∂sj+1 = −I, Gp
j := ∂hj/∂p.
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The number of variables in the resulting problem is equal to the number of parameters plus the

number of differential equations. This so-called condensed problem may be solved using the

methods described in [7].

Statistical sensitivity analysis for the estimates

An important question in parameter estimation is how good the computed estimates are. The

answer is provided by sensitivity analysis. If the experimental data is normally distributed then

the estimated solution χ* of the parameter estimation problem is also a random variable which

is normally distributed in the first order χ* ~ N(χtrue, C) with the (unknown) true value χtrue as

expected value and the variance-covariance matrix C given by

The variance-covariance matrix describes the confidence ellipsoid which is an approximation

of the nonlinear confidence region of the estimated variables. The 100(1- a)%  linearized

confidence ellipsoid  can be described by (see [5])

Here, the probability factor  where  is the quantile of

the χ2 distribution. The linearized confidence ellipsoid GL(α,χtrue,q,u)  is contained exactly in

a box determined by the confidence intervals

where  . Here, Cii denotes the diagonal elements of the covariance matrix C.

The values   are known as standard deviations of the variables χi.

C = C(x, q, u) = J+

(
I 0
0 0

)
J+T

.
(9)

0( α 1 )≤ ≤

GL(α, xtrue, q, u) =

{
x : x = xtrue + J+

(
η
0

)
, ||η||22 ≤ γ2(α)

}
.

γ2 α( ) χn m2∠
2 1 α∠( )= χn m2∠

2 1 α∠( )

GL(α, xtrue, q, u) ⊂
n

X
i=1

[xtrue
i − θi, x

true
i + θi],

θi Ciiγ α )(=

Cii
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Results of parameter estimation for Candida antarctica lipase on ionic resin ("Novozym")

Applying the methods of parameter estimation described earlier, "Novozym" shows that the

data derived from the initial experiment does not deliver enough information to identify all

parameters, see Table 1. The settings of the initial experiment are defined by the temperature

shown in Fig. 2. The parameter estimation results show that the information received in the

experiment is not at all enough to estimate parameters reliably. Thus we need to design

additional experiments in order to provide sufficiently good data. The theoretical justification

and methods for design of optimal experiments are briefly described in the next section.

Table 1. Estimated values of parameters ± standard deviation after parameter estimation.

Figure 2.  Initial temperature profile

Initial temperature profile

p1 27.86 ± 4.42

p2 48.98 ± 10.92

p3 1.73 ± 2.39 x 105

p4 634.20 ± 806.00 x 106

p5 -1.43 ± 1.50 x 107

p6 -7.50 ± 4.16 x 107

p7 -4.15 ± 0.091

p8 -8.63 ± 2.00

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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OPTIMUM EXPERIMENTAL DESIGN: PROBLEM STATEMENT 
AND NUMERICAL METHODS

In this section we consider the problem of nonlinear optimum experimental design and discuss

a solution approach to this problem.

Experimental design optimization problem

Since the experimental data is randomly distributed, the estimated parameters are also random

variables. Data evaluated under different experimental conditions leads to estimations of

parameters with good or poor confidence regions depending on the experimental conditions.

We would like to find those experiments that result in the best statistical quality for the

estimated parameters and at the same time satisfy additional constraints e.g. experimental costs,

safety, feasibility of experiments, validity of the model etc. 

The aim of optimum experimental design is to construct Nex experiments by choosing

appropriate experimental variables 

q = (q1,...,qNex), and experimental controls u = (u1,..., uNex) in order to maximize the statistical

reliability of the unknown variables under estimation. For this purpose we optimize a design

criterion depending on the variance-covariance matrix C (9). 

The optimum experimental design approach leads to an optimal control problem in ODE

systems of the following form

The constraint (11) describes control and path constraints for each experiment of Nex

experiments. Free variables of the optimization problem are the control profiles ui(t) (e.g.

temperature profiles of cooling/heating) and the time-independent control variables qi (e.g.

initial concentrations, properties of the experimental device) for all experiments. 

min
q,u

Φ(C(y, q, u))

s.t. ci(t, yi(t), p, qi, ui(t)) ≥ 0, i = 1, 2, ..., Nex,

ẏi = fi(t, yi, p, qi, ui), i = 1, 2, ..., Nex,

rcon,i(yi(θ
i
1), ..., yi(θ

i
K〉), p, qi) = 0, i = 1, 2, ..., Nex.

(11)

(12)

(10)
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Since the "size" of a confidence region is described by variance-covariance matrix C any

suitable function of matrix C has to be taken as a cost functional. Typical choices are

Numerical methods

The experimental design optimization problem is a nonlinear constrained optimal control

problem. The main difficulty lies in the non-standard objective function which is nonseparable

and implicitly defined on the sensitivities of the underlying parameter estimation problem, i.e.

on the derivatives of the solution of the ODE system with respect to the parameters and initial

values.

The numerical methods are based on the direct approach, according to which the control

functions are parametrized on an appropriate grid by support functions, the solution of the ODE

systems and the state constraints are discretized. As a result we obtain a finite-dimensional

constrained nonlinear optimization problem which is solved by an SQP method. The main effort

for the solution of the optimization problem by the SQP method is spent on the calculation of

the values of the objective function and the constraints as well as its gradients. 

Efficient methods for derivative computations combining internal numerical differentiation [5]

of the integration method and automatic differentiation of the model functions [8] have been

developed, see [9,10,11]. For more detailed discussion of the numerical methods for nonlinear

optimum experimental design see [11,12].

Results of parameter estimation for Candida antarctica lipase on ionic resin ("Novozym")

with data from additional experiments

Using the methods of optimum experimental design we have optimized 5 additional

temperature profiles. The following set-up has been chosen for the experiments: the duration of

each experiment is 20 h; measurements are taken every half-hour; the temperature profile is

parametrized as follows

Φ(C) = trace(C),

Φ(C) = λmax(C), where λmax denotes the largest eigenvalue of C

Φ(C) = max
i

cii.
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Additionally, there are the following restrictions on the design parameters Ti and slopei.

Results of parameter estimation for "Novozym'' with data from the initial and additional

experiments are presented in Tables 2 and 3. Table 3 shows the estimated values of half-life over

an interesting temperature range. The optimal temperature profiles are presented in Fig. 3.

Figure 4 presents the fits before and after parameter estimation. The results of parameter

estimation show that now we can estimate all half-lives with standard deviation below 30 %.

Table 2. Estimated values of parameters ± standard deviation after parameter estimation.

Table 3. Estimated values of half-life ± standard deviation after parameter estimation.

Initial profile 5 designed + 1 initial profile

p1 27.86 ± 4.42 27.69 ± 0.81

p2 48.98 ± 10.92 49.96 ± 1.97

p3 1.73 ± 2.39 x 105 0.548 ± 0.075

p4 634.20 ± 806.00 x 106 184.88 ± 26.10

p5 -1.43 ± 1.50 x 107 -4.32 ± 0.26

p6 -7.50 ± 4.16 x 107 -6.20 ± 2.20

p7 -4.15 ± 0.091 -8.88 ± 1.59

p8 -8.63 ± 2.00 -11.34 ± 7.54

Temperature [°C] 5 optimal + 1 initial profiles

48.0 1912.01 ± 574.2
50.0 1239.43 ± 266.8
52.0 800.68 ± 121.8
54.0 520.17 ± 57.42
56.0 342.81 ± 30.2
58.0 231.09 ± 17.4
60.0 160.53 ± 10.4

Ti(t) = Ti + slopei(t − ti), t ∈ [ti, ti+1], Ti(ti+1) = Ti+1, ti = 60i, i = 0, ..., 19, t20 = 1200.

293 ≤ Ti ≤ 343, i = 0, ..., 20, −0.12 ≤ slopei ≤ 0.25, i = 0, ..., 19,
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Figure 3. Optimal additional temperature profiles.

A)

Figure 4A.  Model (straigth line) vs. measurements (dashed line) before parameter estimation.
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B)

Figure 4B.  Model (straigth line) vs. measurements (dashed line) after (B) parameter estimation.

DESIGN OF ROBUST OPTIMAL EXPERIMENTS OF NONLINEAR MODELS

As we can see the experimental design optimization problem (10), (11), (12) is formulated for

the assumed parameter values which are, however, only known to lie in a possibly large

confidence region. In this section we discuss how to construct robust experiments, that is

experiments that are less sensitive to parameter uncertainty. We assume that the parameters are

lying in the following ellipsoid around the nominal values of parameters p0

Here Σ is a positive definite matrix. To get a robust experimental design we formulate a worst-

case problem, minimizing over the design variables ξ, the maximal value of φ(C) over the

ellipsoid E

E := E(γ, p0) =
{
p : (p − p0)T Σ−1(p − p0) ≤ γ2

}
.

min
ξ∈Ω

max
p∈E

φ(C(ξ, p)).
(13)
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In this problem, we first consider constraints which do not depend on the parameters. The

remaining (control) constraints are summarized by . The optimization problem (13) is

a semi-infinite programming problem. The solution methods for such problems require the

determination of global optima of nonlinear subproblems [13] which may be computationally

too expensive. In order to compute robust designs we suggest a modified approach. We apply

Taylor expansion w.r.t. p to the min-max objective function:

The inner problem is the maximization of a linear function subject to a convex quadratic

constraint which can be solved explicitly:

This leads to the robust experimental design optimization problem

The second term in the cost function can be interpreted as a penalty for uncertainty in the

parameters. 

Parameter dependent constraints are treated in an analogous way. We substitute the nonrobust

constraints

with the following constraints for the robust experimental design optimization problem.

ξ Ω∈

min
ξ∈Ω

max
p∈E

(
φ(C(ξ, p0)) +

∂

∂p
φ(C(ξ, p0))(p − p0)

)
.

max
p∈E

(
φ(C(ξ, p0)) +

∂

∂p
φ(C(ξ, p0))(p − p0)

)
= φ(C(ξ, p0)) + γ

∥∥∥∥∥ ∂

∂p
φ(C(ξ, p0))Σ1/2

∥∥∥∥∥
2

.

min
ξ∈Ω

(
φ(C(ξ, p0)) + γ

∥∥∥∥∥ ∂

∂p
φ(C(ξ, p0))Σ1/2

∥∥∥∥∥
2

)
.

ψ(ξ, p0) ≤ 0,
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Numerical results

In this section we present numerical results on comparing robust and nonrobust designs for

enzyme reaction kinetics. To illustrate the performance of the method, experiments for

identification of 4 out of 8 parameters were designed in the sequential mode. The idea of the

sequential approach is schematized in Fig. 5.

Figure 5. Sequential approach to experiment design.

For the "true" values of the parameter p1
true = 27.77, p2

true = 50.15, p3
true = 0.55, p4

true = 185.25

the normally distributed data were simulated using initial temperature profile as shown in Fig. 2. 

ψR(ξ, p0) := ψ(ξ, p0) + γ

∥∥∥∥∥ ∂

∂p
ψ(ξ, p0)Σ1/2

∥∥∥∥∥
2

≤ 0.
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The results of parameter estimation based on these data

p1 = 48.61 ± 20.59

p2 = 103.58 ± 52.77

p3 = 0.58 ± 0.10

p4 = 189.69 ± 32.50

were used for the computation of a nonrobust and a robust designs. The diagonal matrix with

diagonal elements of the covariance matrix corresponding to the solution of parameter

estimation problem was chosen as the matrix Σ in the robust design. Using the new optimized

temperature profiles the data were simulated, parameter estimation was repeated with the new

data and further new designs were constructed using the new estimates for the parameters. This

procedure was repeated until we obtained trustworthy parameter estimates, see Table 4.

Table 4. Results of parameter estimation for initial design and 5 non-robust experiments
 (second column) and for initial desgin and 2 robust experiments (third column).

The sequential design of robust experiments after 2 designs provide us with reliable parameter

estimates, while we need 5 nonrobust experiments to get similar quality of the estimates.

Although a computational time for computing a robust experiment is significantly greater than

the time to compute a nonrobust experiment, clearly application of the robust sequential design

makes it possible to reduce the number of real experiments and thus to reduce drastically

experimental costs and the time necessary to identify the parameters.

CONCLUSIONS

Application of advanced methods for parameter estimation in dynamic processes governed by

ODE and for design of robust optimal experiments allows reliable estimation of enzyme

operating stability and the reduction of the number of experiments as well as experimental costs.

"true" values pi ± pi ± 

p1 = 27.77 27.44 ± 0.743 27.63 ± 1.266

p2 = 50.15 49,33 ± 1.980 49.71 ± 3.330

p3 = 0.55 0.620 ± 0.068 0.512 ± 0.072

p4 = 185.25 209.85 ± 24.35 172.26 ± 24.41

cii cii
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