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Abstract

The kinetic modelling of biochemical pathways requires a consistent
set of enzymatic kinetic parameters. We report results from software
development to assist the user in systems biology, allowing the retrie-
val of heterogeneous protein sequence, structural and kinetic data. For
the simulation of biological networks, missing enzymatic kinetic para-
meters can be calculated using a similarity analysis of the enzymes’
molecular interaction fields. The quantitative PIPSA (qPIPSA) meth-
odology relates changes in the molecular interaction fields of the
enzymes with variations in the enzymatic rate constants or binding
affinities. As an illustrative example, this approach is used to predict
kinetic parameters for glucokinases from Escherichia coli based on
experimental values for a test set of enzymes. The best correlation of
the electrostatic potentials with kinetic parameters is found for the
open form of the glucokinases. The similarity analysis was extended
to a large set of glucokinases from various organisms.
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Introduction

One of the aims of systems biology is to provide a mathematical description of metabolic or
signalling protein networks. This can be achieved by constructing a set of differential
equations describing changes in concentrations of compounds with time [1]. Enzyme-
specific parameters, such as ligand binding affinity and catalytic turnover, are needed for
solving these equations. These parameters need to be valid under the desired experimental
conditions. Despite recent developments in enzymatic high-throughput assays, experimen-
tal values of many of the required parameters often are not available for the chosen
organism or enzyme, or have not been determined at the desired temperature or pH [2].

For the construction of a kinetic model, it is essential to have a consistent and reliable set of
enzymatic kinetic parameters. The importance of the uniformity of the measurement and
reporting of enzymatic functional data has been emphasized in [3].

Molecular systems biology deals with the intrinsic molecular interactions and enzymatic
reaction mechanisms of each enzyme involved in the systems biology network [4]. The
generation of quantitative structure–function relationships which relate the enzyme's activ-
ity to molecular interactions between the substrate molecules and critical components of the
enzyme represents one of the challenges of modern enzymology [5].

The SYCAMORE (SYstems biology’s Computational Analysis and MOdeling Research
Environment) is being developed as part of the German systems biology initiative “Hepa-
toSys” [6] (Platform Bioinformatics and Modelling, Groups of Dr Ursula Kummer and Dr
Rebecca Wade, EML Research) and aims at providing guidance to the user in setting up a
biochemical kinetic model, running and analysing the results (see legend of Fig. 1 for
details). When kinetic parameters are absent or inconsistent, structure-based modelling of
the missing kinetic parameters is started.

PIPSA (Protein Interaction Property Similarity Analysis) is used as a means of comparing
the molecular interaction fields of a test set of proteins and relating differences in enzy-
matic rate constants to variations in the electrostatic potentials exerted by the protein. The
PIPSA methodology has been used previously to cluster different proteins according to the
similarity of their electrostatic potentials. Applications include PH domains [7], E2 do-
mains [8], triose phosphate isomerases [9], and Cu,Zn-superoxide dismutases [10]. We
have extended the use of PIPSA to a more quantitative approach (qPIPSA) to relate the
variations of the protein electrostatic potential within a family of enzymes to kinetic
parameters.

The aim of this paper is to present an example of the application of the structure-based
modelling module of the SYCAMORE project. We demonstrate the retrieval of hetero-
geneous protein structural and sequence information from distributed sources. The infor-
mation on a protein from related organisms is then used to estimate the kinetic parameters
for a corresponding protein from a different organism using the PIPSA methodology. This
approach enables the user to detect inconsistent experimental values of kinetic parameters.
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Figure 1. The SYCAMORE (SYstems biology's Computational Analysis and MOd-
eling Research Environment) assists the user in setting up and performing simulations
in systems biology. The user can create a mathematical model by hand or use models
from a depository such as Biomodels [43] or JWS online [44]. During the setup of the
model, experimental kinetic parameters can be retrieved from BRENDA [14] or
SABIO-RK[15]. When experimental parameters are not available for the desired
organism but for a related organism or obtained under different environmental con-
ditions, the modelling of these parameters from protein sequence and structural in-
formation can be initiated. The generated data then flow back into the kinetic model
before the complete model is given to an external simulation engine (such as COPASI
[45]). The final step is the analysis and interpretation of the results of the network
modelling.

As a test case, we apply the method to the discrimination between mammalian and non-
mammalian glucokinases and in particular to the assignment of a Km value to the enzyme
from Escherichia coli. The biochemistry and evolution of glucokinases has been reviewed
in [11 – 13].

Methods

Retrieval of enzymatic structural and kinetic information

The structure-based modelling module within SYCAMORE is a link between the databases
of experimental kinetic data, protein sequence and structure databases and the mathema-
tical kinetic model (see Fig. 1). It is coded in Java as a server–client architecture and
browser-based to allow for maximum portability and ease of accessibility.
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This module is still under development. Currently the user can query the BRENDA [14]
and SABIO-RK [15] databases for existing experimental kinetic parameters. Protein struc-
tural models can be retrieved from the Protein Data Bank (PDB) [16], theoretical models
from ModBase [17] and from the Swiss-Model Repository [18]. Protein sequences are
taken from the SwissProt/UniProt database [19].

The module uses servlets and core classes. The results pages are generated using Java
Server Pages (JSP) which allow static HTML to be mixed with dynamically-generated
HTML pages so that the generated web pages have a dynamic content. The result pages
display in any web browser compliant with XHTML and ECMAscript (Javascript). The
Systems Biology Standard Markup Language (SMBL) [20] was chosen as the file format
standard to communicate between the various applications and modules.

The user has the opportunity to choose retrieved sequence, structural and kinetic data from
the various sources and in the end to review his choice, modify parameters or insert user-
generated alternative values.

Protein interaction property similarity analysis

The structure-based systems biology calculations are performed by comparing molecular
interaction fields such as the electrostatic potential or a hydrophobic field. The PIPSA
method has been described elsewhere [7, 21].

The molecular interaction fields of proteins are compared on a three-dimensional grid over
the superimposed proteins. The difference in the molecular interaction fields can be quan-
tified by the calculation of similarity indices which were originally developed for the
comparison of small molecules. The Hodgkin similarity index detects differences in sign,
magnitude and spatial behaviour in the potential [22, 23].

Generation of protein models

Protein amino acid sequences were taken from the SwissProt database [19]. Multiple
sequence alignment of amino acid sequences was performed using the program ClustalW
[24]. Comparative protein structural modelling was done using Modeller 8v1 [25]. Polar
hydrogens were added using the program WHATIF [26]. The OPLS non-bonded parameter
set was used to assign partial atomic charges and radii. The electrostatic potentials were
calculated with the program UHBD [27]. The linearized form of the Poisson–Boltzmann
equation (LPBE) was solved using the Choleski preconditioned conjugate gradient method.
An ionic strength of 50 mM, a grid dimension of 150 x 150 x 150 �3 and a grid spacing of
1.0 � was employed. The relative dielectric constant of the solvent was 78.0 and that of the
solute was set to 4.0.
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Figure 2. Calculation of molecular fields F1 and F2 on three dimensional cubic grids
for two proteins and definition of the scalar product of the molecular interaction fields
by summing over every grid point on a skin. The Hodgkin similarity index [22,23,46]
is a measure of the pair-wise similarity of the molecular fields.

Results and Discussion

Here we give an illustrative example of the application of structure-based systems biology
for the detection of inconsistent kinetic parameters and the generation of missing para-
meters for use in mathematical modelling of biochemical protein networks.

The conversion of chemical energy in the glycolytic (Emden–Meyerhof) pathway is one of
the best investigated and understood metabolic pathways. The glucokinases (EC 2.7.1.2)
catalyse the first chemical reaction in glycolysis. They phosphorylate glucose at the 6
position by abstracting a phosphate group from ATP. This yields glucose-6-phosphate
and ADP. The virtually irreversible reaction is one of the control sites in glycolysis since
the mammalian glucokinase is not product inhibited.

Glucose + ATP ? Glucose-6-phosphate + ADP (1)

We create here the scenario of a user wanting to model the glucokinase from E. coli by
starting from knowledge about the enzyme in Homo sapiens.
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Retrieval of protein information from distributed resources

In the structure-based estimation of kinetic parameters, the user is faced with the distribu-
tion of necessary data over various resources. The protein information retrieval module
within SYCAMORE simplifies the accession to distributed protein sequence, structural and
kinetic information.

Figure 3. Snapshot of protein information retrieval module within SYCAMORE. It
retrieves heterogeneous protein information such as protein structure, existing experi-
mental kinetic data and sequence information (see text for details).

Figure 3 shows a snapshot of the protein information retrieval module within SYCAMORE.
When querying for the glucokinase from Homo sapiens (SwissProt ID P35557) in Swiss-
Prot, three related protein structures are found: these are the X-ray crystal structures of the
enzyme from Homo sapiens in its closed form (PDB entry 1V4S) and its open form (PDB
entry 1V4T) [28] plus a theoretical model for the human glucokinase (PDB code 1GLK)
based on its homology to the enzyme from yeast. The user may select one of the three
models for subsequent structural modelling.

Below, relevant additional structural information for kinetic modelling from the IntAct [29]
database at EBI are given, such as the interaction of human glucokinase with the glucoki-
nase regulatory protein (GCKR) and the 6-phosphofructo-2-kinase/fructose-2,6-bisphos-
phatase I.
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The next screen displays relevant kinetic information that was found in BRENDA [14]
when searching for enzymes with the same EC number. First data for the glucokinase from
Homo sapiens such as Km values and specific activities for a range of substrates and the
influence of single point mutations on Km are reported. Then data specific to other organ-
isms are also reported.

The user may choose any of the reported parameters for subsequent mathematical model-
ling by clicking on the “use it” button. The user then has the option to review his choice of
parameters, correct or modify them or insert his own parameters manually for the mathe-
matical modelling of the enzyme glucokinase.

PIPSA of the electrostatic potential of glucokinases

Here we present an illustrative case of the structure-based generation of kinetic parameters
from a PIPSA of the electrostatic potential of glucokinases. We analyse the similarity of the
electrostatic potentials of a test set of 8 different glucokinases for which experimental Km

constants for the substrate glucose could be found in the BRENDA database. We set our
focus on the glucokinase from E. coli and demonstrate a procedure to assist the user in the
choice of an appropriate Km value when constructing a kinetic model.

Kinetic constants and comparative protein structural modelling

For the glucokinases from Homo sapiens, Rattus norvegicus, Escherichia coli, Aspergillus
niger, Hansenula polymorpha, Saccharomyces cervisiae, Streptococcus mutans and Zymo-
monas mobilis Km values for the substrate glucose could be found in the BRENDA
database. They all catalyse an identical chemical reaction. However, they do so with very
different substrate binding affinity, represented by the Km value.

The experimental values found in BRENDA are 0.028 mM (S. cerevisiae) [30], 0.05 mM
(H. polymorpha) [30], 0.063mM (Asp. niger) [30], 0.095 mM (Z. mobilis) [31], 0.61 mM
(S. mutans) [32] to 6 mM (H. sapiens) [33] and 7.7 mM (R. norvegicus) [34] and thus cover
a range of more than 2 orders of magnitude.

For the glucokinase from E. coli, the available experimental Km values range from 0.78mM
[35] to 0.15mM [36]. Since no experimental error bars are given, we would like to check
the completeness and consistency of these values. The user has to make a choice when
setting up a kinetic model of glycolysis in E. coli. We apply the PIPSA method to compare
the electrostatic potentials around the active site and correlate with experimental Km values
from other organisms to suggest a value for E. coli.
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Figure 4. Multiple sequence alignment of glucokinases from Homo sapiens, Rattus
norvegicus, Hansenula polymorpha, Saccharomyces cerevisiae, Aspergillus niger,
Escherichia coli, Zymmomonas mobilis and Streptococcus mutans. The amino acid
sequences of the template structures of the open (PDB code 1V4T) and closed (PDB
code 1V4S) [28] forms of the human glucokinases are also given.

Figure 4 shows the ClustalW multiple sequence alignment of glucokinases with the se-
quences from Homo sapiens of the closed (1V4S) and open forms (1V4T) of the enzyme.
The multiple sequence alignment was used to generate protein structural models by map-
ping the target sequences from Homo sapiens, Rattus norvegicus, Escherichia coli, Asper-
gillus niger, Hansenula polymorpha, Saccharomyces cerevisiae, Streptococcus mutans and
Zymomonas mobilis to the template protein structure of the open (PDB code 1V4T) and
closed forms (PDB code 1V4S) of human glucokinase. For each of the generated protein
models, the electrostatic potential was calculated.

Calculation and comparison of the electrostatic potentials for glucokinases

The mammalian glucokinase undergoes a large conformational change upon substrate
binding [28]. Two of the three layers of the small domain of glucokinase rotate at an angle
of 99 � around a hinge region [28]. The substrate glucose binds to the bottom of the deep
cleft between the large domain and the small domain. In the closed form, glucose is
coordinated by residues from the large and the small domains.
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Figure 5. Calculated electrostatic isopotential isosurface at (0.6 kcal mol-1 e-1 of the
open (left) and closed (right) form of the Hexokinase IV from Homo sapiens [28].

Figure 5 shows the calculated electrostatic potential for the open form (1V4T; left in Fig. 5)
and the closed form (1V4S, right in Fig. 5). The two forms differ in electrostatic potential in
particular around the a13 helix which moves in a different direction to the small domain
upon conformational change [28].

Figure 6. Calculated electrostatic potentials of glucokinases from eight organisms for
which substrate Km values were found in the BRENDA database. The isosurfaces are
shown at 0.6 kcal mol-1 e-1 for the open form of the enzyme.
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Figure 6 shows the computed electrostatic potential of the glucokinases in the other
organisms. All have a large negative patch near the ATP binding region (right side) and
a more positive patch on the left. Visual inspection shows that the electrostatic potential of
the glucokinases from Homo sapiens and Rattus norvegicus appear indistinguishable. There
is, however, a large variation in the distribution of the electrostatic potential across the
organisms.

Figure 7:

Left: Conservation of the amino acid residues in the multiple sequence alignment
displayed on the open form of human hexokinase IV (1V4T) using the Consurf
algorithm (47).

Right: Conservation of the calculated electrostatic potential. Pairwise comparison of
the calculated electrostatic potentials.

Figure 7 shows the conservation of the positions of amino acid residues of the eight
glucokinases mapped onto the crystal structure of the human enzyme in its open form
(left). The most conserved amino acid residues are found in the cleft between the large and
small domains: this is the site where the ligand co-crystallizes in the closed form; and a
patch of conserved amino acid residues in proximity to the ligand binding site, potentially
the entry channel of the substrate. Figure 7 (right) shows the conservation of the electro-
static potential. The most conserved patches of the electrostatic potential of the set of
glucokinases, ranging from blue (no conservation), yellow (intermediate) to patches of
high conservation (coloured in red). The most conserved electrostatic region approximately
overlaps with the region of most conserved amino acid sequences between the two protein
domain and may refer to the entry channel of the substrate. The electrostatic potential near
the ligand binding site, however, is not strictly conserved. The variations in the electrostatic
potentials at this spot may explain the large range of Km values between mammalian and
non-mammalian enzymes.
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Figure 8: Tree diagram of the similarities of the electrostatic potentials of glucoki-
nases in a region of radius 15 � around the ligand binding site.

A more quantitative comparison of the electrostatic potentials is possible with the Hodgkin
similarity indices. The pairwise similarities can be easily visualized in phylogenetic trees
[8]. Figure 8 displays tree diagrams of the similarities of the electrostatic potentials in the
test set of eight glucokinases of the open (left) and closed (right) forms. We used a radius of
15 � around the ligand binding site for the comparison of the electrostatic potentials since
the conservation of the active site was also observed in a phylogenetic analysis of the
primary sequences of hexokinases [11].

For the closed form, the nearest neighbours of the glucokinase from E. coli are the
mammalian glucokinases from Homo sapiens and Rattus norvegicus. This would suggest
a Km value of the E. coli glucokinase in the mM range. This assignment seems improbable
since the sequence identity is very low between glucokinases from E. coli and Homo
sapiens (14% overall sequence identity).

The mammalian glucokinases in liver (hexokinases IV) possess a high Km value (6 – 7 mM)
and act as a sensor of high glucose levels in the blood since the physiological role of
glucokinases in vertebrates is significantly different from that of invertebrates. In mamma-
lians, the glucokinase (hexokinase IV) is the liver-specific isozyme with a glucose sensor
function in hepatocytes [11] and represents 95% of the total hexokinase activity of hex-
okinases. The liver enzymes phosphorylate glucose only when it has reached a high con-
centration in the blood. Thus, isozymes in brain and muscle, which have 50-fold lower Km

values, are activated first. Only when glucose is abundant, is the liver isozyme active and
ensures that glucose is not wasted.

When the electrostatic potentials are computed for protein structural models of the open
form (Fig. 8, left), the closest glucokinase to E. coli is from S. cerevisiae and suggests a Km

value around 0.03 mM for E. coli. This predicted Km value is clearly outside the range of
Km values retrieved from BRENDA: 0.15 mM [35] to 0.78 mM [36]. This discrepancy was
analysed further. The glucokinase from E. coli displays only weak similarity to the other
glucokinases. This had been noticed already by Cardenas et al. [37]. The absence of
homology with other hexokinases suggested an early divergent evolution of hexokinases
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in plants, vertebrates, yeast and bacterial hexokinases. The current investigation suggests
that the glucokinase from E. coli is a very specific hexokinase with a predicted very low Km

value of the same order of magnitude as yeast.

The recently solved X-ray structure of the ATP-dependent glucokinase from E. coli dis-
played a RNase H-like fold [38] which is also found for Homo sapiens [28] and yeast [39]
glucokinases and justifies a posteriori the use of the template protein structure from Homo
sapiens despite the low sequence identity.

When searching for additional investigations of the kinetics of the glucokinase from E. coli
that are not yet included in BRENDA, we found a recent report by Millar and Raines of a
Km value of the glucokinase from E. coli of 0.076 mM [40]. This is significantly lower than
the Km values reported previously ranging from 0.15 mM to 0.78 mM.

This supports our assignment of the glucokinase from E. coli to the family of very specific
bacterial glucokinases with a very low Km value: 0.028 mM (S. cerevisiae) and 0.063 mM
(Asp. niger).

In general, we found a better correlation of the kinetic parameters for the open form of the
enzyme. This was also noticed by Xu et al. who correlated calculated interaction energies
of various sugars with measured kcat/Km values [41]. They came to the conclusion that the
substrate sugar molecules are recognized by binding to the open form of glucokinase.

PIPSA of a large set of glucokinases
The previous application of the PIPSA classification of glucokinases was limited to a small
set of eight experimentally characterized organisms. In systems biology one aims at an
understanding of enzymes in context and also across a larger number of organisms.

The investigation of the similarity of the electrostatic potentials of glucokinases was
extended to a larger set of proteins. All protein sequences that were annotated as either
glucokinases or classified with the EC number 2.7.1.2 were aligned according to their
amino acid sequence identity. Sequences which were annotated as polyphosphate glucoki-
nases, ROK (repressor, open reading frame, and kinase) or for which only fragments were
available, were removed. This led to a set of 164 aligned protein sequences. Protein
structural models were generated based on the template structure of the human hexokinase
IV (HXK4_HUMAN) in its open form. Electrostatic potentials were calculated by solving
the linearized Poisson–Boltzmann equation (as described above in detail).

The 164 proteins were classified according to their Hodgkin similarity indices of the
electrostatic potential in a region of 15 � radius around the ligand binding site (see
Fig. 9). The inserts show magnifications of selected glucokinases from E. coli, Yeast and
Homo sapiens.
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The nearest neighbours to E. coli are the glucokinases from E. coli O6, Shigella flexnen,
Salmonella typhi and Salmonella typhimarium. The enzyme from yeast is closest to various
glucokinases from Xylella fastidiosa and Yersinia pestis. From PIPSA of the electrostatic
potentials, one may expect glucokinases from Sparus aurata (Gilthead sea bream), Cypri-
nus carpio (Common carp), hexokinase IV from mouse, Oncorhynchus mykiss (Rainbow
trout) to exhibit similar kinetic parameters to the enzymes from Homo sapiens and R.
norvegicus. Also the glucokinase EMI2_Yeast (Early Meiotic Induction Protein 2 [42] is
predicted to possess similar kinetic parameters. This glucokinase is involved in sporulation
and is required for the full activation of the early meiotic inducer EMI1 [41]. This gluco-
kinase performs a different physiological role from bacterial glucokinases and thus a high
Km value may be expected.

Figure 9: Tree diagram of 164 glucokinases EC 2.1.7.2 classified by their similarity
in electrostatic potential of the open form in a region of radius 15 � around the ligand
binding site.
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Conclusion and Outlook

Structure-based systems biology provides detailed insight into cellular processes at a mo-
lecular level. It is thus complementary to the abstract mathematical modelling of protein
signaling or metabolic networks. The PIPSA method provides a quantitative structure to
function relationship for enzymes. It quantifies the similarity of molecular interactions
between the substrate molecule and the protein active site for the same enzyme from a
large number of organisms. The large-scale application of PIPSA allows the classification
of enzymes previously uncharacterized and the detection of relationships with other en-
zymes.

Furthermore, the PIPSA method can be used to detect outliers from a series of well-
characterized enzymes. For this use it is critical to have:

i) an extensive annotation of experimental conditions
ii) a detailed and consistent set of experimental data.

Further application and extension of the qPIPSA method to predicting enzymatic Km and
kcat/Km values and the comparative modelling of the glycolytic pathway across multiple
organisms is in progress.
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