
Beyond Flat Files: Data Modelling,

Editing, Archival and Interchange

Steffen Neumann

Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental
Biology, Weinberg 3, 06120 Halle, Germany

E-Mail: sneumann@IPB-Halle.de

Received: 12th June 2006 / Published: 31st August 2007

Abstract

Software engeneering today provides tools which minimize the need
for manual coding of the typical components of an application, such
as database, frontend and web application. Visual modelling brings
together users and developers, and allows quick and direct commu-
nication about the topic. In the metabolomics community data models
and XML formats for data interchange such as mzData are currently
emerging. Using these standards as a show case, we present an infra-
structure to support the use of these data standards and the process of
getting there.

Introduction

Most communities in the Life Sciences are facing the problem of how to represent their
data in a suitable way. The perfect data model should be flexible, to represent both standard
and customized experimental set ups, stringent, to allow for validation and error-detection,
machine readable, for storage and retrieval, open to ensure long-term archiving and acces-
sibility, readable by the human eye, for debugging purposes – and of course easy to use.
This contribution gives some experience of implementing software and the infrastructure
for some emerging community data models.

In recent years metabolomics has become an important technology in solving functional
genomics challenges [1] and mass spectrometry (both GC–MS and LC–MS methods) have
been adapted to provide high throughput and broad coverage of metabolites [2, 3]. Large-

155

http://www.beilstein-institut.de/escec2006/proceedings/Neumann/Neumann.pdf

ESCEC, March 19th – 23rd, 2006, R�desheim/Rhein, Germany
Beilstein-Institut



scale metabolomics experiments can produce huge amounts (up to 1 TB per machine per
year) of raw data. Structured storage is the key to efficient access to the data for further
processing and analysis. In addition to raw mass spectrometry data experimental meta-
information is needed to match and compare results from different experiments. A stan-
dardized data exchange format allows community-wide collaboration and provides the
basis for the large training sets needed in machine learning approaches.

Flat Files have been a commonly used storage model for biological data in the past years.
For MS data exchange and as a vendor neutral format, both plain text peaklists or the
(binary) netCDF format are being used. Both provide very little metadata – if at all – about
the measurement set up, such as machine parameters, software used or by whom the
experiment had been conducted. All of this information becomes important if the data is
going to be archived for later (re-)processing. However, this requires parsers and converters
for each client application processing the data.

Community-wide accepted data standards for interchange are currently emerging, such as
mzXML[4] or mzData[5] in the context of the Proteome Standards Initiative (PSI). Con-
verters from proprietary vendor file formats to mzData exist for e. g. Applied Biosystems,
Bruker, Thermo Finnigan etc. For details see the web site of the Sashimi project1 and the
PSI2. The Architecture for Metabolomics (ArMet) describes both metadata and results of
metabolomics experiments [6], and is compliant with the recommended Minimum Informa-
tion about a Metabolomics experiment (MIAMET)[7]. ArMet has been used in the Setup-X
database [8]. All these emerging standards and data models can be used with current
software engineering technologies.

The formalism of choice to describe these data models is a UML (class) diagram, which
shows the “things” or more formally objects that are to be modelled. Examples in Fig. 3 are
the User or a Peaklist. Each object has a set of named attributes of a given data type, such
as Name of type String or Creation_Date of type Time Stamp in the example.

An instance of this data model consists of the set of objects with values assigned to the
attributes. The purpose of a data exchange format is to allow transfer, without loss of
information, to other pieces of software or even remote sites. The conversion process is
also called serialization.

The Extensible Markup Language (XML) is a well-structured markup language. Content
encoded in XML can easily be read by XML parsers, which exist for virtually any pro-
gramming environment. An example of XML is shown in Fig. 1.

156

Neumann, S.

1 http://sashimi.sf.net/
2 http://psidev.sf.net/ms/



Figure 1. XML excerpt of an mzData entry. Information is given either as an attribute
(like cvParam) or in the body (like IPB Halle) of an attribute.

Modelling

Regardless of which software development process (e. g. Waterfall or Extreme Program-
ming) is adopted, during the early phase the purpose of the system needs to be defined. This
can be done by describing typical use cases or requirements that the software has to fulfil.
An example of such a use case for a repository system is given in Fig. 2.

Figure 2. Use Cases for a repository system, with the user and the repository-institu-
tion as actors, and the two tasks edit/verify and upload as use cases. The connecting
lines are annotated with the role an actor plays.

157

Beyond Flat Files: Data Modelling, Editing, Archival and Interchange



The actual data model should be created in close dialogue with the customers or users. A
suitable model representation also for discussion are UML Class Diagrams. Initially, all
“things” of interest should be collected, which will then usually end up as objects or entities
in the final model. Next, their relationships have to be defined, such as “Experiment
contains measurements” or “A Paper has one corresponding author”. The cardinality spe-
cifies that an author is needed for a paper, otherwise it will be rejected.
For data interchange, files need to be exported and imported on different current and future
hardware (Intel, PowerPC) and operating systems (Windows, Unix and others) or sent over
networks such as the internet, so the file representation has to ensure that any differences in
encoding are either recorded for special treatment or that only the minimal consensus is
used. XML is such a file format. The structure of the content can be described using either
a Document Type Definition (DTD) or – more powerful in its expressiveness – an XML
Schema Definition (XSD).

Collaborative Development

For the success (or community-wide acceptance) of a data standard a large body of initial
contributors and supporters is essential. The development should adopt the release-often-
release-early approach also taken in many open source software projects, mentioned as one
of the key points in Eric Raymonds essay “The cathedral and the bazaar” [9]. This will
invite a broad range of comments and possibly fixes to the development version of a
project.

This process of developing open standards and related open source software differs from
commercial software development. Without the personal contact and meetings held in a
company, there is a need for an efficient collaboration platform, wich supports at least a
code repository for sharing the current development, keeping the associated change-logs
and allows release management. The other important task is to foster communication
between the developers, hosting mailing lists (or equivalent functionality) with archives
and search facilities.

The actual choice of platform depends on availability and personal opinion, and can vary
between a general-purpose platform such as SourceForge3 or more targeted environments
such as ProteomeCommons Project4

158

Neumann, S.

3 http://www.sourceforge.net/
4 http://www.proteomecommons.org



MS Data Model:Mzdata

Figure 3. MzData data model. Root object is mzData class, which has descriptive
elements and MS data with their own meta-data.

The mzData standard [10] has been designed over the past two years by the MS working
group of the Proteome Standards Initiative (PSI), with contributions from both academic
and industrial members. It is intended mainly as a file exchange format and shares some
features with the mzXML format which has been developed initially at the Institute for
Systems Biology in Seattle (ISB).

A UML view of the mzData schema is shown in Fig. 3, which has reached version 1.05
since January 20055. The schema covers an administrative description (such as a contact
person or sample ID), a set of mass spectrometry relevant parameters (instrument descrip-
tion, ion source, resolution etc.) and a description of the software (-pipeline) and relevant
arguments that have been involved in creating the file at hand. Finally, the model contains
(a set of) base64 encoded fields with the binary representation of the peaklists (mass,
intensity and optionally further supplementary data, e. g. peak quality etc.).

The files are created either from the instrument software directly, or through converters for
the instrument specific file formats to mzData. Sometimes, where only support for the
mzXML format is available, mzXML can be used as an intermediate with a subsequent
conversion through an mzXML to mzData converter. Up to date information is available on
the respective project web sites.

159

Beyond Flat Files: Data Modelling, Editing, Archival and Interchange

5 A revision of mzData is under review, and expected later in 2006.



Sample Implementation

The implementation is focused around the mzData model, since mzData has been created
and described through a model in the Unified Modeling Language (UML) (see Fig. 3) and
is available as XML schema. This description includes data types, classes, inheritance and
constraints. First we describe the use cases for a simple mass spectrometry repository, then
details on the third-party libraries and components are shown.

Use cases
The following use cases briefly define which actions should be supported by the infra-
structure and applications for a MS repository. The six use cases underlying the imple-
mented applications are:

Use Case1: Preparation for submission
A step which is necessary after an experiment has been performed, and the raw data has
been converted to mzData. Depending on the converter, some fields might be filled with
default or dummy values, such as <institution\s) Not set </institution\s)
or <cvParam cvLabel=\)psi\) accession=\)PSI:1000002\) name=\)-
SampleName\) value=\)test sample\)/\s) Such values need to be edited be-
fore uploading to a repository: the biologist loads the generated mzData file into an editor
and checks the metadata. Once these have been corrected and fields added, the file needs to
be verified against the schema and the defined constraints. If necessary, the file has to be
edited until it passes validation.

Use Case 2.1: Submission of data
This involves both the biologist and the repository system. The biologist selects a file for
upload to the submission form of the repository via a normal web browser. The repository
validates the data against the schema and accepts or rejects the file. Finally, the data is
persisted in the RDBMS.

Use Case 2.2: Batch import
Batch import is needed by the administrators if a large collection of data files need to be
added to the database. A command line tool reads the files and persists them in the
database.

Use Case 3: Curation of data
This is performed by the repository's curators, and is necessary if data needs to be changed
after submission upon request, or to ensure the data quality. The curator connects to the
database, selects an entry and reviews the corresponding values. Changes are persisted in
the database, and a validation step guarantees consistency with the mzData schema.

Use Case 4: Browsing the repository
Allows members of the community to list and search the data in the public repository, and
to download the corresponding XML file.

160

Neumann, S.



Use Case 5: Processing of stored MS data
A user can request this through the XCMS tool at the repository web site. After browsing
the repository as described in Use Case 4, the (set of) mzData entries for processing is
selected, and XCMS-specific parameters are adjusted. The raw MS signals are processed,
retention times are aligned onto a common basis and the results are presented both in a
tabular and graphical form.

Software Choices

Creating such a large system would be impossible without (re-)using a range of third-party
libraries and tools. In this section I describe those that we have chosen for our MetWare
system.

The type of databases most commonly used today are Relational Database Management
Systems (RDBMS). The data is stored in tables, where each row is an entry, having its
attribute values in the columns. Data manipulation and queries are formulated in the
Structured Query Language (SQL), which declares 1) which tables are used in a query,
2) how they are to be joined, and 3) which attributes are extracted.

The connection between the database and the clients is done though the Java Database
Connectivity (JDBC) for Java based standalone clients or the Web frontend, or via Open
Database Connectivity (ODBC) libraries for non-Java clients. These layers eliminate the
need to use proprietary client APIs and wrap them if the database is exchanged for a
different brand. Though the connection is vendor-independent, the SQL dialects are not,
and common pitfalls exist when e.g. porting a MySQL query to Oracle. Another layer of
indirection introducing database adapters can convert generic query statements into the
vendor-specific dialect.

Model Driven Architecture

In a Model Driven Architecture the data model is defined as a Platform Independent Model
(PIM) and afterwards transformed into a Platform Specific Model (PSM) for a specific
architecture and language.

The Eclipse Modelling Framework6 provides code generation facilities for Java classes
implementing the model, adapters for viewing, change notification and undo capabilities
and a basic editor with validation against the model schema. EMF has been used to import
the mzData model and create the model implementation and editor. However, the EMF
itself does not provide database persistence.

161

Beyond Flat Files: Data Modelling, Editing, Archival and Interchange

6 http://www.eclipse.org/emf/



Figure 4. Generated Editor for mzData. The entry is shown as a tree-view, with
properties (values) of the tags shown at the bottom of the window. Context sensitive
menus provide schema-compatible insertion of children or siblings and the verifica-
tion of a (sub-)tree.

The persistence of the EMF objects is handled through an object relational mapping. Java
Data Objects (JDO) from Sun7 offer access to different data stores and manage transac-
tions. Persisted data can be queried and transformed into native Java programming lan-
guage objects. JPOX8 is the reference implementation of the JDO2.0 specification and can
attach to most available relational databases. The eclipse plugin from Springsite9 generates
the metadata for JDO and integrates code that readily allows the editor frontend to be used
on data stored in the database.

The presentation layer of the web application is implemented using Java Server Faces
(JSF) from Sun10, which provide the framework for handling user sessions, lifecycle of
backing objects and navigation between the pages. JSF Tag libraries provide additional
widgets which can be used to present tree views, show popup help or integrate a layout
templating engine.

162

Neumann, S.

7 http://java.sun.com/products/jdo/
8 http://www.jpox.org/
9 http://elver.org/
10 http://java.sun.com/javaee/javaserverfaces/



Data Processing

For analysis software written in Java that can readily incorporate and use the JDO libraries,
data access can be done in the JDO Query Language (JDOQL), similar to the SQL query
language.

For signal processing tasks mentioned in Use Case 5 (alignment of retention time shifts and
higher level analysis) we integrate a backend service using the XCMS package from the
statistics software R and Bioconductor [11] project. XCMS performs peak picking, reten-
tion time alignment of multiple LC–MS or GC–MS runs and generates a list of differential
mass signals. Communication between R and the application server is done via the Rserve
protocol11. To connect XCMS to the database backend, we created SQL queries which
retrieve the binary data from the RDBMS and feed it into the modified mzData parser. For
a detailed description of XCMS see [12].

Results

We have focused on the creation of the backend storage and applications for the use cases
Use Case 1 to Use Case 3. In the following paragraphs we describe first experience with the
implementation.

163

Beyond Flat Files: Data Modelling, Editing, Archival and Interchange

11 http://stats.math.uni-augsburg.de/Rserve/



Figure 5. The web interface for the mzData model, showing a part of the tree view.
Example of XCMS output: aligned raw data for a differential mass signal.

The editor for Use Case 1 (preparation of mzData XML files for submission) was the first
to be finished using EMF. A screenshot is shown in Fig. 4. It can easily handle data files of
around 100 MB, which had been acquired on our LC–MS set up using an Applied Biosys-
tems QStar mass spectrometer and were transformed from the instrument-specific wiff
format to mzData with a vendor supplied converter. The validation of said 100 MB file
is completed in less than a second and is no additional burden to the biologist. The editor
can be downloaded at http://msbi.ipb-halle.de/.

The persistence enabled Editor used for Use Case 3 (Curation) that connects to the RDBMS
via JDO offers the same functionality as the standalone version. Since lazy loading is
implemented, only the relevant parts of the data are requested from the database. Even
large collections can be accessed this way.

The web-system is currently being evaluated and improved to provide a biologist-friendly
user interface design for the outlined use cases Use Case 4 and Use Case 5, with modules
(see Fig. 5) existing for both of them. The architecture of the system (application-, R-
statistics- and database server) allows for an easy integration of high-level analyses. Pro-
totypes for these modules are included in the web application.

164

Neumann, S.



Conclusion

The chosen data standards are currently gaining a wider acceptance in the metabolomics
community. A flexible software development process is necessary to accommodate fre-
quent changes without the need for manual adaption of the resulting software. The overall
system consists of the database, R server and web application server, all of which can run
on different machines. To scale to a large number of concurrent users, all three services can
be run on a cluster of machines, sharing the load. A common filesystem layout is not
needed.

We provide the service to biologists working in our institute and close collaborators. A
demo database is available at http://msbi.ipb-halle.de/. In the future we plan to implement a
similar system for the ArMet metadata, and tight integration of externally controlled
vocabulary and ontologies.

Projects starting a standardization effort should consider modelling their data on a public
platform and invite other parties to comment or even participate. Getting the actual model
“right” (flexible, stringent, machine-/human-readable and easy to use) can be expected to
be the hardest task. The standard should be closely followed by software implementing data
capture and handling, with the database access coming last. The MDA approach makes it
possible to recreate the necessary code basis and backend database with minimal manual
coding, since the data standard is hopefully going to evolve.

Acknowledgements

Nigel Hardy, Helen Jenkins, Chris Taylor, Kai Runte and many others for the ArMet and
MzData models. Dierk Scheel, J�rgen Schmidt for their valuable discussions on mass
spectrometry and biology.

The work is supported under BMBF grant 0312706G.

References

[1] Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., Kell, D.B.(2004)
Metabolomics by numbers: acquiring and understanding global metabolite data.
Trends Biotechnol. 22(5): 246–252..

[2] Roepenack-Lahaye, E.v., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., Wessjo-
hann, L., Schmidt, J., Scheel, D., Clemens, S. (2004) Profiling of Arabidopsis
secondary metabolites by capillary liquid chromatography coupled to electrospray
ionization quadrupole Time-of-Flight mass spectrometry. Plant Physiol. 134:548–
559.

165

Beyond Flat Files: Data Modelling, Editing, Archival and Interchange



[3] Roessner, U., Wagner, C., Kopka, J., Trethewey, R., Willmitzer, L. (2000) Techni-
cal advance: simultaneous analysis of metabolites in potato tuber by gas chromato-
graphy-mass spectrometry. Plant J. 23:131–142.

[4] Pedrioli, P.G.A., Eng, J.K., Hubley, R., Vogelzang, M., Deutsch, E.W., Raught, B.,
Pratt, B., Nilsson, E., Angeletti, R.H., Apweiler, R., Cheung, K., Costello, C.E.,
Hermjakob, H., Huang, S., Julian, R.K., Kapp, E., McComb, M.E., Oliver, S.G.,
Omenn, G., Paton, N.W., Simpson, R., Smith, R., Taylor, C.F., Zhu, W., Aebersold,
R.(2004) A common open representation of mass spectrometry data and its applica-
tion to proteomics research. Nature Biotechnol. 22(11):1459–1466.

[5] Orchard, S., Hermjakob, H., Binz, P., Hoogland, C., Taylor, C., Zhu, W., Julian,
R.J., Apweiler, R.(2005) Further steps towards data standardisation. Proteomics
5(2):337–339.

[6] Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A.R., Taylor, J., Fiehn, O.,
Goodacre, R., Bino, R.J., Hall, R., Kopka, J., Lane, G.A., Lange, B.M., Liu, J.R.,
Mendes, P., Nikolau, B.J., Oliver, S.G., Paton, N.W., Rhee, S., Roessner-Tunali, U.,
Saito, K., Smedsgaard, J., Sumner, L.W., Wang, T., Walsh, S., Wurtele, E.S., Kell,
D.B. (2004) A proposed framework for the description of plant metabolomics
experiments and their results. Nature Biotechnol. 22(12):1601–1606.

[7] Bino, R., Hall, R., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B., Mendes,
P., Roessner-Tunali, U., Beale, M., Trethewey, R., Lange, B., Wurtele, E., Sumner,
L. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci.
9(9):418–425.

[8] Fiehn, O.S.M., Wohlgemuth, G. (2005) Automatic annotation of metabolomic mass
spectra by integrating experimental metadata. In: Proceedings of DILS 2005, no.
3615 in Proc. Lect. Notes Bioinformatics, pp.224–239. Springer.

[9] Raymond, E.S. (1999) The Cathedral and the Bazaar. O'Reilly & Associates, Inc.,
Sebastapol, CA, USA.

[10] Orchard, S., Taylor, C., Hermjakob, H., Zhu, W., Julian, R., Apweiler, R. (2004)
Current status of proteomic standards development. Expert Rev. Proteomics
1(2):179–183.

[11] Gentleman, R.C., Carey, V.J., B DM, Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S.,
Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith,
C., Smyth, G., Tierney, L., Yang, J.Y. H., Zhang, J. (2004) Bioconductor: Open
software development for computational biology and bioinformatics. Genome Biol.
5:R80, [[http://genomebiology.com/2004/5/10/R80]].

[12] Smith, C., Want, E., O'Maille, G., Abagyan, R., Siuzdak, G. (2006) XCMS: Proces-
sing mass spectrometry data for metabolite profiling using nonlinear peak align-
ment, matching and identification. Analyt. Chem. 78(3):779–787.

166

Neumann, S.


