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ABSTRACT

The dynamic behaviour of metabolic networks is determined by the
kinetic properties and the cellular levels of the enzymes and transpor-
ters involved. Changes in the concentrations of enzymes can be as-
sessed by proteomics measurements or — more indirectly — by gene
expression analyses. However, a straightforward interpretation of such
data with respect to metabolic functions of the cell is difficult as a
simple correlation between changes of enzyme levels and changes of
fluxes in a metabolic network does not exist. Here we outline a
theoretical concept to exploit information on changes of enzyme con-
centrations for predicting changes of stationary fluxes and this way to
characterize changes in the functional status of cells or tissues. The
basis of our concept is a novel variant of flux-balance analysis which
we call MinMode-decomposition. The basic idea of this concept is to
approximate flux distributions in metabolic networks as linear combi-
nations of functionally motivated minimal flux modes (MinModes).
They are defined as minimal flux modes supporting a unit flux
through only one of the target reactions of the network. This theore-
tical concept will be applied to metabolic networks of bacteria
(Methylobacterium extorquens) and human red blood. Based on simu-
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lated data we demonstrate that a good prediction of observed flux
changes can be achieved if the decomposition of flux changes into
MinModes is performed such that a maximal correlation with ob-
served changes in enzyme activities is accomplished.

INTRODUCTION

All cellular functions are ultimately linked to the presence of metabolites (such as proteins,
nucleotides, fatty acids, phospholipids etc.) produced by the so-called metabolic network
comprising thousands of enzyme-catalysed chemical reactions and carrier-mediated trans-
port processes. The rate (herein called flux) through a given process, i.e. the amount of
material chemically converted or transported per time unit, is controlled by various reg-
ulatory mechanisms. The set of all fluxes in a metabolic network is called flux distribution.
The flux distribution may dramatically change with changing functional status of the cell
(e. g. turning on the glycolytic flux when switching from the resting to the working muscle).
It is an important goal of quantitative biochemistry to determine the flux distribution that
determines the functionality of the cell. Such studies may help to reveal the relative
importance of a specific enzyme and to predict the impact on the flux distribution if the
enzyme is not active, e.g. due to a mutation or due to the administration of an enzyme
inhibitor. The latter aspect is of central importance for the development of novel drugs
interfering with the cellular metabolism.

Experimental determination of metabolic flux rates by means of tracer studies is time-
consuming and tedious. Therefore, various mathematical concepts have been developed to
analyse the full spectrum of flux modes possible in a metabolic network (structural analy-
sis) or to predict flux distributions (semi-quantitative analysis). The common basis for all
these concepts is the stoichiometric matrix S =(S;;) representing the number of molecules of
metabolite (i) formed or utilized in reaction (j). The stoichiometric matrix S is a mXxn
matrix where m corresponds to the number of metabolites and n is the number of reactions
for which at least one catalysing enzyme is available in a given cell type [1]. The presence
of a particular reaction can be evidenced by biochemical studies or — with some precaution
— deduced from proteomic or genomic data [2—5].

Most modelling approaches assume the spatial distribution of metabolites to be homoge-
neous so that the kinetic behaviour of the network can be described by a system of ordinary
differential equation systems,

dx]
[dt ]:ZSU Vi M

=

[Xi] is the concentration of the i-th metabolite (i=1,2,...,m) and v; denotes the flux through
the j-th reaction (j=1,2,...,n). The fluxes v; constitute the so-called flux vector v=(vj), in
this paper referred to as a flux distribution. For quasi-stationary metabolic states where
changes of the external conditions of the cell (e.g. changes of substrate concentrations or
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hormonal effectors) are slow compared with the characteristic time-dependent response of
the intra-cellular metabolism, a further simplification in the mathematical description of the
network can be achieved by calculating the stationary solution of equation system (1),

'8, v, =0 @
j=1

The most advanced and satisfactory modelling approach is to solve the equation systems
(1) or (2) with explicit flux vector v composed of rate equations relating the fluxes to the
concentrations of the metabolites and external signals. However, such a straightforward
modelling approach requires detailed knowledge of the kinetic properties of each partici-
pating enzyme. Even for the relatively simple metabolic network of bacteria as, for exam-
ple, Escherichia coli this information is currently only available for the minority of en-
zymes involved. Therefore, computational studies of whole-cell metabolic networks de-
mand alternative mathematical concepts. Existing non-kinetic concepts can be subdivided
into two categories: Structural methods of network analysis and flux-balance analysis
(FBA). Structural network analysis aims at exploring the full set of flux modes that may
exist in a network with known stoichiometry. Simply speaking, these methods provide an
overview of the many routes along which a given metabolite can be converted into another
metabolite. Various algebraic concepts have been developed to define a basic set of
“fundamental” flux modes which linearly combine to all possible flux modes in the net-
work [1, 6, 7]. The definitions of such basic flux modes differ in the way that the reversible
reactions are partitioned in forward and backward rates [8]. The two most prominent
“fundamental” sets of flux modes are the so-called elementary modes [7] and the extremal
pathways [6]. They have been used to re-define metabolic pathways [9], to check the
robustness of the metabolic network against enzyme knock-outs [10, 11], the identification
of thermodynamically infeasible cycles [12, 13] and the determination of so-called minimal
cut sets, i.e. minimal sets of enzymes that have to be knocked out in order to completely
abolish the flux through a given set of reactions [14]. The main obstacle in the application
of structural analyses to large networks is the enormous number of possible flux modes
arising from the combinatorial multiplicity with which single reactions can be composed to
a longer route. For example, for a simplified metabolic network of Escherichia coli con-
sisting of 106 reactions and producing five different end products from one initial substrate,
27100 elementary modes exist. Addition of three further initial substrates increases the
number of elementary modes to 507632 [15]. This combinatorial explosion [16] implies
that basic mode sets for networks with several hundreds of reactions cannot be calculated
on commonly available computers. A lot of effort has been put into the development of
faster algorithms to reduce computation time [15]. However, even if better algorithms
allow the computation of fundamental modes for larger networks, inspection of all these
modes and evaluation of their physiological significance remains extremely difficult. At-
tempts have also been undertaken to decrease the size of fundamental mode sets by
incorporating additional constraints, for example, transcriptional regulation and environ-
mental conditions [17] or kinetic and physiological feasibility [18, 19] into the computing
algorithm. However, the formulation of such constraints requires profound a priori knowl-
edge of physiological and regulatory details.
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Besides structural network analyses, the concept of flux-balance analysis (FBA) has be-
come a widely used method to estimate unknown fluxes in metabolic networks [20]. FBA
postulates an objective function relating the flux distribution to a specific physiological
function of the cell and to determine a flux distribution that optimizes this objective
function. The idea behind this approach is that cells are capable of setting up an optimal
flux distribution to produce a functionally relevant metabolic output. Most applications of
FBA have used an objective function that considers only a single cardinal function of the
cell as, for example, the accumulation of cell material (biomass) during the S-phase of the
cell cycle. However, even primitive cells have to generate a metabolic output that simulta-
neously meets several functional demands. To overcome the restriction of FBA to mono-
functional objective functions we have recently proposed the principle of flux minimization
[21-23]. According to this principle, functionally relevant target fluxes, i.e. fluxes gen-
erating metabolites that are either used as building blocks for the synthesis of complex
biomolecules or exported, should be accomplished with a minimal sum of internal network
fluxes.

This work presents some ideas how the concept of structural network analyses can be
unified with the concept of flux-minimization. As exemplary metabolic networks we will
consider the central metabolism of Methylobacterium extorquens and the redox- and energy
metabolism of human erythrocytes: Both networks have already been studied in previous
work of our group [24, 25]. In the first part of this paper we show, only very few
elementary modes are actually needed to decompose flux distributions calculated by flux-
balance methods. However, the decomposition of the FBA solution into elementary modes
is not unique and not all of the fundamental modes used in this decomposition allow for a
clear physiological interpretation. Therefore, in the second part of the paper we propose a
new type of fundamental modes which we call minimal flux modes (or short: MinModes).
They are defined as minimal flux modes required to maintain a unit flux through a single
target reaction of the network. According to this definition, there are only as many Min-
Modes as there are functionally relevant target fluxes (17 in the network of Methylobacter-
ium and 4 in the network of erythrocytes). Although MinModes do not form a basis in strict
mathematical sense the examples considered in this article suggest that they can be linearly
combined to provide a good approximation of a given flux distribution. The striking
advantage of such a representation in terms of MinModes is that the coefficients used for
the linear combination have a clear physiological meaning: they represent the metabolic
output of the network in a given steady state and thus can be used as a measure for the
functionality of the cell. Parts of these results have already been published [26].

In the third part of this article we study the relationship between changes of enzyme levels
and changes in the flux distribution. As consistent data sets encompassing changes in the
expression levels of metabolic enzymes and measured flux changes in the network are not
available yet, we settle this study on simulated data. We take the change of the v,,,, value
of an enzyme as a measure for the change of its concentration. Subsequently we use the
validated kinetic model for the erythrocyte network to simulate changes of the steady state
fluxes elicited by changes in the v,,,, values of the participating enzymes. As expected,
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there is no simple correlation between these two changes. However, using the decomposi-
tion of flux changes into MinModes as a side constraint we show that the prediction of flux
changes from changes of enzyme levels can be greatly improved.

EXEMPLARY NETWORKS

The theoretical concepts considered in this paper will be applied to metabolic networks of
two different cell types: The bacterium Methylobacterium extorquens AMI1 (in the follow-
ing referred to a B-network) and the human erythrocyte (in the following referred to as E-
network). The metabolic scheme for the B-network was originally published by Van Dien
[24, 25]. The scheme used in this paper contains some corrections which we have made in
the light of recent findings [27, 28]. The B-network comprises 68 internal chemical reac-
tions (43 of which are considered reversible), 8 exchange processes with the extracellular
medium (for methanol, succinate, carbon dioxide, formate, formaldehyde, pyruvate, gly-
cine, and serine) and 17 target reactions producing those metabolites required for biomass
synthesis (see Table 1 for more details). While the model includes methanol, succinate, and
pyruvate as alternative substrates, in all calculations methanol was considered the only
available carbon source.

The reaction scheme for the E-model was originally published by Heinrich, Schuster and
Holzhiitter [29, 30]. It comprises 22 internal reactions, 4 exchange processes (for glucose,
phosphate, pyruvate and lactate) and 4 target reactions delivering those metabolites which
are essential for the integrity and functionality of the erythrocyte (2,3-bisphosphoglycerate,
ATP, glutathione and phosphoribosyl pyrophosphate). For the E-network a detailed kinetic
model is available [30] which takes into account all known kinetic properties of the
participating enzymes. This kinetic model allows the computation of reliable stationary
and time-dependent metabolic states which can be compared with results obtained by the
FBA outlined in this paper. The reaction schemes for both networks are shown in Fig. 1.
The involved reactions are explained in the legend of this figure.
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Figure 1. Metabolic networks considered in this article.

A. B-network: Reaction scheme of the central metabolism of Methylobacterium ex-
torquens. The reaction arrows point in the direction of the net reaction under standard
conditions. Compound names in red italic indicate utilization or generation of the
corresponding metabolite during biomass production, blue arrows indicate exchange
fluxes with the external environment. Cofactors have been dropped for better read-
ability. The complete reaction scheme is shown in TablelA. The scheme is based on
information outlined in [21] and derived from the KEGG data base (http://www.ge-

nome.ad.jp/kegg/).
Reactions/Enzymes:

I-methanol dehydrogenase (1.1.1.244), 2-not catalysed, 3-methylene H4F dehydro-
genase (MtdA)(1.5.1.5), 4-methenyl H4F cyclohydrolase (3.5.4.9), 5-formyl H4F
synthetase (6.3.4.3), 6-formate dehydrogenase (1.2.1.2), 7-formaldehyde-activating
enzyme, 8-methylene HyMPT dehydrogenase (MtdB), 9-methylene HyMPT dehydro-
genase (MtdA) n/a, 10-methenyl H4,MPT cyclohydrolase (3.5.4.27), 11-formyl
MFR:H4MPT formyltransferase (1.2.99.5), 12-formyl MFR dehydrogenase
(1.2.99.5), 13-serine hydroxymethyltransferase (2.1.2.1), 14- serine-glyoxylate amino-
transferase (2.6.1.45), 15-hydroxypyruvate reductase (1.1.1.81), 16-glycerate kinase
(2.7.1.31), 17-enolase (4.2.1.11), 18-PEP carboxylase (4.1.1.31), 19-malate dehydro-
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genase (1.1.1.37), 20-malate thiokinase (6.2.1.9), 21-malyl-CoA lyase (4.1.3.24), 22-
pyruvate dehydrogenase (1.2.4.1), 23-citrate synthase (2.3.3.1), 24-aconitase (4.2.1.3),
25-isocitrate dehydrogenase (1.1.1.42), 26-a-KG dehydrogenase (1.2.1.52), 27-succi-
nyl-CoA synthetase (6.2.1.4), 28-succinyl-CoA hydrolase (3.1.2.3), 29-succinate de-
hydrogenase (1.3.5.1), 30-fumarase (4.2.1.2), 31-phosphoglycerate mutase (5.4.2.1)
,32-phosphoglycerate  kinase (2.7.2.3), 33-glyceraldehyde-3-P dehydrogenase
(1.2.1.12), 34-aldolase (4.1.2.13), 35-fructose-1,6-bisphosphatase (3.1.3.11), 36-phos-
phoglucose isomerase (5.3.1.9), 37-glucose-6-phosphate dehydrogenase (1.1.1.49),
38 — 6-phosphogluconate dehydrogenase (1.1.1.44), 39 transketolase (2.2.1.1), 40-
transaldolase (2.2.1.2), 41- transketolase (2.2.1.1), 42-malic enzyme (1.1.1.38), 43-
pyruvate kinase (2.7.1.40), 44-pyruvate carboxylase (6.4.1.1), 45-PEP carboxykinase
(4.1.1.32), 46- b-ketothiolase (2.3.1.16), 47- acetoacetyl-CoA reductase (NADPH)
(1.1.1.36), 48- PHB synthase (2.3.1._), 49- PHB depolymerase (3.1.1.75), 50 b-hydro-
xybutyrate dehydrogenase (1.1.1.30), S5l-acetoacetate-succinyl-CoA transferase
(2.8.3.5), 52-d-crotonase (4.2.1.17), 53 l-crotonase (4.2.1.17), 54-acetoacetyl-CoA re-
ductase (NADH) (1.1.1.35), 55-crotonyl-CoA reductase (1.3.1.8), 56-unknown path-
way, S7-propionyl-CoA carboxylase (6.4.1.3), 58-methylmalonyl-CoA mutase
(5.4.99.2), 59-NADH-quinone oxidoreductase (1.6.99.5), 60-cytochrome oxidase
(1.10.2.2), 61- ubiquinone oxidoreductase (1.5.5.1), 62-ATPase, 63-NDP kinase
(2.7.4.6), 64-transhydrogenase (1.6.1.2), 65—3-phosphoglycerate dehydrogenase
(1.1.1.95), 66-phosphoserine transaminase (2.6.1.52), 67-phosphoserine phosphatase
(3.1.3.3), 68-glutamate dehydrogenase (1.4.1.4)
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B. E-network: Reaction scheme of the energy- and redox metabolism of human
erythrocytes.
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Reaction/Enzymes:

1-glucose transporter GIcT, 2-hexokinase HK (2.7.1.1), 3-phosphohexose isomerase
GPI (5.3.1.9), 4-phosphofructokinase PFK (2.7.1.11), 5-aldolase ALD (4.1.2.13), 6-
triosephosphate isomerase TPI (5.3.1.1), 7-triosephosphate dehydrogenase (NAD)
GAPDH (1.2.1.12), 8-phosphoglycerate kinase PGK (2.7.2.3), 9-bisphosphoglycerate
mutase DPGM (5.4.2.4), 10-bisphosphoglycerate phosphatase DPGase (3.1.3.13), 11-
phosphoglycerate mutase PGM (5.4.2.1), 12-enolase EN (4.2.1.11), 13-pyruvate ki-
nase PK (2.7.1.40), 14-lactate dehydrogenase LDH (NADH) (1.1.1.28), 15-lactate
dehydrogenase LDH (NADPH) (1.1.1.28), 16-ATPase (total) ATPase, 17-myokinase
(adenylate kinase) AK (2.7.4.3), 18-glucose-6-phosphate dehydrogenase G6PD
(1.1.1.49), 19-phosphogluconate dehydrogenase 6PGD (1.1.1.44), 20-glutathione re-
ductase GSSGR (1.8.1.7), 21-glutathione oxidation (total) GSHox, 22-phosphoribu-
lose epimerase EP (5.1.3.1), 23-ribose phosphate isomerase KI (5.3.1.6), 24-transke-
tolase (1) TK1 (2.2.1.1), 25-transaldolase TA (2.2.1.2), 26-phosphoribosylpyropho-
sphate synthetase PRPPS (2.7.6.1), 27-transketolase (2) TK2 (2.2.1.1), 28-phosphate
transporter PT, 29- lactate exchange LacT, 30- pyruvate exchange PyrT

COMPUTATIONAL METHODS

Calculation of flux-minimized steady-state flux distributions

The computation of flux modes is based on flux balance analysis (FBA). The core of this
method is the optimization of an objective function which relates the flux distribution to
cellular functions. According to the principle of flux minimization [31] the objective
function to be minimized is chosen as:

® =" pos(v,) + K; neg(v;) 3)
i

where the sum runs over all fluxes in the network and K; denotes the equilibrium constant
for the j-th reaction. The real functions pos(x) and neg(x) return the absolute value of the
argument x if x 20 and x <0, respectively, and otherwise 0. The functional state of the cell
is defined by fixing non-zero fluxes through so-called 'target reactions' which together with
the steady-state represent constraints of the minimization problem. The constrained flux
minimization problem is solved using the software package CPLEX [32]. Details of the
computational protocol have been described elsewhere [31].

The in vivo state of the B-network is determined by the following values of the fluxes
through the 17 target reactions involved in the production of biomass:

V,,=13.4 (glycine), vg,=1.96 (CH,=H4F), vge=11.1 (pep), vor=5.09 (ery4P), vgo=1.92
(tp), vgs=7.24 (serine), vgz=11.0 (CHO-H4F), v93=92.9 (phb), vgg=16.4 (glc6P), vgg=17.1
(akg), vg4=41.8 (pyruvate), vg;=53.5 (acetylCoA), vg;=41.1 (0aa), vgo=6.8 (succCoA),
v75=585.3 (atp), vo1=10.4 (pentoP), v;9=235.13 (nadph)

The unit of fluxes is moles precursor metabolite per 1000 g atoms C in biomass. Release of
NADH during biomass production was included in the target flux for NADPH. The rela-
tions between the target flux, i.e. the stoichiometry with which the 17 precursor metabolites
enter the biomass, have been determined by Van Dien [24].
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The in vivo state of the E-network is determined by the following values of the fluxes
through the 4 target reactions:

vo=0.49 (2,3DPG), v =2.38 (ATP), v,;=0.093 (GSH), v,6=0.026 (PRPP)

The unit of fluxes is mM/h.

In the following we will refer to the solution of the minimization problem (3) fulfilling the
steady-state conditions (2) and providing the above values of target fluxes as the global flux
minimum.

Decomposition of the global flux minimum into elementary modes

For the two exemplary networks, elementary modes and the convex basis of elementary
modes were computed using a recent version of the software tool FluxAnalyzer [33].
Decomposition of global flux minimum into the convex basis was performed by solving
the linear program

eC=v, , |le| minimal (4)

where C is the convex basis of elementary modes written as a matrix, v, is the global flux
minimum and e is a vector of non-negative real numbers.

Definition of minimal flux modes (MinModes)
Besides the global flux minimum defined as the optimal flux distribution in the network
with all target fluxes kept at pre-defined non-zero values, we computed special flux-mini-
mized steady-states by putting the value of only one of the target fluxes to either unity (in
the used flux units). The resulting minimized flux modes we call minimal flux modes
(short: MinModes). They are defined as follows:

A MinMode is a minimal (according to the flux minimization principle) steady state
flux distribution that accomplishes a unit flux through one of the (independent)
target reactions whilst the fluxes through the other target reactions are zero.

This definition is more rigorous than that given in [26], because it presumes the target
fluxes to be independent from each other. Independency of target fluxes means the ex-
istence of a flux-minimized solution that accomplishes a non-zero flux through the chosen
target flux without the necessity to have non-zero fluxes through other target reactions.
This condition may be not always fulfilled. For example, if two metabolites (say A and B)
are produced in one and the same reaction, then under steady state conditions utilization of
A necessarily entails utilization of B. Hence, the first step towards the computation of
MinModes requires to identify clusters of intrinsically coupled target reactions. In the
following we will assume that the definition of 'target fluxes' in the network eventually
includes clusters of coupled output reactions. For the two networks studied in this paper,
the output fluxes are independent, i.e. there are 17 of such MinModes for the B-network
and 4 MinModes for the E-network.
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RESULTS

Elementary modes of the network of Methylobacterium

The model of central metabolism of Methylobacterium extorquens shown in Fig. 1 was
subjected to elementary mode analysis. The network model consists of 93 reactions where-
by 43 reactions are considered irreversible. The complete set of elementary modes for this
model is too large to be computable by means of the program FluxAnalyzer [33] using a PC
equipped with a memory capacity of 768MB. The enormous amount of elementary modes
network can be envisaged by noting that there are 450251 elementary modes if the com-
putation is simplified by setting 5 of the 17 target fluxes to zero. However, for the
representation of an arbitrary flux distribution knowledge of the convex basis of elementary
modes is sufficient [34]. A convex basis of elementary modes was computable for the
complete B-network. It consists of 7033 elementary modes. Intriguingly, only 21 elemen-
tary flux modes (out of 7033) of the convex basis were actually needed (i.e. had non-zero
coefficients in the linear representation) for the decomposition of the global flux minimum.
Regarding the physiological interpretation of these 21 elementary flux modes further
analysis showed that most of them contain more than one non-zero target flux (see
Fig. 2). Moreover, the choice of basic elementary modes is not unambiguous. This makes
it difficult to assign a specific output of the network to these elementary flux modes.

MeOH intake
ATP
NADPH
SuccCoA
AcetylCoA
Methylene-H4F
Formyl-HsF
Glycine
Pyruvate
Serine

PEP

PHB E

Figure 2. Occurrence of non-zero input and output fluxes in the 21 elementary modes
required for the decomposition of the global flux minimum for the B-network. Each
column represents an elementary mode, each row represents an input/output flux.
Table fields shaded in grey indicate a non-zero value of the respective flux.
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Elementary modes of the network of the Erythrocyte
The model of central metabolism of the human Erythrocyte has 20 elementary modes. Only
4 elementary modes were actually needed (i.e. had non-zero coefficients in the linear
representation) for the decomposition of the global flux minimum where each of these
modes exactly corresponds to a singular target flux. Thus, for this simple model the
difficulties mentioned for the B-network do not occur.

Calculation of MinModes

According to the definition given above, MinModes are flux-minimized states of the net-
work where only one of the (independent) target reactions carries a unit flux whereas the
flux through all other target reactions is put to zero. As an important property, each of these
modes is associated with a specific output of the network. For the B-network (Methylo-
bacterium extorquens) each MinMode represents the minimal flux distribution required for
the synthesis of a single biomass precursor metabolite. For the E-network (erythrocyte) the
target metabolites ATP and GSH are essential for cellular integrity (maintenance of the
intracellular ionic milieu by the ATP-driven Na-K-pump, protection against secondary
reaction products of radicals via GSH), the two other target metabolites 2,3DPG and PRPP
are indispensable for oxygen binding to haemoglobin and the salvage of adenine nucleo-
tides. The MinModes for the two networks are listed in Table 1.

Inspecting the MinModes of the B-network, we note that the amount of methanol consumed
in each of the MinModes can be split into a carbon providing and an energy (ATP and
redox equivalents) providing part. As an example, the MinMode for the production of the
biomass precursor glycine is plotted in Fig. 3.
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Decomposition into Minimal Flux Modes

'_T’ Acetoac-CoA
(r A-KG — NADH ™\
wors e CHEHMPT ' AD
= 18 L3HB-CoA
CH=H,MPT CHO-HMPT 150-C
18 p sl . 18 |} 1.0
HMPT ; e ' 1.8 ey NADP  yapei %
HCHO raw MeOH co, ‘7? HCOOH el But-Col}) = Crot-! CoA
ur QH, @ 1 ; / I 1.0
a1 I co; NADH
CH “HF Prop-CoA Mema-CoA
2. 0 Acetyl~CoA ATP ADP »
Glycme GlyOx Malyl-CoA Succ-CoA=
N GDP
" N e |
Senne H pyruvate Malate ~————— Fum <>~ Succ
- ';\DH NAE’PN A NADNADHO FADH  FAD
e 10 NAD NADP Gl _ &, —— Pyruvate
3Pser Glycerate '
ATP {
2.0\R\Dp y
1.0 1.0
Glu ~ PHP<—3-PG<—2-G 10, pPEP
NADH  NAD
2H 2 IADH NAI QH Q
NADH, ) Q QH , ADP,_ _ATP
PP . TS > M
30 34 VADP' NADPH  FADH 19 FAD  NAD 04 NADH GTP" ;o GDP

Figure 3. Minimal flux mode (MinMode MMygjycin. ) for glycine synthesis in the B-
network. The MinMode was calculated by minimizing the objective function (3)
where the flux v, for the release of glycine to the biomass was put to unity and the
other 17 target flux were put to zero. Flux values are depicted next to the reaction
arrow, grey arrows indicate zero fluxes.

Here, the HyMPT-cycle is used for the production of NADPH and NADH (utilized in other
parts of the network) as well as for the complete oxidation of methanol to CO,. The
released carbon is fixed in another part of the network to provide the carbon needed for
the actual synthesis of glycine. The second carbon atom is incorporated via reactions of the
serine cycle. Only two of the reactions that traditionally form the citrate acid cycle, are
used in this MinMode. They are catalysed by the succinate dehydrogenase (29) and the
fumarase (30).

To illustrate the relative importance of the individual reactions for the functionality of the
network we counted how often a non-zero flux through each of the reactions occurs in the
17 MinModes of the B-network. The corresponding statistics (Fig. 4) reveals the ubiquitous
usage of reactions involved in methanol uptake and the energy metabolism. Based on the
frequency with which a reaction has a non-zero flux in the various MinModes one may
depict the 'backbone' of the network. For the B-network this backbone is constituted by the
reactions of serine cycle and formaldehyde metabolism (H4F and HyMPT cycle). On the
other hand, there are 15 apparently redundant reactions that have a zero-flux in all Min-
Modes. This relatively high number of apparently abdicable reactions is certainly due to the
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fact that only those reactions are considered as targets of the network which deliver
metabolites for the synthesis of cellular biomass. Because metabolites other than the
biomass precursors may be relevant for cellular functionality, we have calculated an
extended set of MinModes considering each of the 63 metabolites as a possible and
relevant output of the network. In this set of 58 MinModes only 6 reactions turn out to
be apparently dispensable (reactions: 5, 22, 26, 34, 49 and 52).

M I energy metabolism
S 1 [l formaldehyde metabolism
O [1 serine cycle
% 0.8 = citric acid cycle
S PR I gluconeogenesis
8 TSR [ PHB synthesis
o 65 0 serine biosynthesis
ol =
9
=S =
O
® 04
oo
()
=
kS
?) 0.2
) MMl

0 ggncozrrorngBo eResBBE8bAY RN s RS 8hBE92988 885 REER RS

Reaction index

Figure 4. Frequency of non-zero fluxes in the 17 MinModes of the in the B-network

Inspecting the 4 MinModes of the E-network, which are equivalent to the 4 elementary
modes required for the decomposition of the global flux minimum, the only difference
between the two MinModes associated with the production of ATP and the production of
2,3DPG is the respective component referring to the particular target reaction.

Composition of flux distributions into MinModes

The MinModes represent canonical flux modes of the network supporting a single meta-
bolic output (or a group of coupled outputs, see above). In real situations the flux distribu-
tion of a cell has to assure simultaneously a multitude of metabolic functions as, for
example, the production of ATP, repair of DNA, elimination of reactive oxygen species
or the synthesis of proteins. Because these metabolic functions must be controlled inde-
pendently in the cell, it is straightforward to postulate that the total flux distribution is a
linear combination of independent component fluxes rather than a globally optimized flux
distribution. The concept presented here of minimal flux modes is an attempt to define
those component fluxes by the following equation:
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‘A Zui MM, 5)

Here MM; denotes the MinMode supporting the flux 1 (flux unit) through the i-th target
reaction and the numerical value of the (dimensionless) coefficient o corresponds to the
actual flux. For example, applying the linear combination (4) of MinModes to the B-net-
work, the coefficient o, that is multiplied with MMy, the MinMode for the production of
the biomass precursor glycine (Gly), is put to 13.4 as the measured flux of glycine into
biomass amounts to 13.4 flux units.

To check the feasibility of the MinMode decomposition we compared the resulting flux
distribution vq (=MinMode decomposition) with the global flux minimum and with observed
flux values. For the B-network, Fig. 5 depicts the values of the individual fluxes predicted
by the MinMode decomposition and those of the global flux minimum.
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Figure 5. Comparison of flux values of the global flux minimum of the B-network
(regular numbers) with flux values obtained by MinMode composition (italic num-
bers). Equal flux values in both approaches are displayed only once (grey/italic). All
metabolites fed into biomass synthesis by target reactions are depicted with green/
italic letters.
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Obviously, the larger the target flux with which a precursor metabolite enters the biomass
the higher the influence of the corresponding MinMode in the combination. In the B-
network, the ATP consumption for biomass formation has a large impact. In contrast to
an “along the way” synthesis of ATP in the global flux minimum, the MinMode MM
exclusively provides ATP. This makes it plausible, why the MinMode composition predicts
somewhat higher fluxes for ATP synthesis. Minor differences in the flux pattern occurred
for reactions of the HyMPT-cycle, transhydrogenase, NDP kinase, and reactions of alter-
native pathways that work with different cofactors, as for example the conversion of PEP
into malate (reactions 18, 19, 45 and 42, 43) or from methylene-H4;MPT into methenyl-
H4MPT (reactions 8 and 9). All flux differences can be accounted for by differences in the
production, conversion or dissipation of energy. To further check the feasibility of the
MinMode composition we compared it with measured fluxes [24]. For 18 out of 21 reac-
tions the fluxes predicted by the MinMode composition are in good accordance with the
experimental data (Fig.6A). In the cases of malic enzyme, malate dehydrogenase, PEP
carboxylase, and pyruvate kinase, significant differences between predictions and observa-
tions occurred. Noteworthy, the remaining flux discrepancies are even smaller than those
with respect to the global flux minimum.
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Figure 6. A.. B-network. Scattergram illustrating the correlation of experimental flux
values [24] with flux values predicted by MinMode composition. Significant devia-
tions between experimental flux values with flux values predicted by global optimiza-
tion are displayed in grey.B. E-network. Scattergram illustrating the correlation of
flux values calculated by means of a kinetic model [30] with flux values predicted by
MinMode composition.

To check the feasibility of the MinMode composition for the E-network we compared the
predicted fluxes with those calculated by means of a validated kinetic model [30]. Figure
6B reveals an almost perfect prediction for the larger fluxes and acceptable deviations for
the small fluxes. Taken together, the quality of flux predictions based on the MinMode
decomposition was equivalent with the quality achieved by global optimization [31].

Similarity analysis of MinModes

Vectors forming a basis in strict mathematical sense have to be orthogonal, i.e. independent
from each other. This criterion does not hold for MinModes. As demonstrated above with
the MinModes of the E-network, MinModes belonging to different metabolic outputs, e. g.
production of ATP and 2,3DPG, may be very similar. Thus it is practically impossible to
conclude from observed changes of fluxes, which of the two target fluxes have changed.
Therefore we represent those MinModes exhibiting a strong similarity by a single Principal
MinMode and we use the smaller set of such Principal MinModes for the decomposition.
To quantify the similarity of two MinModes, Pearson's correlation coefficient turns out not
to be a reliable measure because the components of flux vectors are not normally distrib-
uted (they contain many zero-fluxes and many tightly related flux values owing to the flux-
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balance conditions). We decided to quantify the similarity between two arbitrary flux
modes MM and MM' by a similarity index (si) defined as the (relative) number of compo-
nents having the same sign in both modes:

i p(MM, MM, ), p(MM,,MM,)= Lif sgn(MM,) = sgn(MM))

L ©)
N, 3 0 else

si(MM,MM') =

In Equation 6, sgn(x) denotes the sign-function (sgn(x)=+1, -1 or 0 if x>0, x< 0 or x=0).
The sum in Equation 6 runs over all components except those two referring to the target
fluxes generating the two MinModes MM and MM, respectively. The similarity indices
form the (symmetric) MinMode similarity matrix of MinModes. Figure 7 shows the Min-
Mode similarity matrices for the two exemplary networks. Values larger than the arbitrarily
chosen threshold value of 0.9 (i.e. 90% of the fluxes in the two

Methylobacterium Erythrocyte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1.2 3 4
2 %
S e et il %, .0z, P53
§ 88 EF 5823 3:EE S5 £ 23
1 acetylCoA 0.73 0.79 0.80 0.64 0.76 0.61 0.67 0.81 0.84 061 0.72 0.85 0.72 0.67 0.76 0.68| 1 ATPase 0.97/0.50 0.77]
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13 PHB 0.85 0.75 0.72 0.71 0.71 0.67 0.67 0.72 0.79 0.75 0.67 0.79 0.79 0.72 0.69 0.75|
14 pyruvate 0.72/0.91/0.59 0.59 0.89 0.55 085@065 0.85 0551;00‘079J0.91‘059‘0.96
15 serine 067 0.85 0.52 0.52 0.85 0.49 084111]0 0.64 0.80 0.84 0.91‘072 0.91 0.52 0.89]
16 Succ 0.76 0.55|0.97 0.93& 0.87 0.47 0.52 0.83 0.60 0.47&0.69& 0.52 0.55
17 TP 0.68 0.87 0.55 0.55 0.93 0.51 0.89 0.89 0.64 0.81 0.89 0.96 0.75 0.96 0.89 0.55

Figure 7. Similarity matrices for the MinModes of the B- and E-network.
Similarity between two MinModes was assessed by the similarity index (si) defined in
Equation 5. si-values larger than 0.9 are indicated in grey.

MinModes under comparison are either both zero or point in the same direction) are marked
in grey. We note that three pairs of MinModes calculated for the B-network exhibit perfect
similarity (si=1). For example, the MinModes associated with the production of the me-
tabolites Glc6P and PentoseP do not differ either in the zero fluxes or in the directionality
of the non-zero fluxes. Plotting the components of these two MinModes against each other
also reveals strong similarity (Fig. 8A). This is due to the fact that the pentose phosphates
are formed in the pentose phosphate pathway which branches from glucose-6-phosphate,
i.e. production of pentose phosphates necessarily involves the production of glucose-6-
phosphate.
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Figure 8. Scattergram illustrating the correlation between the MinModes for the
formation of Glc6P and pentoseP.

The important point is, however, that with methanol as carbon source a large part of the
network is used to produce glucose-6-phosphate. In contrast, in the E-network with glucose
as substrate only two reactions are needed (Glct and HK) to form glucose-6-phosphate. As
a consequence, the two MinModes associated with the production of Glc6P and PentoseP
are completely different (Fig. 8B). This shows that the similarity of two MinModes asso-
ciated with the production of a given pair of metabolites depends strongly upon the
architecture of the network and the available extracellular substrates. From the two simi-
larity matrices shown in Fig. 7 we can identify those target fluxes which are simultaneously
affected by changes in the level of active enzymes. For example, in the case of ATP and
2,3DPG we will not be able to discriminate which cellular requirements have changed with
respect to those two target functions by only inspecting the internal fluxes.

111



112

Hoffmann, S. et al.

Based on the similarity matrix, MinModes can be grouped into clusters encompassing all
MinModes with sufficiently high mutual similarity. Figure 9 shows the result of a cluster
analysis of the MinModes for the B-network, performed by using the furthest neighbour
method, i.e. measuring the overall similarity of all MinModes assembled in a cluster by the
smallest pair-wise similarity index.

si.=0.9

Figure 9. Dendogram illustrating the clustering of MinModes for the B- and E-net-
work.

Cluster analysis was performed on the basis of the similarity matrices shown in Fig. 7
using the closest neighbour method, i.e. the smallest similarity index for all pairs of
MinModes falling into one cluster is larger than the critical value indicated on the
horizontal axis.

Extraction of Principal MinModes

Using MinModes for the decomposition of flux distributions it seems feasible to represent
those MinModes comprising a large degree of similarity by a single Principal MinMode.
Principal MinModes exhibit a lesser degree of similarity and thus allow a more unambig-
uous decomposition. To this end, we have to define a cut-off value (si.) for MinMode
similarity. MinModes assembled in a cluster possessing a cluster similarity larger than this
cut-off value are lumped together (as a linear combination of its elements) to a single
Principal MinModes (PMMs). Note that Principal MinModes does not satisfy the Min-
Mode definition. Further Principal MinModes are given in terms of those MinModes which
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do not fall into clusters with sufficiently high cluster similarity. The Principal MinModes
obtained by this procedure for the two exemplary networks at a cut-off value of si;=0.9 are
depicted in Fig. 10.

Principal MinModes - Methylobacterium

PMM MMs + MM; + MM, Ery4P, GIc6P, PentoseP
PMM , MM;, + MMy, + MM, PEP, Pyruvate, TP

PMM ; MMg + MM5 glycine, serine

PMM , MM, + MMg methyleneH4F, formylH4F
PMM 5 MM; + MMy Succ, ATP

PMM g MM, acetylCoA

PMM ; MM, aKG

PMM g MMg NADPH

PMM ¢ MM, OAA

PMM 4o MM.3 PHB

Principal MinModes - Erythrocyte

PMM 1 MM, + MM, DPGM, ATPase
PMM 2 MM, GSHox
PMM 3 MM, PRPPs

Figure 10. Definition of Principal MinModes.
MinModes falling into clusters with minimal similarity of 0.9 (see Fig.9) have been
lumped into a single Principal MinMode.

There are 10 PMMs (instead of 17 MMs) for the B-network and 3 PMMs (instead of 4) for
the erythrocyte network. Obviously, the number of Principal MinModes depends on the
choice of the cut-off value si. for mutual MinMode similarity. At si.=0.8 we would get
only 3 PMMs for the B-network.

Flux changes induced by changes of enzyme levels: simulated gene expression

To study the changes of stationary fluxes accompanying changes of enzyme levels we used
our comprehensive kinetic model of the erythrocyte metabolism to calculate stationary
states at various enzyme levels. Variations in the amount of an enzyme were accomplished
by varying its maximal velocity. We considered the following two extreme cases of gene
expression. Random gene expression was simulated by multiplying the actual v,,,, values of
all enzymes with factors randomly chosen within the interval [0.1, 10.0]. 'On demand' gene
expression (see Fig. 11 for a detailed explanation) was simulated by first changing the load
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Figure 11. Illustration of the hypothesis on optimal gene expression.

The simplistic network in panel A is composed of three monomolecular reactions. The
function of the network is to convert substrate A into two different end products C and
D. Under non-saturating conditions the fluxes are given by v;=k; [A], vo=k, [B] and
vis=k5 [B] whereby the rate constants k, and kj3 represent the load parameters and the
rate constant k; is proportional to the concentration of the enzyme catalysing the first
reaction.. Metabolic steady states of the system are defined by the flux-balance con-
dition vi=v, + vs. Thus, at fixed concentration of the substrate [A]=1, the output

k k, k k,
fluxes read V,=— and V= ———
k, +k, k, +k,
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Panel B illustrates the dependence of the three stationary fluxes on the load parameter
k, at fixed values k3= 5 of the second load parameter and k=1 of the rate constant for
the first reaction. Increasing values of the load parameter k, result in a decrease of
flux v3 whereby the increase of flux v, is sub-linear, i.e. the control coefficient

81n(v2)
o)

smaller than unity. This sub-optimal behaviour becomes successively pronounced
with increasing values of k,. Optimal gene expression is hypothesized both to accom-
plish a maximal response of the output flux v, towards changes of the load parameter
k, such that the flux-control coefficient becomes unity, C, — 1, and to prevent a
change of the other (independent) output flux vz. This can be achieved by variable
expression of enzyme catalysing the reaction A —B, i.e. adapting the rate constant k;
to the load parameters according to k;=7 (k, + k3). The corresponding fluxes
v (i=1,2,3) in the presence of optimal gene expression are shown in panel C where-
by the proportionality constant was put y="'/¢ so that the load characteristics without
and with gene expression match at k,=1 (indicated by the dashed vertical line).

of the output flux v, with respect to the load parameter k; is

parameter k; for target fluxes v; by a given factor n=k;'/k; where k;' is the new value of the
load parameter. This change of the load parameter implies a change of the target flux to the
new value v;' but, in general, this change is smaller than 7, i.e. the flux-control coefficient

V. . . .
C, = —— of the chosen target flux with respect to the load parameter is smaller than unity.
ny;

New v, values of all enzymes were than determined fulfilling two criteria: (i) the change
of the chosen target flux was also n-fold, i.e. the flux-control coefficient of this target flux
with respect to the load parameter was unity, C;= 1, and (ii) the other target fluxes remained
at their initial value. This simulated mode of gene expression assures high selectivity in the
cellular response towards changes of the metabolic load.

For these two modes of simulated gene expression, changes in the steady-state fluxes were
expressed as difference between new and initial flux values and these changes were plotted
against the changes in the v,,,, values of the catalysing enzymes expressed as fold changes
calculated by dividing the new v,,,, value by its initial value. The scattergrams in Fig. 12A-
C and the associated measures of determination (R?) reveal poor correlations not only for
the random case but also for the two cases of 'on demand' gene expression optimizing the
response of the metabolic system towards an increase in the load parameters karp,s for the
energy consumption and Kgsyox for the consumption of GSH. This finding is in clear
contrast to the well-known linear relationship between flux rate and enzyme activity hold-
ing for isolated reactions at fixed concentration of the reactants. In a reaction network,
however, changes in the activity of a single enzyme remain not restricted to changes in the
rate of the corresponding reaction but give rise to changes of all fluxes owing to the
coupling of the reactions through shared reactants and allosteric effectors. This way a local
perturbation of a single enzyme propagates through the whole network and the resulting

115



116

Hoffmann, S. et al.

new steady-state flux distribution depends on the specific kinetic properties of all enzymes
in the network. Hence, from the kinetic point of view, a simple correlation between changes
of enzyme levels and changes of the associated fluxes indeed cannot be expected. In the
following paragraph we propose a method to exploit information on changes of enzyme
concentrations to arrive at better predictions of flux changes in the network.
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Figure 12. Scattergram illustrating the correlation between flux changes and changes
of v,,,x values for the E-network. v, values were changes either randomly (A) or
applying an 'on demand' gene expression strategy (details given in the main text).
'Observed' flux changes were calculated by using the kinetic model [30] (B) Simulated
'on demand' gene expression accompanying an increase of the load parameter Karpase
for ATP consumption by a factor of n=2. (C) Simulated 'on demand' gene expression
accompanying an increase of the load parameter kgspox for GSH consumption by a
factor of n=100.

Predicting flux changes from changes of enzyme levels by using the flux decomposition
into Principal MinModes

Changes in the stationary fluxes are not independent — they are coupled through the balance
conditions which hold even if there are changes in the amount of enzymes due to variable
gene expression. For example, given that the postulated metabolic network of the erythro-
cyte is correct the fluxes through the glucose transporter (Glct) and the hexokinase (HK)
have to be equal, and the same also holds for any flux changes through these two reactions.
Looking at the data in Fig. 10 not in X — Y direction but in Y — X direction one would
expect the data points for Glct and HK to coincide if there was a perfect correlation of flux
changes with changes of enzyme activities. The scattergram in Fig. 12B (‘'on demand' gene
expression at higher energetic load katpa.se) shows that the v, changes for these two
proteins are different. Although there is no change in the activity of the glucose transporter
and even a decrease (!) in the activity of the hexokinase (HK) the flux through both
reactions has increased by a factor of about 1.2. This is a pure kinetic effect brought about
by a lowered intracellular glucose concentration due to activation (higher expression) of the
phosphofructokinase (PFK), one of the key regulatory glycolytic enzymes. This example
illustrates that some of the flux changes in the network are due to kinetic effects induces by
changes in the expression of those enzymes (as the PFK) exerting the dominant control
over the desired changes in the metabolic output of the network. Regarding the problem of
predicting flux changes from changes of enzyme levels we have to conclude that only some
of the observed changes in enzyme activities are indicative for changes of the associated
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fluxes. For the considered example, the increase in the activity of the PFK actually reflects
an increase in the flux through this enzyme whereas the unaltered activity of glucose
transporter (Glct) does not.

Let us consider the pool of correlated fluxes, i.e. which are related to each other by fixed
ratios in any conceivable flux distributions due to flux balance conditions. Given that
within this pool there exists at least one flux for which the change is not kinetically
determined but predominantly due to a change of the enzyme level. If so, it would make
sense to represent all fluxes belonging to this pool by a single representative flux and to
correlate its change with the average observed changes in the activities of the associated
enzymes. Such a constrained correlation analysis can be accomplished by approximating
the unknown vector Av of flux changes by a linear decomposition into Principal Min-
Modes PMM; (see Equation 5) the components of which automatically obey the flux-
balance conditions:

Av = ZAoci PMM, )

The coefficients Aoy (i=1,2,..., number of PMMs) of this decomposition are than deter-
mined by maximizing the correlation between Av and the observed changes of enzyme

_(E,/ E; E, .
act1v1tlesAA_(Al,/2,,_,, Aﬂe),l.e.

MAX Corr (A Vv, AA) ®)

(0;20)

Here, fold-changes in the v,,,, values are taken as measure for changes in the enzyme
amounts. Solving the optimization problem (8) we obtain a prediction of the flux changes
in the network. The value of the coefficient Aoy indicates the changes of the target fluxes
associated with the Principal MinMode PMM,. Hence, the set of coefficients Ac; allow
direct inferences to be made on those changes in the metabolic output the network which
have provoked the observed changes in the enzyme levels.

This procedure was applied to the three “expression patterns” illustrated in Fig. 13A-C. The
similarity index used to extract Principal MinModes for the erythrocyte network was put to
0.9 resulting in the following 3 Principal MinModes given in Fig. 10.
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Figure 13. Scattergram illustrating the correlation between 'observed' flux changes
and flux changes obtained by maximizing the correlation between changes of v,,,,
values and the MinMode decomposition (6) based on the three Principal MinModes
for the E-network given in Fig. 10. The three simulated cases A-C are explained in
Fig. 11. (A) Random gene expression. Estimated values for the decomposition coeffi-
cients: Ao,y =0.08, Ao, =0.0, Aoiz=0.06. (B) 'On demand' gene expression at in-
creased load parameter karpase- A0ty =0.07, Ao, =0.0, Aoz=0.0, (C) 'On demand'
gene expression at increased load parameter kgspox. A0y = 0.0, Ao, =0.72, Aoiz=0.0.
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Figure 13 shows the “observed” (=simulated) flux changes plotted against predicted flux
changes obtained as solution of the optimization problem (7). Even for the simulated case
of random gene expression (Fig. 13A) the concordance between predicted and observed
flux changes is surprisingly good. The values of the coefficients o, 0, and o3 solving the
optimization problem (7) for the three cases of simulated gene expression are given in the
legend of Fig. 13. According to these values the changes in the maximal enzyme activities
for case B and C were clearly identified as resulting from an increase in either the energetic
or oxidative load.

Putting these findings together we may conclude that the proposed strategy of:

® decomposing the flux distribution into minimal flux modes
® lumping these MinModes together to redundant-free Principal MinModes,

® cxpressing the unknown flux changes as linear combination of Principal Min-
Modes

® and determining the unknown coefficients of this linear combination by max-
imizing the correlation with observed changes of enzyme level (=v,,,, values)

provides a powerful means of predicting flux changes in the metabolic network as well as
those changes in the output of the metabolic network having caused these flux changes.

Di1scuSsSION

As demonstrated for the exemplary network considered herein, the projection of the global
flux-minimized steady-state solution onto the convex basis of elementary modes resulted in
a manageable set of elementary flux modes with non-vanishing coefficients. However,
these “basic” elementary modes were difficult to assign to a specific metabolic output.
Besides this, there are some further shortcomings rendering the convex basis of elementary
modes unsuitable for the decomposition of flux distributions into functionally interpretable
modes. First, the determination of the convex basis is not unique [8]. Thus, choosing
another convex basis of elementary modes, their physiological interpretation can be vastly
different [19]. Second, the coefficients for the non-negative linear decomposition are also
not unique (in our computational protocol we have chosen the coefficients with minimal 1-
norm) and thus their absolute values do not allow conclusions to be drawn with respect to
the relative importance of the various elementary modes. Third, the (subjective) decision on
reversible and irreversible reactions deeply affects the set of elementary modes and thus the
convex basis. In the B-network, 43 chemical reactions are considered irreversible. One
might argue that potentially every chemical reaction can be reversed by increasing the
concentration of the products and/or reduction of the concentration of the substrates.
Setting all reactions as reversible renders many elementary modes a priori physiologically
irrelevant. Elementary modes appearing implausible to the biochemist are, for example,
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inner cycles that operate without exchange of matter with the environment or modes
encompassing reactions with flux directions that are not in concordance with their (large)
change of standard free energy.

In this work we introduced the concept of minimal flux modes (MinModes), defined as flux
minimized steady-state flux distributions enabling the production of a single metabolite.
The production of a certain subset of metabolites defines the functionally relevant output of
the network. The introduction of MinModes means to decompose this output into separate
contributions. The flux cone spanned by the set of MinModes is a true subset of the mode
space. For the Methylobacterium model the convex dimension of the MinMode space is 17,
whereas the convex basis of elementary modes comprises 7033 vectors. The full vector
space spanned by linear combinations of the convex basis with real number coefficients has
the dimension 29. Hence the set of MinModes is not complete, i.e. an arbitrary steady flux
distribution cannot be exactly decomposed into a linear combination of MinModes. On the
other hand, MinModes are attractive because of their clear assignment to specific output
reactions. Because the MinModes are biochemically feasible, the reduced flux cone
spanned by the MinModes is also feasible as a whole, in contrast to the complete flux
cone. Elementary modes and minimal fluxes as introduced in this paper represent two
different methodological concepts that ultimately have the same goal: To decompose the
fluxes in the metabolic network into a set of more simple but physiologically relevant flux
modes. Elementary mode analysis starts with a complete set of all possible and not further
decomposable routes (“top down” approach). The resulting huge set of such elementary
modes has to be reduced to a physiologically relevant and numerically tractable set by
imposing additional constraints [17 —19]. In contrast, minimal mode analysis starts with a
very small set of modes each of them connected with one physiologically relevant output of
the network (“bottom up” approach). Thus, the number of MinModes cannot be larger than
the number of metabolites occurring in the network. However, MinModes allow only an
approximate description of the true flux distribution as they do not form a complete basis in
strict mathematical sense. Nevertheless, the striking advantage of the MinMode concept is
its applicability to very large whole-cell networks (>500 reactions) where the effective
handling of elementary modes can be clearly ruled out for computational reasons.

The set of MinModes can be investigated by similar methods as used for analyses based on
elementary modes. For example, the frequency with which a reaction has a non-zero flux
within the set of MinModes can be taken to rank the functional relevance of reactions in the
network. Such analyses may give insight into the evolution of metabolic networks: Reac-
tions with many non-zero fluxes in the MinModes may represent the ancient part of the
network responsible for some basal functions. This part of the network was then succes-
sively complemented by reactions and pathways connected to more specific functions and
thus being less represented in the MinModes. It has to be noted that disabling reactions with
a high number of non-zero fluxes in the set of MinModes does not necessarily lead to
lethality because besides the MinModes (being special flux distributions) alternative routes
may exist. For example, formate dehydrogenase (reaction 6) has a high participation
frequency but was shown to be not essential for growth on methanol [35]. On the other
hand, reactions which upon exclusion from the network (by setting the flux to zero) do not
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allow the determination of a MinMode for each output metabolite are to be considered
essential. Omitting non-essential reactions merely leads to a different pattern of MinModes.
If a mutant lacking a reaction predicted to be not essential is not able to survive or shows
reduced growing capabilities, an important physiological function of this reaction has failed
to be noticed. Therefore, relating the observed phenotype of knock-out mutants with net-
work based classifications of essential and non-essential reactions may provide a valuable
heuristics to unravel the physiological importance of metabolites.

Interestingly there are fifteen reactions of the B-network that do not contribute to any flux
mode. Assuming the synthesis of biomass precursors to be the sole cellular function of the
network, these 15 reactions should be abdicable for cellular growth using methanol as the
only carbon source. Three of these reactions contribute to the degradation of the storage
metabolite PHB. The enzymes PHB depolymerase, B-hydroxybutyrate dehydrogenase and
acetoacetate-succinyl-CoA transferase, able to catalyse the conversion of PHB into acet-
oac-CoA are not required for cellular growth. However, this holds true only for environ-
mental conditions where enough substrate is available. In a starvation phase, the apparently
dispensable PHB degradation becomes important. Another example is the aldolase reaction
converting 2 triose phosphates into Fru-1,6-BP (reaction 34). The flux through this reaction
in every MinMode is zero. Thus, synthesis of Fru-1,6-BP as an intermediate seems to be not
necessary for the fulfilment of the assumed metabolic tasks under the given environmental
conditions. There are two possible explanations for this redundancy. Either, this reaction is
required for enhanced stability and robustness of the network and is abdicable under
conditions where the enzymes catalysing alternative routes are expressed or its metabolic
task is not required under the given conditions. Or, Fru-1,6-BP is required for other
biochemical processes not considered yet, either as a reactant in reactions not included in
the network or as a regulatory metabolite. The latter explanation is very likely because
knowledge of the full spectrum of metabolites necessary to ensure all cellular activities will
be incomplete. For example, it has become known quite recently that presence of Fr-1,6-BP
is an absolute requirement for lactate dehydrogenase activity in Lactobacillus casei [36]
and a similar regulatory function of this metabolite cannot be excluded in Methylobacter-
ium extorquens. Therefore, to take into account a potential role of all metabolites in cellular
functionality a complete set of MinModes should be constructed enabling the production of
all metabolites occurring in the network. If this more systematic approach is applied, only 6
of the 15 previously unused reactions remain. In case the model is correct this redundancy
should be explained solely by network robustness to mutations and changed environmental
conditions. Mutants not able to catalyse these reactions should grow normally. The exam-
ple of 0-KG dehydrogenase (reaction 34), one of the 6 abdicable reactions, supports this
hypothesis. The enzyme catalyses the conversion of a-KG into Succ-CoA as part of the
citric acid cycle. For growth on C1 resources this cycle is partly repressed and accom-
plishes an assimilatory role [24, 37]. It could be shown that a lack of this enzyme does not
influence the growth behaviour of Methylobacterium extorquens (while growing on metha-
nol only) [38]. Thus, the classification of reactions into those which are essential and non-
essential has to be considered with precaution because such a classification depends
strongly upon the specific external conditions as well as on the knowledge of the physio-
logical functions that metabolites or reactions may have.
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One may wonder whether the proposed computational approach to construct optimal flux
distributions for each output variable of the network is more or less feasible than the
calculation of an optimized flux distribution meeting all target flux simultaneously. The
good concordance between experimentally determined fluxes and calculations based on
MinMode compositions (see Fig. 6) may suggest that optimization of metabolic networks
with respect to single target reactions has been an important goal of natural evolution.
Considering that the relative importance of target fluxes may vary depending on the
specific external conditions of the cell (at the extreme one target reaction as, for example,
the production of glutathione in the presence of oxidative stress, might transiently over-
shoot all others) such a strategy appears to be not implausible because it allows indepen-
dent regulation of different metabolic outputs. Moreover, adding new reactions (and thus
functionality) to an already existing network during the course of natural evolution should
not comprise already achieved optimality. Of course, it is too early to make a sound
judgment, so that further applications of the proposed methods to other, more complex
networks are needed. Based on the same assumption of a minimized total sum of fluxes, the
flux distributions obtained by global and single target optimization show of course only
little differences. Thus the new approach results in a flux distribution that is just as good as
the one obtained by the previous approach. The Minimal Flux Modes 11 few differences
can be illustrated by a simple network (Fig. 14A), consisting of 5 reactions v1,v2,v3,v4,v5
where v4 and v5 are considered as target reactions. Two minimal flux modes can be
calculated for this network. For the MinMode that produces metabolite A by realizing the
flux v4 =1, we obtain the MinMode ~v=(10010), whereas for the realization of the flux
v5 =1, the MinMode is ~v=(01001). The sum of fluxes in each MinMode is 2. The combi-
nation of MinModeA and MinModeB results in the flux distribution ~v=(11011) with the
sum of fluxes being 4. The basic flux minimization approach does not presume costs for
enzyme synthesis or different activity levels for an enzyme. Therefore, demanding non-zero
fluxes through both target reactions v4 and v5 gives the same flux distribution. Thus, single
optimization and global optimization may lead to equal solutions as long as no currency
metabolites (as ATP, NADH etc.) are involved. In the case, where v4 is an ATP consuming
and v3 an ATP producing reaction (Fig. 14B), additional fluxes for ATP balancing become
necessary (v6,v7). Here, the sum of fluxes for the single optimized solution would be 4 for
MinModeA.

In combination with MinModeB the sum of fluxes is now 6. Global optimization yields a
suboptimal path for the synthesis of B that contains a non-zero flux for the reaction v3,
resulting in the vector ~v=(2011100) with a sum of fluxes equal to 5. Therefore, for a
global optimization a suboptimal (carbon) route for one metabolite can be chosen if it is of
advantage for the synthesis of another target metabolite.
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Figure 14. A simplistic network illustrating network effects which may cause differ-
ences between fluxes calculated by global minimization and MinMode decomposi-
tion.

The basic idea behind the concept of MinModes presented in this paper is to interpret the
flux distribution in a metabolic network as a superposition of various flux modes each
related to one of the many functional requirements that the cells has to fulfil simultaneously
but with different relative intensities. Hence, any metabolic status can be represented in
terms of the coefficients entering the linear combination of MinModes to the overall flux
distribution. The use of those coefficients simplifies the flux-balance approach considerably
and makes it possible to relate observed changes in metabolic fluxes directly to changes in
the functionality of the cell.

As demonstrated for the MinModes of the two exemplary networks considered, the Min-
Modes may exhibit a remarkable degree of similarity. Generally, MinModes associated with
target reactions located in close vicinity, i.e. belonging to the same pathway, should give
rise to similar MinModes. Thus, to employ MinModes as a sort of 'basic vectors' it seems
feasible to lump together similar MinModes into a single Principal MinModes. On one
hand this leads to a further reduction of the set of relevant MinModes, on the other it also
reduces the clear-cut physiological interpretation of these Principal MinModes as they are
not associated with only one target flux but a certain group of target fluxes. In this article
the definition of such Principal MinModes was accomplished by clustering the MinModes
on the basis of a similarity index that counts the number of pair-wise fluxes pointing in the
same direction or being zero. As with any statistical procedure, it is finally left to the user
to define the minimal degree of similarity that has to be present among all MinModes
lumped together to a single Principal MinModes.

In the last part of this article we have used the decomposition of flux changes into Principal
MinModes to predict changes in metabolic flux rates from observed changes of enzyme
levels. It has to be noted that these results are based on simulated 'gene expression’
experiments where we changed the maximal activities of erythrocyte enzymes and calcu-
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lated the associated flux changes by means of a comprehensive kinetic model available for
the E-network. These simulations required some a priori assumptions to be made about the
regulatory principles underlying variable gene expression. These principles are still widely
unknown. However, there is increasing theoretical and experimental evidence [39, 40] that
temporal gene expression is an important means of cells to adapt their protein synthesizing
capacity to changing external conditions such that the required metabolic output is achieved
with high efficiency. This plausible strategy was the rational behind the simulations of 'on
demand' gene expression which assures a high response of the network to changes in the
demand of specific target reactions whereas the fluxes through other target reaction are
kept at constant values. As expected, for the both extreme cases — random and 'on demand'
gene expression — there was no significant correlation between changes in enzyme activ-
ities and changes in flux rates through the corresponding reactions. This theoretical finding,
questions the naive interpretation of changes in gene expression profiles as to directly
reflect changes in the activity of the underlying pathways.

Using the MinMode decomposition of the unknown flux changes as a side constraint and
determining the coefficients of this decomposition to provide a maximal correlation with
observed changes of enzyme activities, we obtained a significantly better prediction of flux
changes. A further benefit of this strategy is that the values of the coefficients directly
indicate the changes in the target fluxes that have elicited the changes in enzyme activities.
This way it should be possible to make inferences on the functional strategy of cells just
employing information of changes in enzyme levels.

# enzyme reaction k; DPGM ATPase = GSHox PRPPS
1 Glct Gluc({out) — Gluc 1 1 1 1 1
2 HK Gluc + ATP — GIc6P + ADP 3900 1 1 1 1
3 GPI Fru6P — Glc6P 2.55 -1 -1 1 -1
4 PFK FruéP + ATP — Fru1,6P + ADP | 100000 1 1 0 1
5 ALD DHAP + GraP — Fru1,6P 8.77 -1 -1 0 -1
6 TPI GraP — DHAP 24.6 -1 -1 0 -1
7 | GAPDH 1,3PG + NADH — GraP + Pi + NAD 5210 -1 -1 -1 -1
8 PGK 1,3PG + ADP — 3PG + ATP 1455 0 1 1 1
9 DPGM 1,3PG — 2,3PG | 100000 1 0 0 0
10 DPGase 2,3PG — 3PG + Pi 100000 1 0 0 0
1 PGM 2PG — 3PG 6.9 -1 -1 -1 -1
12 EN 2PG — PEP 1.7 1 1 1 1
13 PK PEP + ADP — Pyr + ATP 13790 1 1 1 1
14 LDH Pyr + NADH — Lac + NAD 9090 1 1 1 1
15 LDH(P) Pyr + NADPH — Lac + NADP 1420 0 0 0 0
16 ATPase ATP — ADP + Pi | 100000 0 1 0 0
17 AK 2 ADP —; ATP + AMP 0.64 0 0 -1 -1
18 G6PD G6P + NADP — 6PG + NADPH 2000 0 0 1 0
19 6PGD | 6PG + NADP — RusP + CO2 + NADPH 1417 0 0 1 0
20 | GSSGR GSSG + NADPH — 2 GSH + NADP 3417.8 0 0 1 0
21 GSHox GSH — GSSG | 100000 0 0 1 0
22 EP RusP — X5P 2.7 0 0 1 -1
23 Kl RusP — R5P 3 0 0 1 1
24 TK1 X5P + RSP — GraP + S7P 1.05 0 0 1 -1
25 TA S7P + GraP — E4P + Fru6P 1.05 0 0 1 -1
26 PRPPS R5P + ATP — AMP + PrPP | 100000 0 0 1 1
27 TK2 X5P + E4P — GraP + FrusP 1.2 0 0 1 -1
28 Pt Pi(out) — Pi 1 0 0 1 1
29 Lact Lac(out) — Lac 1 -1 -1 -1 -1
30 Pyrt Pyr(out) — Pyr 1 0 0 0 0

Table 2. Model scheme and the corresponding minimal flux modes (MinModes) of
the E-network.
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