
Proceedings
of the

2nd International Beilstein Workshop

on

Experimental Standard Conditions

of

Enzyme Characterizations

March 19th – 23rd, 2006

R�desheim/Rhein, Germany

Edited by Martin G. Hicks and Carsten Kettner



Beilstein-Institut zur F�rderung der Chemischen Wissenschaften

Trakehner Str. 7 – 9
60487 Frankfurt
Germany

Telephone: +49 (0)69 7167 3211 E-Mail: info@beilstein-institut.de
Fax: +49 (0)69 7167 3219 Web-Page: www.beilstein-institut.de

Impressum

Experimental Standard Conditions of Enzyme Characterizations, Martin G. Hicks and
Carsten Kettner (Eds.), Proceedings of the Beilstein-Institut Workshop, March 19th – 23rd

2006, R�desheim, Germany.
Copyright � 2007 Beilstein-Institut zur F�rderung der Chemischen Wissenschaften.
Copyright of this compilation by the Beilstein-Institut zur F�rderung der Chemischen
Wissenschaften. The copyright of specific articles exists with the author(s).
Permission to make digital or hard copies of portions of this work for personal or teaching
purposes is granted provided that the copies are not made or distributed for profit or
commercial advantage and that copies bear the full citation and copyright notice. To copy
otherwise requires prior permission of the publisher.
The Beilstein-Institut and its Editors assume no responsibility for the statements and
opinion made by the authors. Registered names and trademarks etc., used in this publica-
tion, even in the absence of specific indication thereof, are not to be considered unprotected
by law.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data is available in the internet at http://dnb.ddb.de

ISBN &

Layout by: H�bner Electronig Publishing GmbH, Printed by Logos Verlag Berlin

Eltville Comeniushof, Gubener Str. 47

10243 Berlin

Cover Illustration: N.N. Tel: +49 (0)30 42 85 10 90

Fax: +49 (0)30 42 85 10 92

Internet: http://www.logos-verlag.de

XIV

ESCEC, March 19th – 23rd, 2006, R�desheim/Rhein, Germany
Beilstein-Institut



Preface

The post-genomic era is significantly characterized by a high integration and interdisci-
plinary of research resources from such diverse fields as computational biology, bioinfor-
matics, functional genomics, structural biology, and proteomics. In this perspective, estab-
lished biological systems can be comprehensively investigated in terms of interactions of
individual or groups of proteins and enzymes as well as the behaviour of collective net-
works of such interactions. On the other hand, these systems can be re-examined in the
light of new results that suggest novel associations between otherwise unrelated pathways
and individual proteins.

Modern experimental technologies are providing seemingly endless opportunities to gen-
erate massive amounts of sequence, expression and functional data. Continuous advances
and improvements have enabled proteome analyses to proceed with increased depth and
efficiency. To capitalize on this enormous pool of information and in order to understand
fundamental biological phenomena it is essential to collect, organize, categorize, analyse,
and share data and results.

However, whilst the large international genome sequencing projects elicited considerable
public attention with the creation of huge sequence databases, it has become increasingly
apparent that functional data for the gene products, in particular for enzymes, has either
limited accessibility or is unavailable. Additionally, although enzyme structural informa-
tion has been rapidly accumulated in databases, little effort has been invested toward
systematic characterization of enzyme functions.

The problem is twofold; deriving data from experimental work is expensive and very time
consuming and it is inherently very difficult to collect, interpret and standardize published
data since they are widely distributed among journals covering a number of fields, and the
data itself is often dependent on the experimental conditions.

For these reasons a systematic and standardized collection of functional enzyme data is
essential for the interpretation of the genome information.

The first ESCEC meeting in 2003 resulted in a general agreement that standardization of
experiments and methods for enzyme characterization is definitely necessary and in the
formation of the STRENDA commission. STRENDA stands for Standards for Reporting
Enzyme Data and the commission accompanies the upcoming series of ESCEC symposia.

http://www.beilstein-institut.de/escec2006/proceedings/Preface.pdf
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This 2nd ESCEC symposium provided a platform to discuss a number of checklists worked
out and presented by the STRENDA commission. In general, these lists are intended to
support the improvement of reporting enzyme data and can be found on the STRENDA
website www.strenda.org/documents.

We would like to thank particularly the authors who provided us with written versions of
the papers that they presented. Special thanks go to all those involved with the preparation
and organization of the workshop, to the chairmen who piloted us successfully through the
sessions and to the speakers and participants for their contribution in making this workshop
a success.

Frankfurt/Main, July 2007 Carsten Kettner
Martin G. Hicks
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Abstract

Since the pH is treated as an independent variable in biochemical
thermodynamics, the Gibbs energy G does not provide the criterion
for equilibrium, but the transformed Gibbs energy G’ does. The stan-
dard transformed Gibbs energy of formation DfG’0 of a reactant (sum
of species) can be calculated at the desired temperature, pH, and ionic
strength if the standard Gibbs energies of formation DfG

0 and standard
entropies of formation DfH

0 of the species that make up the reactant
are known. BasicBiochemData3 in MathSource provides species prop-
erties for 199 biochemical reactants and Mathematica programs for
calculating apparent equilibrium constants K’ and other transformed
thermodynamic properties of enzyme-catalysed reactions are given.
This database can be extended, and the number of reactions for which
apparent equilibrium constants can be calculated increases exponen-
tially with the number of reactants in the database.
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Database on Thermodynamics of Enzyme Catalysed

Reactions

My main interest is in the thermodynamics of reactions catalysed by enzymes, but some of
the things I am going to talk about apply to the kinetics of these reactions. There are two
ways to discuss the thermodynamics of enzyme-catalysed reactions: (1) with chemical
reactions written in terms of species (like ATP4-, HATP3-, and H2ATP2-) using the Gibbs
energy G, enthalpy H, and entropy S. (2) with biochemical reactions written in terms of
reactants (sums of species like ATP) at a specified pH and using the apparent equilibrium
constant K’, the transformed Gibbs energy G’, the transformed enthalpy H’, and the trans-
formed entropy S’. These transformed thermodynamic properties depend on the pH. Both
ways are needed by biochemists. Chemical reactions are needed to discuss mechanisms of
enzyme-catalysed reactions in terms of species. Biochemical reactions are needed to obtain
a broader overview of enzyme-catalysed reactions at specified pH (and perhaps pMg). This
is all explained in IUPAC/IUB Recommendations, 1994 [1].

Both chemical equations and biochemical equations are mathematical equations in the
sense that chemical equations must balance numbers of atoms of all elements and electric
charges. Biochemical equations must balance numbers of atoms of all elements except for
hydrogen. Biochemical equations also do not balance electric charge. The reason why
biochemical equations do not balance numbers of hydrogen atoms and electric charges is
that it is assumed that the pH is held constant during the reaction. This can be done with a
pHstat, but biochemists use a buffer to keep the pH nearly constant during an enzyme-
catalysed reaction, and then, if they are determining an apparent equilibrium constant, they
measure the composition and pH at equilibrium. The equilibrium composition corresponds
with this pH, and so this is equivalent to using a pHstat.

Most enzyme-catalysed reactions produce or consume hydrogen ions. This leads to a new
thermodynamic property, the change in binding of hydrogen ions DrNH in the reaction.
DrNH will depend on the pH if any reactant has a pK in the pH range of interest (usually
between pH 5 and pH 9). This property can be calculated using:

DrNH = νi iN′∑ H (1)

where νi
′ is the stoichiometric number for reactant i and N iH is the average number of

hydrogen atoms in reactant i. The prime is needed to distinguish νi
′ from the stoichio-

metric numbers in the underlying chemical reactions. In making tables of thermodynamic
properties of enzyme-catalysed reactions, DrNH is usually calculated using:

DrNH =
1

10RT
G

ln( )
'∂

∂
∆ r

pH
°

(2)
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However, it can also be calculated using Equation 1. It should be noted that in the thermo-
dynamics of biochemical reactions, DrNH is on the same level as DrH’0 and DrS’

0 since all
three of these properties are calculated by taking partial derivatives of DrG’0. The average
number of hydrogen atoms in a biochemical reactant can be calculated using the binding
polynomial [2, 3] for the reactant. This calculation requires the pK values of the reactant in
the pH range of interest and the numbers of hydrogen atoms in the species of the reactant.
The use of Equation 1 has the advantage over Equation 2 in that DfG

0 values for species in
the reaction do not have to be known.

These requirements of the thermodynamics of enzyme-catalysed reactions also apply to the
kinetics because the complete steady-state rate equation for an enzyme-catalysed reaction
must yield the same equilibrium composition for the reaction as thermodynamics. The
apparent equilibrium constant K’ for an enzyme-catalysed reaction can be calculated from
kinetic parameters; this expression for the apparent equilibrium constant is referred to a
Haldane equation. For some mechanisms there is more than one Haldane equation.

The calculations in biochemical thermodynamics are very complicated, but fortunately the
application Mathematica� [4] is very convenient for making them. I have developed a
database, written in Mathematica and called BasicBiochemData3 [5], that gives the stan-
dard Gibbs energies of formation DfG

0 and standard enthalpies of formation DfH
0 of species

of biochemical interest at 298.15 K and zero ionic strength for 199 reactants of biochemical
interest. Some of these species properties come from the NBS and CODATA thermody-
namic tables that deal with chemical species, but for larger molecules of biochemical
interest, species properties have to be calculated from experimental measurements of
apparent equilibrium constants K’ and enthalpies of enzyme-catalysed reactions. The ex-
perimental data in the literature has been summarized and evaluated (actually graded A, B,
C) by Goldberg and Tewari in six survey papers in J. Phys. Chem. Ref. Data (1991 – 1999).
They have summarized experimental data on about 500 different reactions involving about
1000 reactants. They have also established a web site on this experimental data [6]. We are
indebted to Goldberg and Tewari for assembling all this literature data.

Mathematica is so useful that I have written a second book [3] this time in Mathematica,
entitled “Biochemical Thermodynamics; Applications of Mathematica.” This makes it pos-
sible to intermingle explanations, programs, and calculations. It has a CD in the back with
all the programs, data, and words. All the steps in calculating properties, making tables, and
making figures are shown. We usually think of computer programs that calculate numbers,
but Mathematica can do more. It can be used to derive equations that are too big to write
out by hand.

BasicBiochemData3 provides DfG
0 values for species of 199 biochemical reactants, but

DfH
0 are known for species for only 94 of these reactants. This database can be used to

calculate standard transformed Gibbs energies of formation DfG’0 of these 199 reactants at
298.15 K in the pH range 5 to 9 and ionic strengths from zero to about 0.35 M. For the 94
reactants for which enthalpies are known, it is possible to calculate DfG’0 from 273.15 K to
about 313.15 K.

3
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These DfG’0 have been used to calculate standard transformed Gibbs energies of reaction
DrG’0 and apparent equilibrium constants K’ at 298.15 K and 0.25 M ionic strength for 229
enzyme-catalysed reactions [3], but the DfG’0 can be used for even more reactions. When
DfH

0 are known for the species of a reactant, standard transformed Gibbs energies DfG’0

and standard transformed enthalpies DfH’0 of reactants can be calculated in the temperature
range 273.15 K to about 313.15 K, pH values in the range 5 to 9, and ionic strengths from
zero to about 0.35 M. This information has been used to calculate DrG’0, DrH’0, DrS’

0 and
apparent equilibrium constants K’ for 90 enzyme-catalysed reactions.

Since biochemists need thermodynamic properties at various temperatures, pH values and
ionic strengths, tables and plots cannot satisfy these needs. Having a file of mathematical
functions that give DfG’0 of reactants does satisfy these needs, and BasicBiochemData3
makes available Mathematica programs and 774 mathematical functions for these proper-
ties. These functions can be added and subtracted to obtain changes in thermodynamic
properties in biochemical reactions and apparent equilibrium constants. Plots can also be
made to show how reaction properties depend on temperature, pH, and ionic strength.
BasicBiochemData3.nb contains the functions of temperature, pH, and ionic strength that
yield the standard transformed Gibbs energies of reaction for the 90 enzyme-catalysed
reactions for which the effects of changing the temperature can be calculated.

It is important to emphasize the importance of ionic strength in the thermodynamics of
enzyme-catalysed reactions. According to the Debye-Huckel theory, the logarithm of the
activity coefficient of an ion in water is proportional to its charge squared. This means that
the ionic strength effect for the species ATP4- is 16 times that for a chloride ion, a huge
effect.

I often see MgATP in the biochemical literature, but this is not a species or a reactant. To
treat the effect of magnesium ions, a further Legendre transform is required to introduce
pMg as an independent variable. People determining apparent equilibrium constants of
reactions in the presence of magnesium ions often give the total magnesium concentration,
but it is pMg = �log[Mg2+], where [Mg2+] is the free concentration, that affects the value of
K’. The effects of pMg on the hydrolysis of ATP, ADP, and AMP have been calculated, but
this is about the only series for which there is sufficient information about the dissociation
of magnesium complex ions. The effect of Mg2+ sometimes cancels because both reactants
and products bind Mg2+.

Stoichiometry of Enzyme-Catalysed Reactions

In making thermodynamic calculations on biochemical reactions, it is necessary to be very
careful about stoichiometry (for example, see Equation 1). It is assumed that when a
reactant is made up of species with different numbers of hydrogen atoms, these species
are in equilibrium at a specific pH. I think that biochemists understand this pretty well for
reactants like ATP, but not for reactants like carbon dioxide and ammonia. Many biochem-
ical reactions are balanced on the web with CO2 or NH3, but I do not think this is very

4
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appropriate for considering reactions in a living cell where there is no gas phase. In
aqueous phases, carbon dioxide is made up of four species: CO2, H2CO3, HCO3

-, and
CO3

2-. I represent this sum of species in the aqueous phase as CO2tot, for which the
transformed thermodynamic properties depend on the temperature, pH, and ionic strength.
When CO2(gas) is replaced with CO2tot in a reaction equation, a H2O has to be added on
the other side of the reaction to balance oxygen atoms. In the aqueous phase ammonia is
made up of NH3 and NH4

+. I represent this sum of species by ammonia, for which the
transformed thermodynamic properties depend on the temperature, pH, and ionic strength.
These comments apply to other gases that dissolve in water and exist in the aqueous phase
in different protonated forms.

Hydrogen ions should never appear in balanced biochemical equations because it is under-
stood that the pH is held constant during the approach to equilibrium by adding or remov-
ing hydrogen ions. I am not advocating the use of pHstats, but what I am saying is that
biochemists interpret determinations of apparent equilibrium constants and enthalpies of
reaction as if they were carried out in a pHstat.

The abbreviations NAD+ and NADH are a problem because this seems to indicate that
hydrogen atoms and electric charges are to be balanced on the two sides of the biochemical
equation, but they are not. I favour using NADox and NADred instead. These remarks apply
to other complicated coenzymes that exist in oxidized and reduced forms.

In my new book I have always written reactions in the direction in which they have
apparent equilibrium constants greater than unity at pH 7 and 0.25 M ionic strength. In
the 229 reactions in my book for which apparent equilibrium constants are calculated at
298.15 K, 78 are written in the opposite direction from the EC list.

Future Developments Using the Database of

Goldberg and Tewari

Many more species data can be obtained from the database surveyed by Goldberg and
Tewari [6]. When the apparent equilibrium constant has been determined for an enzyme-
catalysed reaction, there is the potential for calculating DfG

0 for the species of a reactant. It
is necessary to say „there is the potential“ because the following conditions have to be met:
(1) The DfG

0 of all of the species of all of the reactants, but the reactant of interest, are
needed. (2) If the reactant of interest has pK values in the range of approximately 5 to 9,
these pK values are needed. (3) The experiments have to be carried out carefully and
reported accurately. These are pretty demanding requirements.

There is an exception to requirement (1) that should be used sparingly: when there are two
reactants in an enzyme-catalysed reaction for which thermodynamic properties are not
known, DfG

0 = 0 can be assigned to one species of one of these two reactants. This was
done by Alberty and Goldberg (1992) with the ATP series when DfG

0 (adenosine0) = 0 was

5
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adopted as a convention of the thermodynamic table. This made it possible to calculate
DfG

0 for all the other species in the ATP series. When this convention is used, the
adenosine moiety must appear on both sides of a biochemical reaction. After Boeiro-Goates
and coworkers (2001) determined the standard entropy of adenosine(cryst) using the third
law method, they were able to calculate DfG

0 (adenosine0) in aqueous solution with respect
to the elements in their reference states, and this changed the DfG

0 of all the species in the
ATP series by the same amount. It did not change the apparent equilibrium constants that
had been calculated earlier for reactions involving the ATP series. But now it is possible to
explore the thermodynamics of the formation of adenosine and adenine all the way back to
the elements. The convention that DfG

0 = 0 for one species is especially useful for reactants
in oxidoreductase reactions because the oxidized form is on one side of the equation and
the reduced form is always on the other side. Similar remarks apply to the use of the
convention that DfH

0 = 0 for one of the species of the reactant.

>Enzymes are making it possible to learn about the thermodynamics of large molecules in
aqueous solution because they catalyse very specific reactions rapidly. The thermody-
namics of these large molecules could never have been determined classically because
without catalysts complicated mixtures are obtained.

Factors that Favour the Extension of the

Database on Species

In looking ahead to the future of biochemical thermodynamics I want to point out that as
species properties of reactants are added to the database, the number of reactions for which
apparent equilibrium constants can be calculated increases exponentially. ATP participates
in 41 of the 229 reactions for which I have made calculations at 298.15 K, and urea is
involved in one. The “average” reactant is involved in about 6 reactions. Thus we can
expect that when a new reactant is added to the database, K’ can be calculated for about 6
additional reactions. This leads to an exponential increase in the number of enzyme-cata-
lysed reactions for which apparent equilibrium constants can be calculated. Many equili-
brium constants that can be calculated are so large that they cannot be measured directly
with today's technology.

>Oxidoreductase reactions are a striking example of this. The table of standard apparent
reduction potentials of half reactions can be used to calculate apparent equilibrium con-
stants for any pair of half reactions. If the table of standard apparent reduction potentials
contains N different half reactions, the number R of different reactions for which K’ can be
calculated is given by R = N(N – 1)/2. The current table of standard apparent reduction
potentials in BasicBiochemData3 contains 60 half reactions, and so K’ can be calculated
for 60 x 9/2 = 1770 oxidoreductase reactions. Of course enzymes are not known for all of
these reactions, but I am sure that enzymes will be found for more of them.

6
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Another reason for this exponential increase in the number of reactions with known K’ is
coupling. Transferase reactions couple two oxidoreductase reactions or two hydrolase
reactions, and so knowledge of K’ for oxidoreductase reactions and hydrolase reactions
yield K’ for transferase reactions that have not been studied. Lyase reactions are coupled by
definition, and so their K’ values can be obtained by multiplying the K’ for the two or three
reactions coupled by the lyase reaction.

Independence of the Reactivities of Some Groups in Large

Molecules

Since many reactants in enzyme-catalysed reactions are rather large molecules, the chemi-
cal thermodynamic properties of various groups may be nearly independent, especially at
zero ionic strength. As an example of this, when Boeiro-Goates and coworkers obtained
DfG

0 and DfH
0 of inosine by calorimetric methods, they calculated the DfG

0 and DfH
0 of all

the species of ITP, IDP, and IMP on the assumption that the phosphate pK values and the
chemical equilibrium constants for phosphatase reactions and nucleosidase reactions are the
same in the ITP series as in the ATP series. This does not mean that the standard trans-
formed Gibbs energies of formation of reactants in the two series are different by a constant
increment because the pK values of the purine rings in the two series are different. The pK
values for the purine rings are 4.68 for ATP, 4.36 for ADP, 3.99 for AMP, compared with
10.09 for ITP, 9.56 for IDP, and 9.63 for IMP.

This kind of reasoning has been applied to put the guanosine triphosphate series, xanthosine
triphosphate series, cytidine triphosphate series, uridine triphosphate series, and thymidine
triphosphate series in the next version of BasicBiochemData3. This has required the intro-
duction of the conventions that DfG

0 (guanosine, 298.15 K, I = 0) = 0 and DfG
0 (cytidine,

298.15 K, I = 0) = 0, but it is not necessary to introduce the conventions that DfG
0 (xantho-

sine, 298.15 K, I = 0) = 0, DfG
0 (uridine, 298.15 K, I = 0) = 0, and DfG

0 (thymidine,
298.15 K, I = 0) = 0.

I do not want to over-emphasize this idea of exponential growth because a lot of work is
required to analyse the current experimental data summarized by Goldberg and Tewari, and
unfortunately not many new measurements of apparent equilibrium constants and enthal-
pies of reactions are being made today.

Transformed thermodynamic properties are also needed in the discussion of protein-ligand
binding [7].
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Kinetics of Systems of Enzyme-Catalysed Reactions

For a system of enzyme-catalysed reactions, thermodynamics can do two things if the
species properties are known for all of the reactants: (1) At a given temperature, pH, and
ionic strength, and given concentrations of the reactants in the system, thermodynamics can
tell the direction in which each enzyme-catalysed reaction will go. This information is
provided by the following calculation of the transformed Gibbs energy of reaction at
species concentrations [i] of reactants:

DrG’ = DrG’0 + RTlnΠ[ ]i iν (3)

where P indicates a product involving all the reactants. When DrG’ is negative, the reaction
goes to the right. (2) Thermodynamics can also be used to calculate the equilibrium
concentrations that will be reached at long times. These are the concentrations that will
make DrG’ = 0 for all the reactions. The equilibrium concentrations cannot be calculated
analytically, but the Newton-Raphson method makes it possible to use a computer to iterate
to the equilibrium concentrations. Two short programs in Mathematica make it possible to
do this by specifying the stoichiometric number matrix, a list of apparent equilibrium
constants, and the initial concentrations of the reactants.

I do not think that biochemists have sufficiently appreciated how much thermodynamics
can help in understanding the series and cycles of enzyme-catalysed reactions. The steady-
state rate law for a reaction can be used to calculate a small change in the concentration of
each reactant. This changes the concentrations, and so thermodynamics can be used again
to tell the directions of the reactions. When this process is continued with small steps the
equilibrium concentrations will be reached. This equilibrium composition can be checked
by comparing it with the equilibrium composition calculated using thermodynamics. Math-
ematica provides NDSolve that yields numerical solutions to systems of differential equa-
tions. This program yields interpolation functions for each reactant that can be plotted. In
the absence of Michaelis constants and other kinetic parameters, calculations can always be
made when concentrations of reactants are low in comparison with Michaelis constants.

webMathematica

I want to close by describing a recent development that promises to make complicated
thermodynamic calculations available to biochemists who do not have the Mathematica
application in their computer and do not know how to use Mathematica. webMathematica
makes it possible to put up a web site that has boxes to fill in with input for a calculation.
When the „Compute“ button is clicked, the problem is solved in a server that has Mathe-
matica and BasicBiochemData3, and the numerical result or plot appears. Such a web site
can be used to calculate the apparent equilibrium constant for an enzyme-catalysed reaction
at the desired temperature, pH, and ionic strength. In the first box, the user would type in
the names of reactants and their stoichiometric numbers. In the second box, the user would
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type in the names of products and their stoichiometric numbers. Then the desired tempera-
ture, pH and ionic strength would be typed in. When the „Compute“ button is clicked, the
server on the web that has Mathematica and BasicBiochemData3 will make the calculation
and present the desired apparent equilibrium constant on the computer screen. Wolfram
research has placed about 40 of these html files on the web as examples, and these sites can
be run by going to http://www.wolfram.com, clicking on webMathematica. You do not
need Mathematica in your computer to do this. At MIT we are working on the html file to
make the calculation of apparent equilibrium constants I have just described.

Conclusion

I hope that in the future it will be possible for biochemists to calculate K’, DrG’0, DrH’0,
DrS’

0, and DrNH for a much larger number of enzyme-catalysed reactions at desired tem-
peratures, pH values, and ionic strengths. I believe that these properties will contribute to
the understanding of both the thermodynamics and the kinetics of individual enzyme-
catalysed reactions and networks of reactions.
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Abstract

The aim of this study was to standardize the cultivation conditions of
Saccharomyces cerevisiae and the in-vitro enzyme activity assays
between different laboratories. Furthermore, the conditions under
which the enzyme activity measurements were carried out were
adapted such that they would be as close as possible to in vivo con-
ditions, thus yielding results which are relevant for Systems Biology.
This approach is different from the classical enzymologists’ approach
which is to optimize for the highest catalytic activity.

Saccharomyces cerevisiae strain CEN.PK113–7D was cultured in
aerobic, glucose- limited chemostats under standardized conditions.
It was shown that, in accordance with earlier interlab comparisons,
the main culture characteristics, including biomass, dry weight, glu-
cose flux, and mRNA levels of glycolytic enzymes were comparable
between five different laboratories.

As could be expected, the Vmax values of the glycolytic enzymes were
lower when measured under in vivo-like conditions than in optimized
assays, but still sufficient to account for the glycolytic capacity of the
cells. The addition of a crowding agent (polyethylene glycol) hardly
affected the measured enzyme activities.

Introduction

In Systems Biology the question is addressed as to how biological functions emerge from
the interactions between the molecular components of the cell. In a project with 6 groups
from three different universities we attempt to understand what regulates changes in gly-
colytic flux in bakers’ yeast as a function of time and upon a number of different perturba-
tions. To this end mRNA concentrations, protein concentrations, Vmax values, metabolite
concentrations and fluxes are experimentally determined and the extent to which various
processes contribute to the regulation of metabolic flux are quantified with Regulation
Analysis [1–3].

To be able to integrate the results from different laboratories into a coherent picture, we
have standardized the cultivation and all assay protocols. We have chosen to examine the
regulation of glycolysis in yeast, as it is one of the few pathways for which the kinetic
properties of the enzymes are known sufficiently to calculate the flux from the enzyme
activities. Furthermore, yeast can be cultured under well-defined steady-state and transient
conditions. In this article we describe the results of the standardization process, with an
emphasis on the enzyme activity assays.
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In the project yeast cells are grown in chemostat cultures under well-defined steady-state
conditions in terms of pH, temperature, dissolved oxygen concentration, and substrate and
product concentrations. The CEN.PK113 – 7D yeast strain was used since its physiology
has been well-characterized and it was used successfully in earlier attempts at standardiza-
tion [4,5].

All groups started from the same CEN.PK113 – 7D stock, freshly obtained from the Euro-
scarf collection of yeast strains. Cells were grown at a dilution rate of 0.1 h-1 in the mineral
medium described by Verduyn [6] supplemented with 7.5 g/L glucose as the sole carbon
source, because this medium does not contain sodium, which is toxic for CEN.PK113 – 7D.
Samples were taken after at least 5 residence times of chemostat cultivation, to ensure that
steady-state conditions are satisfied, and not later than 20 residence times, to prevent
physiological changes associated with prolonged chemostat cultivation [7,8].

To estimate the in vivo enzyme activities in the cell, assays were developed that mimicked
the intracellular conditions as closely as possible. Recent data obtained within one of the
contributing labs (Orij, R. and Smits, G. J.) show that the cytosolic pH is approximately 7 if
the external pH is 5.0. Therefore, the in vivo-like assays were performed at pH 7.0. Intra-
cellular potassium concentrations between 50 mM and 200 mM have been reported for
yeast [9]. Therefore, the potassium concentration was fixed at 200 mM. Sulfate was added,
since it is the main anion in our medium. Therefore, if magnesium was needed for the
assay, it was added in the form of magnesium sulfate instead of magnesium chloride. An
intracellular phosphate concentration of 7 mM was reported at a cytosolic pH of 7.5 [10].
Therefore, phosphate was added to a concentration of 10 mM. Finally, it was tested as to
whether the enzyme activities were affected by a crowding agent (polyethylene glycol
(PEG)). Since macromolecular crowding promotes the binding of macromolecules to each
other, the activity of enzymes composed of several subunits could be affected by the
addition of PEG.

Materials And Methods

Growth conditions
The growth procedures have been described in detail in Van Hoek et al. [11]. Shortly, S.
cerevisiae strain CEN.PK113 – 7D was grown in aerobic glucose-limited chemostat cul-
tures at a dilution rate of 0.1 h-1 at 30 �C in defined mineral medium [6] kept at pH 5.0 with
2 M of KOH. The feed medium contained 42 mM of glucose (7.5 g l-1). The chemostats
were stirred at a rate of 800 rpm, aerated at 0.5vvm and most equipment was acquired from
Applikon (Schiedam, NL).

qPCR
Oligonucleotide primers were designed to amplify an 80 – 120bp amplicon. PDI1 was
chosen as an internal standard. Primers were designed using Primer Express software 1.0
(PE Applied Biosystems, Foster City, CA, U.S.A). PCR reactions (20 ml) were set up and
run as described by the manufacturer. Briefly, the reactions contained 10 ml SYBR Green
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PCR Core Kit (PE Applied Biosystems, Foster City, CA, U.S.A), 20 pmol of each primer
(Sigma or Eurogentec, Seraing, Belgium); and 3 ml of cDNA template (equivalent to 1 ng
RNA). Amplification, data acquisition, and data analysis were carried out in the ABI 7900
Prism Sequence Detector (once at 2 min, 50 �C; 10 min, 95 �C; and 40 cycles at 95 �C, 15 s;
59 �C, 1 min). The calculated cycle threshold values (Ct) were exported to Microsoft Excel
for analysis using the DDCt method [12]. Dissociation curves (Dissociation Curves 1.0 f.
software, PE Applied Biosystems, Foster City, CA, U.S.A) of PCR products were run to
verify by amplification of the correct product.

Fermentative capacity assay
>Steady-state fluxes were measured for 30 min in a cell suspension kept anaerobic at 30 �C
in a setup described by Van Hoek et al. [11] for the determination of fermentative capacity,
with the modification that the headspace was flushed with N2 instead of CO2. Ethanol,
glucose, glycerol, succinate, acetate, and trehalose were measured by HPLC (300 mm x
7.8 mm ion exchange column Rezex ROA-organic acid (Phenomenex), with 22.5 mM
H2SO4 kept at 55 �C as eluent at the flow rate of 0.5 ml min-1).

Enzyme activity measurements
Cell free extracts were prepared by sonication (6 times for 30 s.) with glass beads (250 –
500 mm) on ice water as described by Van Hoek et al. [11]. The total protein content of the
cell free extract was measured using the Lowry method [13]. The absorbance (750nm) was
measured in a Novostar plate reader (BMG Labtech, Germany).

The enzyme assays were carried out on four dilutions of freshly prepared extracts through
NAD(P)H-linked assays as described by Van Hoek et al. [11], with a Cobas Bio automated
analyser for spectroscopic measurements (Roche, Switzerland). Enzyme assays were per-
formed in three different buffers. The first set of activities was measured according to Van
Hoek et al. [11], in which the buffer content was different for the different enzymes. The
second set of enzyme assays was performed in 100 mM K2SO4, 10 mM KH2PO4, and at a
pH of 7.0. In every assay essential components were added if required (NADH, ATP,
EDTA, MgSO4, coupling enzymes and substrates). The third set of assays was done in
the same conditions as the second assay, but with the addition of 10% PEG (3350).
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Table 1. Enzyme activity protocols according to Van Hoek et al., [11]. *In the ‘in
vivo’-like enzyme activities the buffer concentrations were for all enzyme assays 100
mM K2SO4, 10 mM KH2PO4, 5mM MgSO4 (if needed), and the pH was
7.0. Furthermore, in the ‘in vivo’-like enzyme activities all concentrations were the
same as in the Van Hoek protocol.

ADH ALD GAPDH HXK TPI PDC PFK PGI PGK GPM PYK G6PDH

Salt1*

conc
Glycine
50mM

Tris-HCl
50mM

Trietha-
nol-
amine
100mM

Imidazol
-HCl
50mM

Trietha-
nol-
amine
100mM

Imidazol
-HCl
40mM

Imidazol
-HCl
50mM

Tris-HCl
50mM

Trietha-
nol-
amine
100mM

Trietha-
nol-
amine
100mM

Cacodylic
Acid
100mM

Triethanol-
amine
100mM

Salt 2*

conc
KCl
100mM

EDTA
1mM

TPP
0.2mM

EDTA
1mM

2,3dPGA KCl
100mM

Salt 3*

conc
MgSO4
1.5mM

MgCl2
5mM

MgCl2
5mM

MgCl2
5mM

MgCl2
5mM

MgSO4
1.5mM

MgSO4
1.5mM

MgCl2
25mM

pH* 9 7.5 7.6 7.6 7.6 6.5 7.0 8.0 7.6 7.6 6.2 7.6

Substrate1
conc

ATP
1mM

ATP
1mM

F2,6bP
0.1mM

ATP
1mM

ADP
10mM

ADP
10mM

Substrate2
conc

NAD
1mM

NADH
0.15mM

NADH
0.15mM

NADP
1mM

NADH
0.15mM

NADH
0.15mM

NADH
0.15mM

NADP
0.4mM

NADH
0.15mM

NADH
0.15mM

NADH
0.15mM

NADH
0.15mM

Startreagent1
conc

Ethanol
100mM

F1,6bP
2mM

3-PGA
5mM

Glucose
10mM

GAP
5.8MM

Pyruvate
50mM

F6P
0.25mM

F6P
2mM

3-PGA
5mM

3-PGA
5mM

F1,6bP
1mM

F1,6bP
1mM

Startreagent2
conc

ATP
0.5mM

TPI
75U/ml

Startreagent3
conc

ALD
1U/ml

Enzyme1
conc

G3PDH
0.6U/ml

PGK
22.5U/ml

G6PDH
1.8U/ml

G3PDH
8.5U/ml

ADH
88U/ml

ALD
0.45U/ml

G6PDH
1.75U/ml

G3PDH
8.0U/ml

PYK
13U/ml

LDH
11.3U/ml

Enzyme2
conc

TPI
1.8U/ml

G3PDH
0.6U/ml

LDH
11.3U/ml

Enzyme3
conc

TPI
1.8U/ml

ENO
2U/ml

Results

Interlab comparison of culture characteristics
To be able to later integrate all project data in one model, the cultivation conditions should
be the same in the different laboratories. We compared the steady-state properties of the
standard chemostat cultures, which were performed in four different labs (Table 2). The
glucose flux and biomass yield on glucose were similar in all groups. The specific con-
sumed oxygen and produced carbon dioxide however, deviated from the published standard
(reference) in group 2 and group 4. This is probably a matter of calibration of our gas-
analysing systems, which can be improved. The respiratory quotient (i. e. the ratio of the
specific CO2 production over the specific oxygen consumption) was close to 1 in all
cultures, implying that they were all fully respiratory. Accordingly, no ethanol was detected
in any of the cultures.

In addition, the levels of a number of glycolytic transcripts were compared between two
labs (Fig. 1). For this we subtracted the cycle threshold of the control gene PDI1 and the
transcript of interest. This gives a relative estimate of the amount of transcript present in the
cell. The cycle threshold represents the number of cycles after which a certain sample
exceeds the threshold signal intensity. Thus, when two samples differ by one cycle, the one
with the lowest cycle threshold has a two-fold higher mRNA concentration than the other
sample. The transcript levels from two different laboratories show a similar pattern. This is
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in agreement with a more extensive inter-laboratory comparison of transcript levels in
samples that were obtained from the same culture conditions and analysed using micro-
arrays [4].

These data show that if we standardize the conditions in different laboratories, we end up
with a similar culture.

Table 2. Steady-state properties of the aerobic glucose-limited chemostat cultivation
in the different laboratories, compared to a published reference [14] (N.D. is not
detectable).

RQ qCO2
Produced
(mmol/gDW.h)

qOJ
Consumed
(mmol/gDW.h)

qglucose
Consumed
(mmol/gDW.h)

qethanol
Produced
(mmol/gDW.h)

Yglucose
(gDW/
gglu)

C-recov-
ery
(%)

Literature 1.0 2.3 € 0.3 2.8 € 0.3 1.1 € 0.0 N.D. 0.49 € 0.0 98

Group 1 1.1 3.0 € 0.1 2.3 € 0.0 1.0 € 0.1 ND. 0.56 € 0.0 98

Group2 1.0 2.5 € 0.0 2.4 € 0.0 1.0 ND. 0.51 100

Group3 1.0 2.8 € 0.1 2.7 € 0.1 1.1 € 0.1 ND. 0.48 € 0.0 101

Group4 1.0 2.3 € 0.2 2.3 € 0.4 1.1 € 0.1 ND. 0.48 € 0.0 94

Group5 1.0 2.3 € 0.1 2.7 € 0.1 1.1 € 0.0 ND. 0.50 € 0.0 103

Figure 1. qPCR signal relative to our control gene (PDI1). We subtracted the cycle
threshold signal of the control gene (PDI1) from the cycle threshold of our transcript
of interest. Comparing these data from different laboratories gives an estimate of the
similarity of our fermentors at the transcriptional level.
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Enzyme activity assays under in vivo conditions
We analysed the effect of the different buffers on the enzyme activities. For most enzymes
the new in vivo protocol resulted in lower enzyme activities than the existing optimized
protocol (Fig. 2), as should have been expected. Aldolase was the only enzyme for which
the enzyme activity increased using the new assays. The activity of TPI was in large excess
according to the Van Hoek assay, but the under the in vivo-like assay conditions it is of the
same order of magnitude as the other enzyme activities. This was probably caused by the
addition of phosphate, which is known to be an inhibitor of TPI [15]. Even in the in vivo-
like assay the activity of TPI was among the highest measured activities, in agreement with
the fact that it is close to equilibrium in most cases [16].

Addition of a crowding agent (10% PEG) had hardly any effect on the enzyme activities
(Fig 2).

Figure 2. Enzyme activities relative to the amount of total soluble protein. The Vmax

values analysed with the different buffers are shown: Van Hoek (buffer according to
[11]) (black columns), minimal ‘in vivo’-like (light grey columns), and minimal ‘in
vivo’-like with 10% PEG (grey columns). The Vmax was measured in the catabolic
direction (from glucose to ethanol) except for the enzymes ADH, GAPDH, PGI, and
PGK, which were measured in the reverse direction.

The measured Vmax values should be enough to account for the fluxes measured both under
the steady-state conditions and in the fermentative capacity assay. The glucose flux under
the steady-state conditions has been shown to be 4.0 mmol h-1 gProt-1. The ethanol flux in
the fermentative capacity measurements was 29.6 mmol h-1 gProt-1. Taking into account
the direction in which the enzyme activities were measured and the branching of glycolysis
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(roughly the flux through the lower part of glycolysis should be twice as high as the flux
through the upper part), the measured enzyme activities in all assays are large enough to
account for the calculated fluxes (Table 3).

Table 3. Vmax values (mmol h-1 gProt-1) from Fig. 2 were recalculated in the direction
of the flux from glucose to ethanol of the in vivo assay (Vmax values were obtained in
the catabolic direction making use of the equilibrium constants, Michaelis-Menten
constants and forward and reverse Vmax values from literature (ADH [17]), (GAPDH
[18]), (PGI [19]), (PGK [20])).

ADH ALD GAPDH HXK PDC PFK PGI PGK GPM PK

mmol h-1 gProt-1 318.3 51.4 29.7 62.6 27.1 13.1 150.8 29.9 235 113

Conclusions

This paper describes the standardization of yeast cultivation and analysis for Systems
Biology research. A single laboratory will never be able to obtain the large amount of data
that are required to understand the cell in terms of the interactions between its molecular
components. In view of the quantitative nature of this type of research, it is of vital
importance to standardize cultivation conditions and analytical procedures between labora-
tories.

In this study the same yeast strain and cultivation conditions were used that were applied
earlier [14] and obtained comparable results in four different laboratories. We optimized
the enzyme activity assays to mimic the in vivo conditions as closely as possible. The
measured activities could account for the calculated flux in the chemostat cultures and in an
off-line fermentative capacity assay.

For these assays the ion content of the cell was estimated from literature. In the near future,
we will further improve the method by analysing the intracellular ion concentrations using
inductively coupled plasma-atomic emission spectroscopy (ICP-AES) [21] and apply the
results in the in vivo-like assay conditions.
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Abstract

The conventional assay method for the majority of enzymes envisages
a reaction between substrates in aqueous solution. A measurable con-
centration of product is accumulated over time. This paradigm has
served well for the characterization of many enzymes. Variations of
the method, often using chromogenic or fluorogenic substrates, have
been developed and are widely used for purposes such as clinical
diagnosis and screening. There are some metabolically important en-
zymes for which the only published assay methods use artificial sub-
strates. Some of these are oxidoreductases that use artificial mediators,
and are listed in the EC list under EC 1.x.99. For computational
reconstruction of the metabolism of a cell, however, it is necessary
to use kinetic data from assays that reflect the physiological function
in the cell, and the physiological substrates. For some oxidoreductases
it is known, or considered likely that the acceptors are water-insoluble
membrane-bound quinones such as ubiquinone or menaquinone,
which present particular problems for measurement of kinetic para-
meters. Succinate dehydrogenase/fumarate reductase is considered as
an example. The oxidoreductases from membranes must be rendered
soluble by detergents, which alter their kinetic behaviour. Uncertainty
about the way of measuring activity of such enzymes has led to
confusion in textbooks and metabolic maps, such as the persistent
myth that free FAD is the acceptor for succinate dehydrogenase and
related enzymes. New strategies are discussed to measure electron-
transfer flux, under conditions that reflect the physiological activity of
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membrane-associated oxidoreductases. An example is direct electro-
chemistry of enzymes adsorbed onto carbon surface. In favourable
cases this method is able to observe electron flux both within and
through individual enzyme molecules. The kinetic parameters and
substrate specificity of membrane-bound oxidoreductases may be ob-
tained in this way.

Conventional Enzyme Assays

The STRENDA initiative aims for the standardization of enzyme assay protocols, with the
prospect of simulating the metabolism of the cell by computational reconstruction of
reaction pathways. It also underlines the need for the accurate classification of enzymes
according to their physiological activities. The obvious first requirement for each enzyme is
to know what its substrates are in the pathway. When determining the kinetic parameters,
the natural substrates should be used, even if they are unstable, insoluble or expensive to
produce. The assay method should reflect the conditions (pH, ionic strength, protein con-
centrations, etc.) in the cell for which the metabolism is being reconstructed. Ideally the
flux through the enzyme should be measured in the presence of other metabolites, which
might be allosteric activators or inhibitors, and of any proteins with which the enzyme
interacts, all at the physiological concentration. At present, there are some enzymes for
which the only published data fall well short of this ideal. Just as some enzymes are easier
to assay than others, some enzymes are easier to classify than others. For some, the EC
classification is incomplete, and their assay methods use artificial cosubstrates.

The classic enzyme assay, since the work of Michaelis and Menten, is one carried out by an
enzyme in dilute solution, with a fixed, relatively high initial concentration of substrate(s)
and in the absence of product. The reaction rate is determined by the change of concentra-
tion of product P or substrate S, for example by spectrophotometry:

v = d[P]/dt = �d[S]/dt (1)

This approach is popular since it allows the accurate determination of catalytic parameters
such as Km and kcat. As is well documented [1] however it deviates significantly from the
situation in the cell where the enzyme substrate and product are in turnover but their
concentrations do not change substantially.

The EC classification lends itself most easily to the description of enzyme-catalysed reac-
tions involving up to two substrates, such as an X-transferase (EC class 2):

X-donor + acceptor = donor + X-acceptor (2)

Oxidoreductases
For an oxidoreductase (EC class 1) the reaction can be written:
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reductant + oxidant = oxidized reductant + reduced oxidant (3)

the EC number of an enzyme of this type takes the form EC 1.x.y.z, where x represents the
type of reducing substrate, and y the type of oxidant. The class EC 1 can be represented in
terms of a matrix of x and y, as illustrated in Fig. 1, where the vertical (z) axis represents the
number of enzymes of each type.

Figure 1. Classification of the oxidoreductases in Class 1 of the EC list. The vertical
axis shows the number of enzymes of each sub-subclass, except that the count for EC
1.1.1.1 is truncated; there are currently 288 such enzymes.

Enzyme Assays Using Artificial Substrates

Enzyme assays are among the most widely used of biochemical measurements. They were
developed for many other purposes, not just to characterize enzymes or study metabolism
(Table 1). Colorimetric enzyme assays using chromogenic or fluorogenic substrates are
routinely used. For example, in the pioneering studies of Jacob and Monod [2] on induction
of the lac operon of Escherichia coli, hydrolysis of o-nitrophenyl-b-galactoside was used to
measure the level of expression of b-galactoside, EC 3.2.1.45. The product nitrophenol has a
bright yellow colour in alkaline solution. This well-studied detection system is still used to
investigate gene regulation; for example the gene for b-galactosidase is coupled to a pro-
moter of interest, and E. coli cells in which the promoter is activated can be observed by the
colour reaction. The assay has been refined by the use of substrates such as X-gal (5-bromo-
4-chloro-3-indolyl-b-D-galactoside) which generates an indigo precipitate, and 4-methyl
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umbelliferyl b-D-galactoside, which releases a fluorescent product [3]. The colorimetric
assay for b-galactosidase was found to be effective in the diagnosis and monitoring of
Gaucher disease [4]; the enzyme deficiency being measured is in fact for a glucosylcerami-
dase, EC 3.2.1.45.

Enzyme assays are widely used in clinical medicine for diagnosis and monitoring of disease
[5]. They are used to measure unusually high or low levels of enzyme, or the presence of
enzyme in an inappropriate location, as an indication of tissue damage. For such assays, all
that is required is that the method be sensitive, robust, and specific to the enzyme of interest.
Other compounds present in the sample should not interfere. It is not important that the
assay should reflect the precise activity that the enzyme displays in the living cell. A few
examples are listed in Table 1. Sometimes the physiological substrate of the enzyme being
measured has not been established; for example alkaline phosphatase in blood is an indicator
of bone disease. Cytochemical stains for respiratory enzymes are used in histology, and
enzyme activity stains are used to visualize redox enzymes on non-denaturing electrophor-
esis gels. Vital stains using the reduction of a tetrazolium compound to a coloured formazan
are basically tests for oxidoreductases [6]. The ability of an enzyme molecule to turn over
many molecules of substrate represents a large amplification factor, which is exploited in
enzyme-linked tests such as enzyme-linked immunosorbent assays (ELISA) [7].

Table 1. Examples of enzyme assays used in clinical diagnosis and screening.

Enzyme assay Test for Enzyme EC No

p-nitrophenyl phosphatase liver function and bone disease alkaline phosphatase EC 3.1.3.1

Paraoxonase antioxidant stress aryldialkyl- phosphatase EC 3.1.8.1

peroxidation of 3,3',5,5'-tetra-methylbenzidine ELISA peroxidase EC 1.11.1.7

b-galactosidase or glucosidase gangliosidosis glucosylceramidase EC 3.2.1.45

The use of redox-active dyes and other small molecules as electron acceptors and donors to
enzymes derives from some of the earliest research in biochemistry, and was important in
the discovery of important cellular processes such as the light reactions of photosynthesis
[8] and respiration [9]. It has been known since early in the 20th century that extracts of
living tissues can catalyse the oxidation and reduction of compounds such as 2,6-dichlor-
oindophenol and K3Fe(CN)6 (reviewed by Keilin, [9]), long before the molecular properties
of the protein complexes involved were established.

Some reducing compounds in the cell, such as NADH, react poorly with dyes but the
process is facilitated by compounds such as phenazine methosulfate that will facilitate
the transfer of electrons dyes such as tetrazolium compounds. Such compounds are known
as mediators. Mediators can also facilitate electron transfer to platinum electrodes, and
have been used in the determination of thermodynamic oxidation–reduction potentials of
metabolites and proteins such as cytochromes [10, 11]. Mediators have their difficulties
when used to study the kinetics of enzymes. The reaction of enzymes with redox mediators
is unpredictable, and few systematic studies have been made since the early days [12]. The
most effective mediators are usually one-electron carriers that can produce free radicals.
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Mediators often react at sites that are not accessible to the physiological substrates; or they
may not react at the active sites, for reasons of steric hindrance or electrostatic charge.
Nevertheless, assays using the oxidation and reduction of mediator dyes have continued to
be widely used.

Table 2. Midpoint potentials of some redox couples, at pH 7, in millivolts vs the
hydrogen electrode.

Compound E�, mV

K3Fe(CN)6/K4Fe(CN)6 +420

2,6-dichloroindophenol +217

Phenazine +80

Ubiquinone Q/QH2 +60

Fumarate/succinate +30

Methylene blue -11

Menaquinone MK/MKH2 -60

Indigodisulfonate -125

FAD/FADH2 -207

NAD+/NADH -320

Methyl viologen -440

A considerable number of oxidoreductases were first studied by assay with mediators or
artificial donors (Table 2). Succinate dehydrogenase was shown to act with methylene blue
[13]. These assays helped to establish the specificity of the enzyme for their substrates and
inhibitors, though they obviously could not be used to investigate the kinetics of reaction
with the physiological cosubstrate. Some of them were documented in the first list of
enzymes [14] which became the EC list. Rather than omit these enzymes from the classi-
fication, they were placed in the sub-subclass “99“ [15]. They can be seen in the back row
of the chart of EC 1 enzymes (coloured in black in Fig. 1). This sub-subclass included any
enzyme which could not be listed anywhere else, including enzymes for which one sub-
strate is uncertain; and enzymes for which the substrates are known, but for which no other
subclass in the list is suitable. Eventually the “99“ enzymes should all be deleted or
relocated elsewhere in the list. A recent proposal in the list, not yet implemented, is to
invoke the classification EC 1.x.98.z for enzymes where the acceptor is known but for
which there is no suitable sub-subclass, and EC 1.97.y.z for enzymes where the donor is
known but for which there is no subclass. Some of the sub-subclass “99“ enzymes proved
on further investigation to be degraded or incomplete parts of enzymes, and are being
eliminated after further investigation. Others are from organisms that have been little
studied. However some are from well-studied organisms, such as E. coli and they are
particularly interesting as they point to gaps in our knowledge of metabolism, and possibly
further complexities in the organization of the cell.

The flavins, FAD and FMN, are redox-active in their own right, and can act as mediators.
However apart from a few enzymes (dioxygenases in subclass EC 1.14) that appear to use
the free flavin as donor, FMN and FAD form part of an enzyme and are considered as
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prosthetic groups. In some enzyme assays FMN or FAD are required to supplement a flavin
that is a dissociable prosthetic group in the enzyme. Despite this, some textbooks and
metabolic pathways indicate that FADH2 is the product of succinate dehydrogenase.
The reaction may sometimes be found written in the form:

succinate + FAD = fumarate + FADH2 (4)

which treats FAD as a dissociable substrate. This is usually mentioned in the context of the
citrate cycle, in which the soluble products of pyruvate oxidation are described as CO2, 4
NADH and 1 FADH2. Although this analogy to NAD is superficially attractive, it repre-
sents confusion between a prosthetic group (which is part of the enzyme) and a cosubstrate
(a cofactor that is a substrate of the reaction catalysed). We now know that the enzyme in
mitochondria that oxidizes succinate is a membrane-bound enzyme, succinate dehydrogen-
ase (ubiquinone), EC 1.3.5.1, also known as Complex II of the respiratory chain [16]. This
is a four-subunit enzyme, which contains FAD, iron–sulfur clusters and heme (Fig. 2a).

Thus Equation 4 should be written:

succinate + Q = fumarate + QH2 (5)

The origins of the idea of FAD as an acceptor may date from the 1950 s, when Massey and
Singer [17] showed that FAD could act as a mediator with soluble “succinic dehydrogen-
ase“; this was a preparation of the two membrane-extrinsic subunits, still in the list as EC
1.3.99.1, succinate dehydrogenase. These authors did not suggest that FADH2 was the
acceptor, which is unlikely for several reasons.

. FADH2 could not dissociate from the enzyme, as it is covalently bound to a
cysteine residue in the protein.

. Free FADH2, unlike NADH, is readily oxidized by O2, producing toxic oxygen
radicals.

. The equilibrium of the reaction of Equation 4 would lie in the direction of
reduction of fumarate to succinate since the midpoint potential of the fuma-
rate/succinate couple (30 mV at pH 7; Table 2) is more positive than that of
FAD/FADH2 (-210 mV).

. FAD is a carrier (as are the iron–sulfur clusters and heme) in the flux of reducing
equivalents from succinate to ubiquinone (Fig. 2a).

. Equation 5 is formally a transfer of two hydrogen atoms from succinate to
ubiquinone. In fact, the process involves electron transfers. Flavins can be re-
duced in one-electron steps with the formation of an intermediate semiquinone;
hence they act as a transformer between hydrogen- and electron-transfer reac-
tions. Quinones such as ubiquinone are also best considered as electron carriers,
the reaction going through the formation of a semiquinone radical; to preserve
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charge neutrality, transfer of each electron is usually accompanied by a proton
[18].

Classification of Membrane-Bound Enzymes and the

Reactions Catalysed

When annotating a metabolic pathway, the aim is to identify the enzyme by the reaction
catalysed in a particular step. The identification of an enzyme in the EC list is not quite the
same; it depends on the observed substrate preferences of enzymes that have actually been
isolated [18, 19]. This distinction is reflected in the use of the term “reaction class“ (RC) in
the KEGG annotation of genomes [20]. The same EC number may be attached, quite
correctly, to different reactions in different organisms or cells. This happens because the
enzyme is of broad specificity, but it only encounters a particular substrate in that organ-
ism. For example, an alcohol dehydrogenase that oxidizes one alcohol in a particular
organism may be indistinguishable from one that oxidizes another alcohol in another
organism [21]. An enzyme only needs to be specific enough for the purposes of catalytic
efficiency, and to avoid unwanted reactions with other metabolites found in the cell. There
will be no evolutionary pressure to avoid reactions with molecules that the enzyme never
encounters. The enzyme is only induced in the presence of that particular substrate in that
organism; the specificity lies not in the enzyme, but in the regulatory systems that induce
its biosynthesis.

Figure 2. Proposed organization of electron carriers in a) succinate dehydrogenase in
the membrane of aerobic E. coli cells and b) fumarate reductase in the membrane of
anaerobic E. coli cells. The membrane is indicated in pale green. The structures were
determined from Protein Databank files and 1LOV, respectively, drawn with RasMol
version 2.7.2.1. The position of ubiquinone (Q) and menaquinone (MK) are indicated
in green, drawn with Chem3D (Cambridgesoft). Two binding sites for the MK head-
group in fumarate reductase are indicated in b).
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A simplifying principle of the EC classification, which affects their use in annotation of
metabolic pathways, is that the direction of reaction is not considered in allocating a
subclass or sub-subclass. Enzymes that catalyse the same reaction in opposite directions
will have the same EC class, unless it can be demonstrated that they have different
substrate specificity. For example in aerobic conditions the enzyme that oxidizes succinate
to fumarate, as in mitochondria, is Complex II, succinate: ubiquinone reductase [16]. Under
anaerobic conditions expression of this form of the enzyme is suppressed, and a similar
enzyme, fumarate reductase, is expressed, which uses fumarate as an oxidant. Both en-
zymes are listed as EC 1.3.5.1, and they have a similar molecular architecture (Fig. 2).
These enzymes might be classed separately if it could be demonstrated that they are
specific for a particular quinone. In fact the quinones present under the two different
growth conditions are different, ubiquinone under aerobic conditions, and menaquinone,
which has a lower midpoint reduction potential (Table 2) under anaerobic conditions.
However so far there have been few cases where it has been possible to demonstrate
specificity of membrane-bound oxidoreductases for particular naturally-occurring sub-
strates. This may be due to the difficulty of measuring kinetic parameters of such reactions.
There are biophysical methods to do this, for example in photosynthetic reaction centres,
where it was shown that the length and structure side-chain of the quinones has a signifi-
cant influence on the rate of reaction [22].

Within a membrane such as the mitochondrial inner membrane, a “pool“ of quinones such
as ubiquinone (Q) or menaquinone (MK) diffuses in this phase, and interacts with specific
quinone binding regions of the membrane protein complexes [23]. These quinones have
long prenyl chains, and are virtually insoluble in water. They are located in the hydro-
phobic region between the bilayer leaflets of cell membranes [24]. The quinone/quinol
headgroups are somewhat hydrophilic, and tend to orient toward the aqueous layers on
either side of the membrane (Fig. 2). The quinones interact with substrates in the aqueous
phases by electron transport through the membrane protein complexes [25].

For membrane-bound enzymes that react with water-insoluble quinones, the paradigm for
the enzyme assay described above (Equation 1) cannot be readily applied. The amount of
quinone is confined to the small volume of the lipid bilayer, so the “initial rate“ of an
enzyme reaction will produce a very small amount of product. Because the quinones are
virtually insoluble in water, their oxidation and reduction cannot readily be followed by
conventional solution methods such as spectrophotometry. In order to study them in solu-
tion, detergents are added, so that both the enzyme and substrate are present in the form of
detergent micelles. Now, if the oxidation–reduction of the quinone is measured, the kinetics
of diffusion in and between micelles is a complicating factor.

Smaller quinone molecules such as menadione or Q1 are more water-soluble, and may be
used instead of the native substrates. However any quinone with a shorter chain length than
5 prenyl units will not partition correctly in the membrane, and so its interaction with the
quinone-binding sites may be different [26]. Small quinone molecules such as menadione or
Q1 can act as general mediators, accessing redox centres outside of the membrane bilayer,
and transferring electrons inappropriately. They can also react with oxygen to produce
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reactive oxygen species. A compromise is to use synthetic substrates such as ubiquinone or
menaquinone with a decyl side-chain; these artificial mediators have reasonable solubility in
water, and partition into the membrane in a similar way to the natural cofactors [27].

Alternative methods are needed to investigate the kinetic properties of enzyme assays with
membrane-bound substrates. One way to measure the rates of enzymes with membrane-
bound substrates is to couple the reaction to another enzyme, of which the product can
accumulate and be more easily measured. An example would be the succinate:cytochrome
c reductase activity of the mitochondrial membrane, where the reduction exogenous cyto-
chrome c can be monitored spectrophotometrically. This still assumes however that the
binding and dissociation of cytochrome c into the membrane is not rate-limiting.

Protein Film Voltammetry

A considerable number of oxidoreductases, containing redox centres such as heme, flavin,
and/or iron–sulfur clusters, have been found to adhere, under suitable conditions, to a
carbon electrode in such a way that they transfer electrons [28]. Membrane-associated
oxidoreductases appear to work particularly well (Fig. 3). Direct electrochemistry of a film
of these proteins provides information about kinetic parameters that is difficult to obtain by
other means. When the substrate is present, the electric current is equivalent to the rate of
substrate oxidation, v. The voltage dependence of the current i is equivalent to the depen-
dence on concentration of an electron donor.

Figure 3. Diagram of succinate dehydrogenase on the surface of a carbon electrode. A
monolayer of active molecules is adsorbed, so that succinate from solution can bind to
the surface. The electrode is maintained at a voltage V, which can be swept, and the
current i of electrons flowing through the enzyme molecules is measured. In the
absence of succinate, the current observed is due to electrons flowing into the flavin,
iron–sulfur clusters and heme.
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The adsorption of an oxidoreductase onto a membrane, or onto a carbon electrode, trans-
forms the kinetics from homogeneous catalysis to heterogeneous (at a two-dimensional
surface). The rate of reaction depends not only on the concentration of substrate, but also
on the rate of diffusion of substrate molecules to the surface. This can be studied by use of
a rotating disk electrode; the rate of diffusion is proportional to the square root of the rate of
rotation, w [29]. When extrapolated to limiting value of w, the current i is then proportional
to the rate of catalysis by the enzyme. The Koutecky–Levich equation, which describes the
quantitative relationship between i and w, for an enzyme at a rotating electrode, takes a
form analogous to the Michaelis–Menten equation, and provides values that are equivalent
to Km and Vmax for substrate oxidation [29]. The method is very sensitive, needing only a
monolayer of enzyme molecules over a surface of a few square millimeters.

Protein film voltammetry, in which the current i is measured as a function of the applied
voltage V is swept, makes it possible to examine other features of the enzyme-catalysed
reaction. As the applied voltage is swept, the current rises in a „catalytic wave“, usually at
the midpoint potential of the substrate, for example the fumarate/succinate potential for
succinate dehydrogenase. Cyclic voltammetry, in which the field is repeatedly swept up
and down, shows that the reaction was nearly perfectly reversible [29, 30]. However some
unusual kinetic properties of the enzymes emerged. Succinate dehydrogenase showed a
„diode-like behaviour“ at higher driving potentials, the current decreased, a situation
analogous to high substrate inhibition by the reducing agent [31]. However by judicious
choice of the conditions of measurement it was possible to measure enzyme-catalysed rates
much higher than those observed with artificial electron acceptors. The method can be used
to measure the specificity of enzymes with different substrates and inhibitors, and study the
effect of parameters such as pH.

In order to determine kcat by this method, it is necessary to calculate the number of protein
molecules on the surface that are giving rise to the catalytic current. This may be obtained
by voltammetry of the enzyme in the absence of substrate, when catalytic waves can be
measured from the redox centres in the protein itself. In the case of succinate dehydrogen-
ase these are identified as flavin, iron–sulfur clusters and heme, for which the oxidation–
reduction potentials can be measured.

Cyclic voltammograms of adsorbed enzyme layers containing membrane lipids offer a
solution to the problem of determining the specificity of oxidoreductases for membrane-
soluble quinone cosubstrates. Electrochemistry has been applied to thin films of ubiquinone
[32]. A recent development is the construction of “tethered“ membranes on gold electrodes
[33]. These bilayer membranes are connected, both physically and electrically, to the
electrode, by a cholesterol tether which allows electron transfer. They can be loaded with
protein complexes and quinones, and in favourable cases appear to behave kinetically like
the native proteins.
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Conclusions

The “99” enzymes represent an area of uncertainty in the description of enzymes. Ulti-
mately they should be removed or transferred to other parts of the enzyme list. Meanwhile
they indicate a fertile area for future studies. If the function of an enzyme is not clear, it
may indicate interesting new biochemical processes.

For the purposes of metabolic reconstruction, the hydrophobic interiors of membrane
bilayers represent separate, mobile compartments in the cell. Membrane-bound quinones
such as ubiquinone-10 communicate through the membrane-bound protein complexes.
Assays that assume a simple two-substrate, two-product reaction in dilute solution do not
apply in such cases. New methods are needed for studying their activities and kinetics.

Membrane-bound oxidoreductases, which are not amenable to conventional solution en-
zyme assays, may be studied from their reactions at a carbon electrode surface. This makes
it possible to examine their reactivity with different substrates, and the thermodynamic and
kinetic properties of the redox centres within the enzymes.
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Abstract

Recommendations on the symbolism and terminology of enzyme ki-
netics were approved by the International Union of Biochemistry in
1981. They were primarily necessitated by the need for a systematic
treatment of reactions of more than one substrate, but some important
omissions have subsequently become evident, and a decision is
needed as to whether these warrant the preparation of new recommen-
dations, and if so whether these should constitute a complete revision
of the entire document, or just the preparation of some new sections.

Introduction

The explosive growth in systems biology in the early years of the 21st century has brought
with it a new interest in incorporating kinetic data enzymes into models of metabolism.
Enzyme databases have greatly increased in importance, but their work has been severely
impeded by the lack of standards for reporting kinetic data. However, the problem is not
new: even 50 years ago the newly born International Union of Biochemistry was concerned
that in the absence of any guiding authority the nomenclature of enzymology was getting
out of hand, and it created the Commission on Enzymes as a remedy. The Report of the
Commission on Enzymes [1], published in 1961, was mainly concerned with the naming of
enzymes, but it also included brief recommendations on the symbols and terminology of
enzyme kinetics. In a later reference to these, the 1973 edition of Enzyme Nomenclature [2]
stated that “obviously, it would be of great advantage if all authors used the same system of
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symbols in their mathematical equations.” Is this so obvious, however? Is it even true? In
this chapter I shall examine how the perceived needs of the subject led to the current
recommendations on Symbolism and Terminology in Enzyme Kinetics [3], and I shall
discuss how well these serve the needs of biochemistry 25 years later.

As long as biochemists were concerned mainly with single-substrate reactions there was
little necessity for standardized symbols and terminology. If two different papers used the
symbols k-1 and k2 for the same rate constant, or if the same symbol k2 was used for two
different rate constants, only minor confusion was generated. However, the development in
the 1950s of serious interest in reactions of two or more substrates introduced new diffi-
culties, because numerous symbols were needed and translation from one system to another
was neither obvious nor trivial: a pair of papers would use the same symbol for one
quantity, different symbols for another, and the same symbol for two different quantities.
Among many examples (see below), the KAB of Bloomfield, Peller and Alberty [4] was the
same as KAB of Alberty [5], but their KA was Alberty's KAB/KA.

The Report of the Commission on Enzymes [1], published by the International Union of
Biochemistry in 1961, made tentative steps towards defining consistent symbols and ter-
minology in enzyme kinetics, but the recommendations were omitted (without any indica-
tion of the reasons) from the 1979 edition of Enzyme Nomenclature [6]. The problems had
not disappeared, however, and in 1978 – 1979 the views of numerous biochemists interested
in kinetics were solicited. Following these consultations the International Union of Bio-
chemistry set up a panel to prepare a complete set of recommendations on Symbolism and
Terminology in Enzyme Kinetics, and these were approved in 1981 [3]. They tried, while
taking account of the existing practices in biochemistry, to bring them into closer accord
with the Report on Symbolism and Terminology in Chemical Kinetics that IUPAC had
approved in 1981 [7]. IUB claimed in 1973 that their recommendations of 1961 had been
“widely followed” [2], but this assessment was more wishful thinking than fact. Subse-
quently, the 1981 recommendations [3] have had some influence on biochemical practice
but they have by no means been overwhelmingly adopted. Moreover, some important
omissions, such as the lack of treatment of reversible reactions, have become especially
important with the development of interest in computer modelling of metabolism, added to
the importance that they already had for studies of biochemical thermodynamics.

The International Union of Biochemistry and Molecular Biology now needs to decide
whether these omissions are sufficiently important to warrant the preparation of new
recommendations, and if so whether these should constitute a complete revision of the
entire document, or just the addition of some new sections.

Organizations Involved in Making Recommendations

The various bodies that have been involved in making recommendations on enzymes and
enzyme kinetics have experienced as many changes in name and abbreviations as most
topics in biochemistry itself, and so it may be helpful to list them. The Commission on
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Enzymes of the International Union of Biochemistry, more often called the Enzyme Com-
mission, was created in 1956 and made its report in 1961 [1]. It was then replaced by the
IUB Standing Committee on Enzymes, which had responsibility for maintaining the no-
menclature of enzymes until this was transferred to the IUB Nomenclature Committee when
this was created in 1977.

Although the Enzyme Commission ceased to exist in 1961, its disappearance went unno-
ticed by most biochemists and references to it are still made today. Its name survives in the
prefix EC used for enzyme numbers in Enzyme Nomenclature [8]. Despite the obvious
advantages of EC numbers, their use in publications was patchy for many years, as by no
means all of the major journals of biochemistry insisted on it. However, the greatly
increased importance of computer databases in recent years has brought with it enhanced
awareness of the need to identify enzymes unambiguously, and there is now much wider
recognition that EC numbers provide the best chance currently available of achieving this.
Nonetheless, the thoroughly objectionable practice of referring to enzymes simply as gene
products, calling nitrate reductase the product of the nar genes, for example, remains
common. It is hard to think of any legitimate reason to do this, not only implying that
enzymes exist only to express what is recorded in the genome, but also utterly obscure to
all but the small circles of researchers who work with the enzymes in question.

The IUBMB has always worked in conjunction with IUPAC in matters of biochemical
nomenclature, and until 1977 most aspects of this were in the hands of the IUPAC-IUB
Commission on Biochemical Nomenclature. This was reconstituted in 1977 as the IUPAC-
IUB Joint Commission on Biochemical Nomenclature, the IUB Nomenclature Committee
being created at the same time to deal with topics that IUPAC did not wish to handle (most
notably enzyme nomenclature). In practice these two committees have always held joint
meetings, with a common Chairman and Secretary. It may be noted that just as biochemists
continue to refer to the Enzyme Commission as a living entity more than 40 years after it
ceased to exist, they also frequently attribute to IUPAC recommendations that were actu-
ally made jointly by IUPAC and IUBMB, or even, like most of recommendations about
enzymes, by IUBMB alone.

For about 20 years the International Union of Biochemistry also promoted a Committee of
Editors of Biochemical Journals, which had responsibility for maintaining liaison with the
nomenclature committees and ensuring that the recommendations made were consistent
with current practice.

The names and abbreviations of the various organizations are listed in Table 1. As several
of the names are cumbersome and unmemorable they are replaced in the remainder of this
article by the abbreviations given in the right-hand column.
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Constituton of the IUB Panel of 1981

The panel set up by IUB consisted of seven members, A. Cornish-Bowden, H. B. F. Dixon,
K. J. Laidler, J. Ricard, I. H. Segel, S. F. Velick and E. C. Webb, and numerous other
biochemists were also consulted. The convener was initially Segel, but he subsequently
resigned and was replaced by Cornish-Bowden. Laidler had recently prepared a report for
IUPAC on Symbolism and Terminology in Chemical Kinetics [7], and the first draft of the
IUB recommendations [3] was in fact written by him.

Basic Definitions

The first part of the 1981 document [3] defined various terms of importance in enzyme
kinetics, such as catalysis, enzyme, substrate etc. As these excite little controversy they will
not be discussed here. One topic that did generate some disagreement, however, was the
labelling of generic substrates, products and inhibitors. As long as there was only one of
each the traditional use of S for substrate, P for product, and I for inhibitor created no
difficulties, but these started to appear with studies of reactions with two or more sub-
strates. Simply adding subscripts, as in S1, S2, etc., creates no logical difficulty, but it does
add to the typographical complications of a subject already overburdened with subscripts,
superscripts, primes etc., and most authors have preferred an alphabetical system with
substrates A, B, etc., products P, Q, etc., and inhibitors I, J, etc. The 1981 recommendations
used such a system for illustration, apart from using Z, Y etc. for products, as in the well
known textbook of Laidler and Bunting [9], rather than P, Q, etc.; however, they empha-
sized that the essential point is not to try to impose a uniform system for use in all
circumstances, but to expect authors to define the symbols they use and to use them
consistently.

Table 1

Full name Period Abbreviation

International Union of Biochemistry 1955 – 1991 IUB

International Union of Biochemistry and Molecular Biology 1991-present IUBMB

International Union of Pure and Applied Chemistry 1919-present IUPAC

IUB Commission on Enzymes 1955 – 1961 EC

IUB Standing Committee on Enzymes 1961 – 1977 (none)

IUPAC-IUB Commission on Biochemical Nomenclature Nomencla-
ture

Until 1977 CBN

IUPAC-IUB Joint Commission on Biochemical Nomenclature 1977 – 1991 JCBN

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature 1991-present JCBN

IUB Nomenclature Committee 1977 – 1995 NC-IUB

IUBMB Nomenclature Committee 1995-present NC-IUBMB

IUB Committee of Editors of Biochemical Journals Journals 1955 – 1990 CEBJ
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Order of Reaction and Rate Constants

The recommendations on order of reaction likewise produced little disagreement, but this
section also dealt with the numbering of rate constants, a topic that had excited extensive
discussion among biochemists; indeed, it accounted for about 40% of the total length of the
chapter on Symbols of Enzyme Kinetics in the Report of the Commission on Enzymes [1].
The essential disagreement was between those who preferred the practice common in
chemistry of referring to the forward and reverse rate constants for the first reaction in a
sequence as k1 and k-1, and those who followed what had been long-standing practice in
biochemistry of calling them k1 and k2 respectively. The Enzyme Commission preferred the
former system, but felt that the existence of k2 in both systems but with different meanings
when applied to a simple two-step Michaelis-Menten mechanism was a source of ambi-
guity, and they proposed prefixing the positive subscripts with + signs, replacing, for
example, k1 by k+1.

This matter had by no means been resolved to general satisfaction in 1981, but the Panel at
that time felt that the emphasis in previous discussions had been misplaced. Rather than
seeking to impose a universal system that could be used without definition, the essential
was for authors to define whatever symbols were most appropriate for their purposes.
Within the document itself the first of the systems mentioned was used for illustration,
the + signs being treated as unnecessary.

Since 1981 the use of even-numbered indices for reverse reactions has not disappeared
from the literature, but it seems to be in the process of doing so. Of 21st century textbooks,
only one [10]1 still follows this system; all others known to me [11 – 14] use negative
indices. Although the numbers involved are too small to be statistically significant, this is
quite different from the case in 1981: at that time, only one [15] of the textbooks known to
me followed what were then the recommendations and included + signs, five used negative
indices but did not write + signs with positive indices [9, 16 – 19], and five avoided
negative indices by using even-numbered indices for reverse steps [20 – 24].

Reactions Involving More Than One Substrate

The discussion of simple Michaelis-Menten kinetics requires no comment here, but matters
became more complicated with the consideration of reactions of two or more substrates. In
the earliest discussion of two-substrate kinetics known to me, Haldane [31] used numbered
binding constants accompanied by the symbols x and y for the two concentrations:

(1)
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The subsequent development of the subject by Alberty and others in the 1950 s led to wide
variation in symbols: the KAB of Alberty [5] was the same as that of Bloomfield et al. [4],
but was written as KiaKb by Cleland [25]; on the other hand, Alberty's KA was the same as
Cleland's Ka, but different from the KA of Bloomfield et al., despite the fact that Alberty
was an author of two of these papers [4, 5]. Even with just three systems to compare there
was ample scope for confusion, but in fact by the middle 1960s at least five or six different
systems were in widespread use. Of these, the one introduced by Dalziel [26] was quite
different from the others: less likely, therefore, to invite ambiguity, but also less easy to be
understood by readers unfamiliar with it. It is now rarely used, but in 1981 it was still
sufficiently frequent for the IUB Panel to think it worthwhile to include a note on the
pronunciation of “Dalziel” (virtually identical to that of the prefix in DL-lactic acid).2

In this confusing environment Mahler and Cordes [27] noted the variation in symbols used
by different authors in the 1950s and 1960s. As their emphasis was on the symbols used
rather than on the way of organizing them into a rate expression, all of the rate equations
were written in the same way, as expressions for the reciprocal rate, though they were not
all written in this way in the original publications; the same convention is followed here.
Alberty [5] wrote:

(2)

though in another paper [4] he used a different system:

(3)

whereas Dalziel [26] wrote:

(4)

and Cleland [25] wrote:

(5)
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Despite their concern for this variation, Mahler and Cordes [27] used none of the systems
then in use, but introduced a new one of their own:

(6)

Their symbols have subsequently been adopted by essentially no other authors, in part
because of the difficulty of printing symbols with overbars, but also because the use of
overbars for distinguishing between Michaelis constant and inhibition constants is not
obvious at sight but needs to be learned. Rather surprisingly, they did not list the symbols
used in the textbook by Dixon and Webb [28, 29], though this was very widely used at the
time they were writing:

(7)

They did, however, refer mysteriously to symbols used by the “Enzyme Commission”,
symbols that occur nowhere in the Report of the Commission on Enzymes [1]. They are
identical to those used later by Dixon and Webb [30], though not in the editions of their
book [28, 29] that would have been available to Mahler and Cordes while they were
writing:

(8)

One may surmise that they learned of these symbols from correspondence with Dixon, who
had been, as noted previously, the Chairman of the original Commission on Enzymes. As
may be deduced from the forms of the equations, Dalziel [26] designated the substrates as
S1 and S2, but they were designated as A and B by all of the other authors mentioned,
including Haldane [31], who, however, wrote their concentrations as x and y respectively.

Consistent with their attitude to other questions of uniformity, the members of the IUB
Panel of 1981 considered that the essential point was not to try to impose a universal
system, but to insist on the necessity to define whatever symbols authors choose to use.

For illustrative purposes they used symbols very similar to those of Dixon and Webb [30],
but with the substrate indicated by a second subscript rather than by a superscript:

(9)

They also moved (silently) from italic to roman subscripts, replacing KmA with KmA, and so
on. No reason was given for the change, but it agrees with present IUPAC recommenda-
tions [33]. It may be explained by the fact that K is here an algebraic variable, and should
follow the normal mathematical convention of representing such variables by italic sym-
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bols. The subscripts, however, are not algebraic variables and should not be printed as if
they were. In particular, m is not an index but the first letter of the name Michaelis, and A
represents a chemical species, and should not therefore be written in italics either.

Most of the systems listed in these equations fail to distinguish between symbols for
chemical species and symbols for their concentrations, even though these are logically
distinct: the identity of a chemical species is not the same as its concentration. For example
Alberty [5] used A both for the first substrate and for its concentration. Most of the early
authors made no distinction, but for Dixon and Webb [28] a was the concentration of A,
and so on. Some authors, such as Laidler and Bunting [9], preferred to use square brackets
for concentrations, [A] for the concentration of A, for example.

The recommendations of IUB [3] considered the distinction important, and indicated that
square brackets could be used without definition, but recognized that other systems might
sometimes be typographically more convenient and were unobjectionable if defined in
context. In the discussions within the Panel, some members thought that italic and roman
type alone were sufficient to make the distinction (with A as the concentration of A), but
the majority view was that differences between italic and roman type pass unnoticed by
many readers and were thus inadequate to make an important conceptual distinction. An
extended piece of text in italics is, of course, quite obvious, but an isolated letter A is much
less obviously different from an isolated roman A. In any case, there are wide variations in
what different people consider to be obvious, most simple truths being obvious once they
have been pointed out.3

Inhibition

The treatment of enzyme in the 1981 document [3] is relatively brief, being mainly directed
towards the classification of inhibition types as reversible or irreversible, as linear or non-
linear, and as competitive, uncompetitive, mixed or non-competitive. In view of the great
and growing importance of enzyme inhibition in drug development [37], a case could
doubtless be made that a more extended treatment is now needed, and this is a question
that NC-IUBMB should examine.

The names competitive and uncompetitive for the two extreme cases of linear inhibition
(with effects on the apparent values of the specificity and catalytic constants respectively)
are now widely accepted, and there was no support among the members of the Panel for the
term anticompetitive used, for example, by Laidler and Bunting [9] in their textbook. The
major disagreement that existed in 1981 and has still not been resolved is the name that
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should be given to the range of intermediate cases in which there are effects on the apparent
values of both the specificity and the catalytic constants, and the name, if any, to be given
to the special case of this in which the effects on the two constants are equal. Although
there was general agreement with Cleland's view that this special case had no particular
mechanistic or other importance [38], and therefore had no need for a unique name, there
was much less agreement with his view that the name non-competitive that had been given
to this case for many years could therefore be generalized to encompass the whole inter-
mediate range. The problem with this loosening of the definition is that the restricted
meaning was still very widely used, and continues to be, and the shorter term mixed (or
mixed-type) was already available for the general case. The Panel therefore preferred to
follow the usage of Dixon and Webb [30], in which non-competitive refers to the special
case, and mixed to the general case.

Nonetheless, the view that the usage of Dixon and Webb is unambiguous has not met with
universal agreement. Copeland [37], for example, recently commented as follows: “In my
experience, the term mixed-type inhibition can lead to misunderstandings about the physi-
cal meaning of the term (e. g., I have had discussions with chemists who have mistakenly
believed that mixed-type inhibition must require two inhibitor molecules binding to sepa-
rate sites on the enzyme); therefore we will use the term non-competitive inhibition in its
broader definition to describe any inhibitor that displays affinity for both the free enzyme
and the ES complex.” However, this argument appears unconvincing.4

Although there has long been agreement that linear inhibition is characterized by two
different inhibition constants (for the competitive and uncompetitive components, either
of which may be negligible), there has been less agreement about how they should be
symbolized. When only one constant is relevant it is normally symbolized Ki, but when
both are needed Dixon and Webb [30], for example, used Ki for the competitive inhibition
constant and K'

i for the uncompetitive inhibition constant, whereas Cleland [38] used Kis

and Kii respectively (for Ki slope and Ki intercept respectively, referring to the slope and
ordinate intercept of a plot of reciprocal rate against reciprocal substrate concentration).

In the 1981 recommendations [3] both of these conventions were considered unsatisfactory,
the use of primes being unsystematic and the second subscripts s and i being derived from a
particular type of plot with no necessary relationship to the subject. (With plots of substrate
concentration divided by rate against substrate concentration, for example, Cleland's Kis

refers to the ordinate intercept and Kii to the slope, an inversion of roles that can hardly fail
to be confusing.) For these reasons the symbols Kic and Kiu were recommended for the
competitive and uncompetitive components respectively. Although not yet in universal use,
these have been widely adopted.
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Activation

Activation was also dealt with rather briefly in the 1981 recommendations, but two points
of nomenclature needed to be addressed. First, it was noted that although classification of
activation as linear or non-linear often has the same results as classifying it as essential or
non-essential, exceptions are possible, because in principle essential activation (in which
the enzyme has no activity in the absence of activator) can be non-linear (so that the
reciprocal rate is not a linear function of the reciprocal concentration of activator).

A more important point was to emphasize that although the different kinds of linear
activation are analogous to the familiar classes of inhibition, the name competitive cannot
be used for the type of activation in which the activator binds only to the free enzyme
because there is nothing that can be considered a competition in such a mechanism.
Although less obviously objectionable, the terms uncompetitive and non-competitive were
also recommended to be avoided for describing activation. Instead, the names specific
activation and catalytic activation (corresponding to competitive and uncompetitive inhibi-
tion respectively) were suggested for effects on the apparent values of the specificity
constant and catalytic constant respectively, mixed activation being entirely acceptable
for the case where both effects are present.

Although the recommendations did not mention it – doubtless wanting to avoid the storm
of protest that would have greeted any suggestion of abandoning the term competitive
altogether – the terms specific and catalytic could perfectly well be applied to inhibition
as well, resulting in an exact correspondence between the terms used in activation and
inhibition. However, biochemists in general have been far more interested in inhibition than
in activation, and would certainly resist any change to inhibition terminology that was
introduced solely with the aim of greater concordance with activation terminology. None-
theless, in contexts where both activation and inhibition need to be discussed together it is
simplest to qualify both as specific, catalytic or mixed [see, e. g., 39].

pH Effects

The discussion of pH dependence in the recommendations of 1981 [3] introduced no new
principles or terminology, and was in general based on what was already common practice
in the literature. It requires no discussion here.

Pre-Steady-State Kinetics

The discussion of pre-steady-state kinetics in the recommendations of 1981 [3] was rather
brief, in part because there was no particular need in enzyme kinetics to depart from normal
practice in chemistry, and so the IUPAC recommendations [7] should cover most needs,
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and in part because the members of the panel were mainly people with experience of
steady-state kinetics: preparation of recommendations for pre-steady-state kinetics would
require a different panel.

One point that such a panel might wish to consider was brought to my attention by G�sta
Pettersson during preparation of the current edition of my textbook [14]: equations for pre-
steady-state kinetics typically contain terms of the form Aexp(-lt), where A is a constant
known as the amplitude, t is the time and l is a constant with dimensions of reciprocal
time: it is the reciprocal of a time commonly symbolized as t and called the relaxation time
or the time constant, but l has no generally accepted name of its own. Although it has the
dimensions of a first-order rate constant, it is not in general the rate constant of any
particular first-order reaction, so terms such as “apparent first-order rate constant” are
not only cumbersome but also potentially misleading. Pettersson proposed the name fre-
quency constant for l. Authoritative texts [e. g. 40, 41] typically switch arbitrarily between
writing equations in terms of l and in terms of t, and often write 1/t rather than l. In a well
known textbook [42] a table entitled “Physical meaning of the relaxation time, t” actually
tabulates not t but 1/t .

Reversible Reactions

As noted already, the 1981 recommendations [3] paid very little attention to the reversi-
bility of enzyme-catalysed reactions. However, even in the simplest case of a one-substrate
one-product reaction there are points to be taken into account, most obviously that the rate
equation cannot be linearized by writing it as an expression for reciprocal rate and that
therefore there is no advantage in taking reciprocals at all; some such form as:

(10)

is as simple as one can obtain. The concentrations and Michaelis constants can be repre-
sented in the same way as in the irreversible case, but some additional convention is needed
to distinguish between the forward and reverse limiting rates, and superscript f and r
respectively are used in this example.

Nonetheless, representing the equation like this has some disadvantages, which become
more important when one needs to consider more complicated examples, such as equations
for reactions with multiple substrates and reactions that do not obey Michaelis-Menten
kinetics. Equation 10 obscures at least two points: it fails to illustrate the symmetry of the
behaviour with respect to substrate and product, and it fails to separate it into the compo-
nents – catalytic activity of the enzyme, thermodynamic state of the reaction, degree of
saturation of the enzyme – that characterize any enzyme-catalysed reaction. This separation
becomes much clearer if we rearrange it into the following form, where K is the equili-
brium constant:
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(11)

Here the right-hand factor in the numerator separates the thermodynamic state of the
reaction from any properties that the enzyme may have. In particular, as the only term in
the equation that can be negative it is the only term that decides the direction in which the
reaction will proceed, but as it contains no kinetic information it says nothing about how
fast it will do so. When the equation is written in this way the thermodynamic factor is
fixed, regardless of mechanistic complexities, but the rest of the equation can be freely
modified (as long as no negative quantities are introduced) without violating any thermo-
dynamic constraints.

Non-Michaelis-Menten Kinetics

The section of the recommendations of 1981 [3] in most obvious need of revision is that
dealing with reactions that do not obey Michaelis-Menten kinetics. This was partly because
discussions of this topic are normally focused on mechanisms and models of cooperativity
[e. g. 43 – 45], which were inappropriate topics for extensive discussion in a nomenclature
document, and partly because the need for reasonably simple rate equations that could be
used in metabolic models for fully reversible reactions [46] was not apparent at that time.
For irreversible cases the Hill equation was already widely used as a simple alternative to
mechanistically realistic equations that are too complicated to use, and the recommenda-
tions made several important points about it. As long as the thermodynamic factor in the
reversible case is written as in Equation 11 the equation will remain thermodynamically
correct; this important point has not always been realized in discussions of cooperative
kinetics in the literature, and equations have sometimes appeared that suggest that non-
thermodynamic factors may determine the direction of a reaction.

The Hill equation can be regarded as a variant of the Michaelis-Menten equation in which
both the substrate concentration and the half-saturation concentration (not the Michaelis
constant: see below) are raised to a power h known as the Hill coefficient. In the literature
the Hill coefficient had often been written as n, a symbol that invited confusion with the
number of binding sites for substrate on the enzyme, or as nH by authors who were aware of
the danger of confusion and wished to avoid it; the alternative h, which has become the
recommended symbol, was already occasionally found in the literature though it was
unusual. The symbol n was definitely discouraged, on account of the danger of confusion
noted; nH was not discouraged, but it was noted that it was typographically inconvenient to
include a subscript in a symbol that represents an exponent and therefore sometimes needs
to be printed as a superscript to a symbol that already has a subscript: KnH

0.5, for example,
is legible if carefully printed, but less legible than Kh

0.5.
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There is one other major point that was noted in the recommendations of 1981 [3], albeit in
an unfortunate context (section 4.3 rather than the more appropriate section 11): the
Michaelis constant Km is by definition a parameter of the Michaelis-Menten equation,
and has no meaning for non-Michaelis-Menten kinetics. Failure to appreciate this remains
commonplace in the literature. To avoid the error one needs to replace any symbol like KmA

with a generic symbol like a0.5 that suggests half-saturation without implying any particular
kinetic equation.

Taking account of these considerations, a form of the reversible Hill equation that avoids
violating thermodynamic constraints would be as follows (as suggested in [46]):

(12)

Notice that this simplifies to Equation 11 when h = 1.

Transport Processes, Insoluble Enzymes, etc.

There are several topics that are completely missing from the recommendations of
1981. Although it is widely recognized that the kinetics of transport processes have much
in common with the kinetics of enzyme-catalysed reactions, and transporters are quite
similar to enzymes, there appears to have no attempt to harmonize terminology in these
closely related subjects. Indeed, at the time of writing the IUBMB have not approved any
recommendations at all in the area of transport processes. Similarly, even if they do not
state it explicitly the 1981 recommendations mainly assume that they are dealing with
enzymes in free aqueous solution, and contain no mention, for example, of processes that
take place at lipid-water interfaces. In the future the IUBMB will need to consider whether
these topics should be dealt with separately, or incorporated into new recommendations
about enzyme kinetics.
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Abstract

Identifying the function of every gene in all sequenced organisms is
one of the major challenges of the post-genomic era and is one of the
obligate steps leading to systems biology approaches. This objective is
far from being reached. By different estimates, over 30 – 50% of the
genes of any given organism are of unknown function, incorrectly
annotated or given a broad nonspecific annotation.
Most genome functional annotations programs rely on an homology
based approach, using first simple Blast or FASTA scores then more
elaborate, sensitive and precise algorithms stemming from the field of
protein structure prediction. The inherent limitations of homology
based approaches (only similar objects can be identified), has driven
the development of non-homology based methods to link gene and
function. Integrative genome mining tools that can analyse gene clus-
tering, phylogenetic distribution, or protein fusions on a multi-genome
scale have been developed recently. These bioinformatics tools allow
the experimental biologist to make predictions on unknown gene
function that can be tested experimentally and discover novel en-
zymes, regulators and transporters that expand our knowledge of me-
tabolism in all species.
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Introduction

The availability of nearly four hundred complete genomes (http://www.genomesonline.org/)
has changed the way the experimental scientist generates hypothesis and identifies novel
enzymes. The computer programming illiterate bench scientist has the unique possibility to
link genes and function by combining comparative genomic tools that are freely available,
with the experimental tools of physiology, genetics and enzymology. These approaches are
leading to the discovery of novel enzymes and pathways of both fundamental and applied
interest and also improve the general quality of genome annotations.

Towards a Complete Functional Analysis of Genomes: The

Post-Genome Challenge

Identifying the function of every gene in all sequenced organisms is one of the major
objectives of the post-genomic era, and one that is driving the development of systems
biology [1]. This objective is far from reached as, by different estimates, 30 – 60% of the
genes of any given organism have no assigned function [2 – 4]. As more genomes are being
sequenced, the number of unknown genes and annotation errors are propagating at an
alarming rate, making it increasingly difficult to extract correct functional information.
Without a specific functional annotation effort, the genome information generated will
become difficult to analyse and greatly underexploited [5].

Mining Genomes for New Enzymes

The availability of genomic sequence from both cultured and non-cultured organisms from
diverse environments has had a great impact on the availability of enzymes that are better
adapted for biocatalysis (for review see [6]). Also, “biochemical profiling” approaches [7 –
13] have been quite successful in identifying new enzymes [14, 15]. All these methods,
however, rely on high throughput protein expression and enzymatic screens, and less labour
intensive methods that are also more target specific are clearly needed to fully mine the
catalytic potential of genomes. This is especially critical for implementing new biocatalytic
activities into industrial processes. As Schmid et al. commented, “Future biocatalytic
processes generally will not be limited by the available technology or the nature of the
substrates and products. Instead, the feasibility of new biocatalytic processes will often be
determined by the availability of the biocatalyst...” [16]. An untapped resource of novel
catalysts is lying in the thousand of genes of unknown function that are now available at
our fingertips if both bioinformatic and experimental methods can be combined to identify
them.
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Mining Genomes for New Antibacterial Targets

The need for the development of new antibiotics that escape common resistance mechan-
isms is becoming an acute public health problem. The World Health Organization (WHO)
states that “In the race for supremacy, microbes are sprinting ahead” and “Microbial
resistance could bring the world to a pre-antibiotic age (http://www.who.int/infectious-
disease-report/2000/). The value of using genomics in anti-infective research was recog-
nized early on by both fundamental and applied research enterprises (for review see [17]).
Pipelines combining identification of bacterial genes essential for growth or virulence
followed by structural efforts have been implemented and leads are starting to trickle out
[18]. One major problem in this approach has been that targets identified from genomics
approaches are often of unknown function, therefore no assay can be developed to screen
for inhibitors.

Homology-Based Functional Analysis

Functional inferences based on comparative sequence analysis are well-established founda-
tions of genomic annotation. The most significant advancements in this field over the last
decade are directly related to the dramatic increase in the amount of sequenced genomes, as
well as to the development of the robust and sensitive algorithms, such as FASTA, BLAST
and their modifications (for the overview, see [19]). Domain analysis and reduction of the
protein space via grouping of putative orthologues (such as COGs [20]) play an important
role in the projection of functional assignments between diverse species. A significant
contribution is provided by research communities focused on the detailed curation efforts
of model organism genomes (e. g., Escherichia coli (http://bmb.med.miami.edu/EcoGene/
EcoWeb), Bacillus subtilis (http://genome.jouy.inra.fr/cgi), Saccharomyces cerevisiae
(http://www.yeast genome.org/index.html). For well studied gene families, in which the
initial annotation has been experimentally verified, these homology based methods are
quite accurate in predicting function [21]. However, factors such as poor homologies
[21], multi-domain proteins [22], gene duplications [21, 23] and non-orthologous displace-
ments [24] all contribute to incorrect or absent annotations that have accumulated and
propagated, leading to the current poor functional annotation status of the genomic data
[3, 4, 24, 25]. Furthermore, the inherent limitations of homology based approaches (only
similar objects can be identified) require the development of non-homology based methods
to link genes to function.
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Beyond Homology, from Comparative Genomics to

Experimental Verification

From gene to function
Systematic approaches such as structural genomics initiatives, systematic interaction map-
ping or systematic gene disruption combined with phenotypic screenings has led to the
elucidation of some gene functions [26, 27]. Nearly 1000 structures have been deposited to
date by structural genomics programs in the Protein Data Bank (http://www.rcsb.org/pdb/).
However, examples where cellular functions were inferred directly from structural infor-
mation are rare – in fact there are only a handful [28, 29]. Large-scale deletion mutant
libraries have been completed for S. cerevisiae [30], B. subtilis [31] and in E. coli (http://
ecoli.aist-nara.ac.jp/). Broad systematic phenotype screens [32] allowed the prediction of a
few functions such as a missing histidine biosynthesis gene [33] or the discovery of
anabolic and catabolic phosphorylating glyceraldehyde-3-phosphate dehydrogenises [34].
The real power of these libraries lies in using them in specialized screenings: this strategy
has been successfully used in S. cerevisiae where novel cell cycle genes have been identi-
fied [35]. The road from phenotype to cellular function is often long and requires many
downstream characterization steps [35]. Recently, “biochemical profiling” approaches con-
sisting of testing the activity of all the proteins of a given genome (in pools or individually)
in specific biochemical assays [7 – 13] or testing hundreds of proteins of unknown function
in arrays covering a wide range of enzyme activities have been quite successful in correct-
ing annotations or identifying functions of unknown genes [15, 36]. These large-scale
efforts have not been as predictive as anticipated, but have been extremely valuable for
the community in producing expression clones, mutants, structural and experimental data
that can be used to predict and confirm functions as shown below.

From function to gene; Integration of genomic information
Large-scale cross-genomic integrations (such as NCBI [37], EMBL [38], TIGR [39], Uni-
prot [40]) provide important environments for extracting information from genomes. A
dramatic enhancement of the quality and utility of genomic annotations is achieved by
combining genome integration with metabolic reconstruction technology (see below).
Among the key public resources supporting this approach are KEGG [41] and MetaCyc
[42]. In these methods, genes are not analysed individually or as gene families but in a
larger multi-genomic context. Additional information, not related to sequence homology, is
gathered to help link gene and function (Fig. 1), and include:

. Metabolic reconstruction: by placing the genes in the context of the metabolic
pathways found in a given organism, one can evaluate the biological relevance
of an annotation [43, 44].

. Clustering data: Genes of a given pathway have a high probability of being
physically linked on the chromosome [45].

. Protein fusion events: Genes of the same pathway can be fused to encode multi-
domain proteins in some organisms [46].
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. Phylogenetic occurrence profiles or signatures: Presence/absence patterns of
genes (or of set of genes) among genomes can be used to identify candidates for
missing genes [47].

. Shared regulatory sites: Pathway genes are often regulated by a common
protein recognizing a specific DNA sequence [48].

. Functional and structural genomics: Efforts provide additional clues to genome
interpretation. The rapid increase in the volume and quality of such data, as well as
their integration in publicly available repositories is expected to strongly impact
gene and pathway analysis. Among the growing number of web-resources are:
PDB, the best established collection of protein structures (http://www.rcsb.org/
pdb/), SMD for expression data (http://genome-www5.stanford.edu/), DIP for pro-
tein–protein interactions (http://dip.doe-mbi.ucla.edu/).

Figure 1. Comparative genomic strategies used to make predictions on gene function.

Early efforts to integrate different types of data to annotate genomes were developed by
Koonin and colleagues based on the Cluster of Orthologs Groups (COG) database [49] that
lists families of orthologues found in a subset of the sequenced genomes. In the last five
years several integrated databases that contain phylogenetic occurrence profiles, clustering
or protein fusion data and many combinations of the three have been implemented. These
databases are all freely available with web-interfaces and include PhydBac [50], String
[51], Microbial Database [52], Genomenet [[41], Plex [53], Cytoscape [54], Metacyc [42]
and SEED [55] (Table 1). Genome researchers have built on this multi-tiered approach to
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help in calling gene function and reducing the number of errors as recently described for
the genomes of Haloarcula marismortui [56] and Methylococcus capsulatus (Bath) [28].
The combination of structural information and comparative genomic methods has led to
many robust predictions [1,29].

Table 1. Freely available comparative genomic analysis websites.

Name Location

Cluster of Orthologous Groups http://www.ncbi.nlm.nih.gov/COG/

FusionDB and PhydBac http://igs-server.cnrs-mrs.fr/phydbac/

http://igs-server.cnrs-mrs.fr/FusionDB/

TIGR-CMR http://cmr.tigr.org/tigr-scripts/CMR/CmrHomePage.cgi

http://www.tigr.org/tigr-scripts/CMR2/GenomeSlicer.spl

STRING http://dag.embl-heidelberg.de/newstring_cgi/show_input_page.pl

IMG http://img.jgi.doe.gov/cgi-bin/pub/main.cgi

Cytoscape http://www.cytoscape.org/

GenomeNet and KEGG http://www.genome.ad.jp/

Protein Link Explorer (Plex) http://apropos.icmb.utexas.edu/plex/plex.html

MetaCyc http://metacyc.org/

SEED http://theseed.uchicago.edu/FIG/

Using Comparative Genomics to Link Genes to Function

Although the field of comparative genomics is still young, these tools have allowed the
genetic characterization of a number of critical metabolic pathways that had eluded scien-
tific inquiry for decades and an estimated 100 gene families have been identified success-
fully using comparative genomic methods to date [57] (Ross Overbeek, personal commu-
nication). For example, predictions based exclusively on phylogenetic occurrence profiles
resulted in the identification of the last steps of the non-mevalonate isoprenoid pathway
[58]. Protein fusion analysis allowed the identification of missing Coenzyme A biosynth-
esis genes in Homo sapiens [59]. Chromosome clustering analysis revealed a missing fatty
acid synthesis gene (target of antibacterial compounds) in Streptococcus pneumoniae or
missing genes in folate biosynthesis [60, 61]. A combination of approaches was used to
identify the diverse NAD recycling pathways of cyanobacteria [62]. A search for regulator
sites allowed the identification of many missing thiamine biosynthesis genes [63], metal
transporters [64] or decipher the N-acetylglucosamine utilization pathway of Shewanella
oneidensis [65]. The approach has been particularly productive in discovering missing and
novel enzymes in Archaea because of the originality of their metabolic solutions and the
recent availability of 30 archaeal genomes [66].
Applying these comparative genomic methods to the field of tRNA modification and
coenzyme metabolism has allowed us to identify the function of eight enzyme families,
unravelling novel enzyme activities, cases of orthologous displacements, novel pathways
and potential drug targets (Table 2).
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Table 2. Novel genes and pathways identified using comparative genomics
techniques.

Functional Role Novelty Verified in Key evidence

Pantetheine-phosphate adenylyltransferase/
dephospho–CoA kinase [67]

B [67] Fusion

Carbamoyl-threonnyl-Adenosine syntase a Potential target E a Occurrence profile/Structure

Wyeosine synthase [68] Novel enzyme E [68] Occurrence profile

tRNA dihydrouridine synthase [69] Novel enzyme B [70] Occurrence profile/operon

Queosine/Archeosine biosynthesis YkvJ Novel enzyme B [71] Occurrence profile/operon

Queosine/Archeosine biosynthesis YkvK Novel Enzyme B [71] Occurrence profile/operon

Queosine/Archeosine biosynthesis YkvL Novel enzyme B [71] Occurrence profile/operon

PreQ 0 reductase YkvM Novel enzyme B [72] Occurrence profile/operon

GTP Cyclohydrolase I Potential Target B [73] Occurrence profile/operon

B = Bacteria, E = Eukaryotes . a de Cr�cy-Lagard and collaborators (unpublished results)

Conclusion

This body of work opens the problem of how to name enzymes discovered through
comparative genomics methods and give them EC numbers, as in general these enzymes
have been very poorly described or were totally unknown. The number of enzymes dis-
covered by these methods is steadily increasing and guidelines for the “gene discoverers”
who are often not enzymologists need to be defined.
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Abstract

Molecular modelling and simulation techniques have proved power-
ful tools for helping to understand how proteins and other biomacro-
molecules function at an atomic level. The study of enzyme reactions
is a particularly challenging application of these methods because of
the variety of processes of differing length and time scales that can
contribute to catalysis. Among these are the bond-breaking and form-
ing chemical steps, the diffusion of ligands into and out of the active
site and conformational changes in the enzyme's structure.
This contribution gives a synopsis of the range of molecular simula-
tion techniques that are available for studying enzyme reactions with
particular emphasis on methods designed for the investigation of the
chemical catalytic steps. The capabilities and limitations of current
approaches will be described and possible future developments dis-
cussed. Special attention is given to the interface between molecular
simulation and systems biology modelling and to how the STRENDA
guidelines would need to be adapted to allow the reporting of enzyme
data determined from simulation.
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Introduction

Numerical modelling and simulation are important tools for the study of biological systems
and will undoubtedly become more so as the power and the sophistication of computers and
their algorithms increases [1]. Enzyme reactions represent a particularly challenging area
for simulation because of the wide range of length and time scales upon which processes
that are important to catalysis occur.

The aim of this article is to provide an overview of the state-of-the-art in the simulation of
enzyme reactions at an atomic level. It starts with a brief summary of the types of method
that exist for simulating different aspects of an enzyme reaction and is followed by a more
detailed presentation of the principles behind and an application of one particular approach
– the hybrid potential method. The next sections highlight some of the advantages and
limitations of current simulation techniques and the article terminates with a discussion of
how atomic-level simulation could contribute to systems biology modeling and with var-
ious recommendations for how the STRENDA guidelines would need to be modified to
report data derived from simulation [2].

Methods for Simulating Enzyme Catalysis

A number of processes, that span a wide-range of length- and time-scales and the relative
importance of which varies with the enzyme, contribute to an enzyme-catalyzed reaction
[3]. For an isolated enzyme, these processes include: (i) diffusion and binding of substrates
in and out of the enzyme's active site; (ii) conformational structural changes, such as loop
movements or domain closure, that may be necessary for substrate binding and release or
for catalytic activity; and (iii) chemical catalytic steps that involve the breaking and form-
ing of bonds and the transfer of electrons. In addition, there can be other indirect phenom-
ena which influence a reaction. Thus, for example, the optimum catalytic activities of many
enzymes can only be attained if they are in specific states, such as when they are bound to
non-substrate ligands, when they are covalently modified in some fashion or when they are
oxidized or reduced.

Because of the variety of processes entering into enzyme catalysis, no single theoretical
technique suffices for modelling an enzyme reaction and so a diverse series of approaches
have been developed [4]. Three of the most important categories of technique illustrated in
Fig. 1 and are:

1. Quantum chemistry (QC). These methods are appropriate for studying the che-
mical steps in catalysis as they can be used to compute the wavefunction and,
hence, the electron density of a molecular system. The most accurate methods
are the ab initio and density functional theory methods but they are also the most
expensive. They can be used to treat systems of a few tens of atoms on time-
scales of the order of tens of picoseconds. By contrast, the less accurate but also
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quicker semi-empirical QC methods can handle systems of a few hundred atoms
on time-scales of a few nanoseconds.

2. Molecular mechanics (MM) and classical molecular dynamics (CMD). MM
techniques are typically much faster than QC methods as they employ empiri-
cally-derived functions to calculate the potential energy of a system. They have
the disadvantage, though, that they are less generally applicable than QC meth-
ods and are inappropriate for simulating chemical reactions. In conjunction with
CMD, they can be used to simulate systems of up to several tens of thousand of
atoms for time-scales of a few hundred nanoseconds. These methods are parti-
cularly well-adapted to studying processes, such as conformational change and
ligand-binding, where atomic-level detail is needed but no chemical reactions
occur.

3. Coarse-grained (CG) models and Brownian dynamics (BD). Unlike the QC and
MM techniques, CG models of a molecular system do not attempt to represent its
full atomic detail � instead, atoms are grouped and modelled as larger particles.
As an example, common CG models of proteins use one or two particles to
describe each amino acid rather than the ten to twenty that would normally be
required [5]. CG models also often treat the solvent with some sort of continuum
model and dispense with a particle-based representation altogether. CG models,
because of their simplicity, can be used to study very large molecular and
macromolecular systems and, in conjunction with BD, to simulate processes on
time-scales of up to the order of milliseconds. CG/BD models are well-adapted
for calculating the values of ligand–enzyme diffusional-encounter rate constants
(see reference [6] and the chapter by Stein and co-workers in this volume) and
for studying other mesoscopic dynamical processes where atomic-level detail is
not needed.

Figure 1. A schematic showing the appropriate length- and time-scales for three of the
major classes of theoretical techniques that are employed for modelling enzyme
reactions.
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Hybrid Potential Approaches

This section and the next focuses on a method, called the hybrid or combined QC/MM
potential method, that is one of the primary research interests of the author and which is
designed for the study of the chemical catalytic steps in an enzyme reaction [7]. The
technique is based upon the following rationale. The modelling of a chemical reaction
necessitates the use of QC methods but these are impractical or too expensive to apply to
systems of more than about a hundred atoms. This rules out the possibility of studying
molecules the size of enzymes. On the other hand, MM methods are very good at being
able to handle large systems but are not very good at simulating reactions. Therefore, why
not combine the strengths of both methods and use a QC technique to treat the reacting
portion of the system and an MM approach to represent the remaining atoms which,
although non-reactive, could nevertheless play an important role?

The first hybrid potential was conceived in the 1970 s by Warshel and Levitt for the
simulation of the reaction catalysed by lysozyme [8]. It was not until the early-1990 s,
however, that they started to be widely used. This lag was due, in part, to a lack of
computer power but also because a number of technical issues had to be resolved to have
potentials that were sufficiently precise and robust [9]. Hybrid potentials are now employed
in all areas of molecular computational science, not just for the simulation of enzymes.

Figure 2. An illustration showing an example of how an enzyme, in this case influ-
enza virus neuraminidase, is represented in a QC/MM hybrid potential simulation.
The substrates and other enzyme and solvent groups that are implicated in the reaction
are in the QC region (red atoms) whereas the remainder of the atoms in the system
(light and dark blue atoms) are placed in the MM region.
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Many flavours of hybrid potential have been developed but the simplest and also the most
common involve the partitioning of a system between a single QC region and a single MM
region. An example of such a partitioning is shown in Fig. 2. The proper formulation of a
hybrid potential is quite intricate and depends upon the types of QC and MM potentials that
are being combined. The crucial aspect of all formulations though is how the two potentials
are coupled or, in other words, how the atoms of the QC and MM regions interact. In the
hybrid potentials developed in the author's group, there are two classes of interaction
[9,10]. The first class are the non-bonding interactions which occur in all hybrid potential
studies. They comprise electrostatic terms between the electrons and nuclei of the atoms in
the QC region and the charges of the atoms in the MM region and Lennard-Jones terms
which account for the van der Waals and exchange–repulsion interactions between the two
sets of atoms. The second class of interaction are the covalent QC/MM interactions which
arise whenever a single molecule is split between different regions. Interactions of this type
are nearly always present when studying enzyme systems as amino acid groups in the
enzyme are almost always catalytically active. The treatment of these interactions is more
complicated than that of the non-bonding ones but a number of competing algorithms have
been developed that appear to be of roughly equivalent accuracy [7].

Although their formulation is distinct, hybrid potentials can be employed in much the same
way as pure QC and pure MM potentials. Thus, for example, it is possible to perform
geometry optimizations to locate the stable structures of an enzyme–ligand complex and to
run molecular dynamics simulations to investigate the system's dynamics and to calculate
its thermodynamics properties. Examples of the application of hybrid potentials in this way
will be given in the next section and a full list of quantities accessible by simulation in the
section after that.

An Example of a Hybrid-Potential Study

The author's group has studied approximately fifteen enzymes with hybrid potential meth-
ods. These include the nickel–iron hydrogenase from Desulfovibrio gigas [11], the influ-
enza virus neuraminidase [12], spinach acetohydroxyacid isomeroreductase [13], choris-
mate mutase from Bacillus subtilis [14], rat aldehyde dehydrogenase [15], various class A
beta-lactamases and penicillin-binding proteins (PBPs) [16] and cAMP-dependent protein
kinase [17]. The goal in most of these studies was a better understanding of the reaction
mechanism catalysed by the enzyme although not exclusively. Thus, for example, in the
hydrogenase work the aim was to characterize the active-site structures of various different
redox intermediates in the catalytic cycle [11], whereas the beta-lactamase and PBP work
was undertaken to determine the binding modes of different classes of antibiotics in the
active sites [16]. Almost all the hybrid-potential simulations performed in the author's
group have been performed with the group's own simulation package, called Dynamo
[4,10], which was conceived specifically for studies with hybrid potentials.
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Figure 3. A scheme illustrating the reaction catalysed by the enzymes HGXPRTase
and HGPRTase. ( R1, R2 ) are ( H, nothing ), ( NH2, nothing ) and ( O, H ) for
hypoxanthine, guanine and xanthine, respectively. The nucleoside monophosphates
corresponding to these bases are inosine monophosphate, guanosine monophosphate
and xanthosine monophosphate. Specially labelled atoms which will be mentioned in
the text are C1', H7, N7, N9 and O2A.

This section describes briefly a study of the enzyme hypoxanthine-guanine-xanthine-phos-
phoribosyltransferase (HGXPRTase) from Plasmodium falciparum (Pf) and its human
homologue, hypoxanthine-guanine-phosphoribosyltransferase (HGPRTase). This work is
representative of the other applications of the Dynamo program [11 – 17] and illustrates
nicely what can and cannot be achieved with hybrid-potential techniques. Only a brief
discussion of the work will be given here as full technical details of the simulations and a
discussion of the results may be found in references [18 – 20].

Pf is a protozoan and is one of the Plasmodium species responsible for malaria. The
reaction catalysed by HGXPRTase is shown in Fig. 3 and involves transfer of a phosphor-
ibosyl group between a base and a pyrophosphate group. The enzyme is active with
hypoxanthine, guanine or xanthine as the base. One of the interests of HGXPRTase is that
there exists a human equivalent, called HGPRTase, that catalyses the same reaction except
that it has a much reduced activity with xanthine. Despite this, the proteins share an 80%
sequence homology in the vicinity of the active site although this drops to about 40%
overall. This raises two questions; first, what causes this difference in specificity and,
second, could this difference be used to design inhibitors that selectively target the Pf
enzyme and, hence, act as potential antimalarial drugs.

The hybrid potential simulations that were performed were designed to partially answer
both of these questions. First, because the simulations were carried out to investigate the
chemical steps of the reaction only and so could not differentiate specificity due to other
processes, such as substrate binding, and, second, because detailed information about the
structures along the pathway of the reaction resulting from the simulations could help in
identifying features that are important for inhibitor design. A summary of the salient
features of the simulations and their results are as follows.
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Figure 4. An image showing the atoms in the QC region of one of the HGXPRTase
simulation models. Where appropriate the HGPRTase residue numbers are in brack-
ets. The hypoxanthine is in its anionic form as its H7 proton has been transferred to
Asp148. The magnesium cations are in green.

1. The reactions of HGXPRTase and HGPRTase were studied with both hypox-
anthine and xanthine as substrates.

2. The techniques used to study reactions in systems as complicated as enzymes are
currently such that it is not possible to expect the preferred mechanism to come
out of the calculations directly. Instead, distinct hypotheses have to be made
about how the reaction occurs and each hypothesis tested separately. The results
of these tests may then be used to exclude particular mechanisms, if, for exam-
ple, there is disagreement with experimental data, or, alternatively, to indicate
that a mechanism is plausible. In the case of the HG(X)PRTases, the hypotheses
tested included: (i) passage by a dissociative (SN1-like) mechanism with a stable
dissociated intermediate; (ii) passage by various associative (SN2-like) mechan-
isms without stable intermediates; (iii) investigation of these mechanisms with
different ribose sugar conformations; and (iv) investigation of these mechanisms
with different protonation states for critical groups in the active site region.

3. Each hypothesis requires a separate simulation and simulation system. These
typically comprised about 23,000 atoms including the enzyme, substrates, sur-

71

Molecular Simulations of Enzyme Catalysis



rounding water and counterions. All these atoms were treated in the MM region
except for about 80 atoms which were put in the QC region (see Fig. 4). These
included the substrates, the two magnesiums in the active site, their coordinating
water and amino acid residues, and one or two catalytically active amino acid
residue side chains.

4. The reaction mechanism for each simulation system was mapped out using a
mixture of three different techniques: (i) saddle-point methods for locating the
critical transition-state (TS) structures; (ii) reaction-path methods that generate
intermediate structures for the mechanism by interpolating between the reactant
and product structures; and (iii) free-energy calculations that determine the free
energies for a mechanism as a function of specific reaction-coordinate variables.
To give an idea of the computational expense required to test a single hypothesis,
a complete study using all three techniques consumed approximately 20,000
hours (or 2.25 years) of computer time. Fortunately this was only necessary in
a few instances as most hypotheses could be rejected with much less effort.

5. The preferred mechanism (of the hypotheses that were tested) was found to be
identical with similar energetics for both enzymes and both substrates. The
mechanism had two steps with an initial transfer of the proton H7 from the base
to the adjacent aspartate side-chain followed by phosphoribosyl transfer. The
second step was rate-limiting with a barrier of between 70 and 80 kJ per mole.
This is in reasonable agreement with the experimental value of 65 kJ per mole
and is the type of accuracy that can be expected from simulations of this type.
These results indicated that the chemical steps are not responsible for the dif-
ference in specificity between HGXPRTase and HGPRTase but are due to other
causes, such as binding.

6. Despite the identical mechanisms, an analysis of the TS structures for the rate-
limiting phosphoribosyl transfer step in the two enzymes revealed some signifi-
cant structural differences which could be important in inhibitor design. The
most striking of these were the C1'-N9 distances which had average values of
2.56 and 1.82 � in the Pf and human TS structures, respectively, and the C1'-
O2A distances whose average values were 1.80 and 2.29 �.

Quantities Accessible by Computation

Simulations are not a replacement for experiment but a complement, the results of which
serve to test particular hypotheses about an enzyme reaction and to spur the design of new
experiments. Quantities that can be determined more or less routinely by computation
include:

1. Structures of stable enzyme–ligand complexes at various stages of the catalytic
cycle.

2. Mechanisms. These can be elucidated by finding paths that link reactants and
products and pass via known intermediate structures. The structures of unstable
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species along the reaction path, such as saddle points or TSs, are inaccessible
experimentally but they are of both fundamental and applied interest. First, they
are necessary for calculation of the additional quantities occurring later on this
list and, second, they are useful in processes, such as inhibitor design, for giving
insight into the properties of a ligand that are necessary for tight-binding to an
active site.

3. Free energies and associated thermodynamic quantities such as enthalpy and
entropy. Free energies are determined as differences between stable or unstable
structures. In the former case, the energies may be related to the equilibrium
constants between species whereas, in the latter, they can provide an estimate of
the rate of a process via transition state theory (TST).

4. Rate constants. For some processes, such as the diffusional encounter of an
enzyme with a ligand, rates are calculated directly from simulation. In other
cases, such as when investigating the chemical steps in the reaction, it is more
usual to first obtain the TST estimate of the rate constant via free-energy calcu-
lations and then to correct the TST value for dynamical and quantum effects.

5. Kinetic isotope effects. These may be calculated if the TS structures for a
mechanism have been calculated.

Simulation studies of enzyme reactions can require much effort, testing and trial and error.
They have the advantage, though, that once a set of simulation systems has been obtained
that encapsulate the process being studied, it is straightforward to rerun them under differ-
ent physical conditions (ionic strength, pH value, pressure, temperature, etc.) or after
(limited) mutations have been made in the enzyme or substrate structures.

Limitations of Current Approaches

Current modelling and simulation methods can provide much useful information about
specific aspects of enzyme catalysis when properly applied. They do, however, have some
fundamental limitations, among the most important of which are:

1. Almost all simulations require as input protein structures that are determined
experimentally, usually by X-ray crystallography, but sometimes by other tech-
niques, such as NMR. The requirements on the precision of these structures
depends upon the type of simulation being performed. The results of hybrid
potential calculations of the catalytic chemical steps in an enzyme reaction are
often very sensitive to the arrangement and orientation of groups in the active
site and so it is normal to start with high-resolution protein structures (of 2 �
resolution or better) that have been obtained in the presence of substrates,
inhibitors or TS analogues. By contrast, calculations of the rates of diffusional
encounter between an enzyme and its substrates are less stringent but, even so,
structures need to be of sufficient resolution that accurate representations of the
enzymes' charge distributions can be created.
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2. Simulation studies are computationally intensive. The calculation of diffusional-
encounter rates is one of the cheaper types of simulation and takes on the order
of a day (or few) on a modern single processor computer for an average size
protein. At the other extreme, the computation of free-energy profiles for the
chemical steps in a reaction using hybrid potentials typically require several
thousand hours of computer time and so special multiprocessor parallel compu-
ters must be employed.

3. There are still some aspects of enzyme catalysis that cannot reliably be studied
with existing simulation techniques. Two specific examples are: (i) the investi-
gation of reactions in which the enzyme undergoes a significant, but unknown,
conformational change.
Interpolative methods of reasonable precision are available for predicting how a
conformational change occurs if structures of the two end states are available but
extrapolative prediction is much more difficult; (ii) current QC techniques may
not be accurate enough when studying systems with complicated electronic
structures, such as radicals and transition metal complexes.

4. Probably the great majority of simulation studies published to date are irrepro-
ducible. There are two reasons for this: (i) there is a very large diversity of
simulation methods and there has been little attempt at standardizing them. Even
with techniques that are nominally the same, comparison can be impractical due
to differences in the way that the techniques are programmed or in the parameter
sets that are used for the simulations; (ii) much information is needed to repro-
duce a simulation with a particular program. This includes the simulation con-
ditions, miscellaneous parameter sets and other data, such as atomic coordinates.
Many journals do not require that this data is made available as a condition of
publication, and, for those that do, there is little enforcement. It should be
emphasized that the situation is generally better for calculations performed with
purely QC techniques as these are easier to standardize [21]. Therefore, it is, in
principle, possible to obtain ”identical” results for a particular system when
using different QC programs as long as one has a detailed enough description
of the methods employed and access to the starting data for the simulations.

Connections to Systems Biology

Modelling the behaviour of metabolic, signalling and other pathways has been an area of
active research since at least the 1970 s but it has received increased attention in the last
few years. This has been due to the emergence of systems biology as a discipline which
seeks to provide a multiscale description of how particular aspects of a cell or organism
function by integrating diverse experimental and theoretical approaches [22]. One of the
principal limitations in systems biology modelling is the lack of experimental data that
characterizes how parts of the system behave. This is especially true for the simulation of
enzymatic pathways as only for a small number of pathways are the parameters and the
laws that govern the kinetics of all the constituent enzymes known.
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Modelling and simulation will not be able to resolve this impasse by themselves but they
clearly have a role to play given the difficultly in obtaining much of this data experimen-
tally. A two-fold strategy would be appropriate:

1. The use of fast, approximate methods to estimate parameters, such as binding
and rate constants, for the enzymes in a pathway. The precision required of these
estimates will depend upon the enzyme and the pathway but it seems possible
that, for many enzymes, relatively crude estimates will suffice as the simulated
behaviour of a pathway will be robust to parameter changes within reasonable
bounds. Of the methods described in this chapter, only the CG/BD approach for
computing diffusional-encounter rate constants can be considered fast in the
sense envisaged here and so new methods will need to be developed.

2. The application of computationally intensive methods, such as hybrid potentials,
only for the investigation of the ”critical” enzymes in a pathway.

Reporting Enzyme Data Obtained Via Simulation

The STRENDA guidelines for reporting enzymology data refer exclusively to data obtained
experimentally and need adapting if they are to cover theoretically-derived values as well.
A partial list of recommendations includes:

1. A way of distinguishing experimental and theoretical data. One model is em-
ployed by the Protein Data Bank (PDB) which separates data from the different
sources [23].

2. Most modelling approaches require structures so the identity of the enzyme
should be supplemented by the origin of the structures used in the simulation
(e. g. the PDB codes).

3. An overview of the theoretical methodology employed. A literature reference
would probably be enough for a standard method or a published result but in
other cases a more detailed exposition would be necessary.

4. Details of the software and the machines used for the simulations.

5. A summary of the simulation protocol that includes, among other things, de-
scriptions of the parameter sets, physical conditions and methods of data analy-
sis.

6. A minimum set of data files that would allow other workers to reproduce the
calculations given equivalent software and computing facilities. The type of data
required would vary according to the simulation methodology but for the more
complicated approaches it would mean providing starting coordinate and velo-
city sets for the enzyme system, parameter sets for the MM and QC potentials
and sample program input files.
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Abstract

The determination of kinetic and thermodynamic data from hyperther-
mophilic enzymes at physiological temperature (i. e. ‡ 80 �C) raises a
number of technical and fundamental problems. Based on studies of
purified enzymes from the model organism Pyrococcus furiosus sev-
eral of these problems are identified and explored here. It is proposed
that kinetic and thermodynamic data on hyperthermophilic enzymes
be reported at the organism's growth temperature or, alternatively, at a
lower temperature compatible with practical assay conditions with
additional data obtained at yet lower temperatures to allow for extra-
polation.

Introduction

The native structure of biomacromolecules is metastable with respect to a number of
physico-chemical parameters: e. g., ionic strength, pH, radiation, pressure, temperature.
To a limited extent the cell can develop specific biochemical capacities to protect itself
from the detrimental effects of the extreme values of these environmental parameters. A
well-known example is the capacity of the bacterium Helicobacter pylori to raise locally
acidity of the human stomach from a nominal pH value of 1.5 to circa 5 – 6, by producing
large quantities of the nickel enzyme urease for the production of ammonia from human-
made urea [1]. A second example is the capacity of many halotolerant or halophilic micro-
organisms to take up or to synthesize organic compatible solutes, such as the quaternary
amine betaine, and thus to balance osmotic potential in an environment of high ionic
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strength [2]. However, for other environmental boundary conditions, notably extremes in
temperature, micro-organisms have apparently been unable to develop machineries to
stabilize their interior at mesophilic values. Thus, e. g., the archaeon Pyrococcus furiosus
that grows optimally at an environmental temperature of 100 �C [3], also has an intracel-
lular temperature of 100 �C, and, therefore, it must have its entire biochemistry adapted to
this biologically extreme temperature. In this framework the enzymologist is not only faced
with a fundamental problem (what is the biochemical nature of high-temperature adapta-
tion) and with a practical problem (how does one measure biological activities at high
temperatures), but also with a problem of normalization (under what conditions should 'hot'
enzymes be assayed to maximize comparability with 'regular' enzymes).

Some two decades of biochemical research on hyperthermophiles has until now left the
notion of unity in biochemistry unshaken. No fundamentally new concepts have been
discovered related to the central pillars of life: the bioenergetics of oxidative phosphoryla-
tion, the transcription of DNA, translation of RNA, chaperone-assisted protein folding, and
so on. Also, the use that hyperthermophiles make of building blocks (ATP), metabolites
(glyceraldehyde-3-phosphate), and cofactors (NADPH) appears to be completely conven-
tional, and this is remarkable in view of the limited lifetime versus thermal degradation of
these compounds in dilute aqueous solution at 100 �C [4]. How hyperthermophiles succeed
in stabilizing thermolabile intermediates is an unsolved problem. A partly solved problem
is the thermostability of proteins from hyperthermophiles: comparisons with mesophilic
counterparts at different levels ranging from pair wise comparison of 3D structures to
predicted proteins from multiple genomes [5,6] suggest that the determinant is a multi-
faceted one, encompassing an increased number of salt bridges, hydrogen bridges, beta
sheets, shortened loops, altered amino acid usage, etc. The implication is that protein
thermostability in general is not predictable at this time, therefore, that mutagenesis to-
wards increased stability is not yet possible in a rational way.

Our work on high-temperature enzymology has focused on the hyperthermophilic, anaero-
bic, marine euryarchaeoton Pyrococcus furiosus as a model system for several reasons. The
organism is readily grown, e. g., on starch in 100 litre batch cultures at circa 93 �C with a
doubling time of circa 40 minutes. Its biochemistry has been under study for nearly two
decades. Its complete genome and also those of half a dozen closely related species
(Thermococcales spp) are freely available. Several of its genes have been found to be
readily (over)expressed in Escherichia coli as functional proteins. The biochemistry of P.
furiosus and related species is mildly idiosyncratic, for example, in its strong preference for
(and absolute dependence on) the 5 d transition element tungsten. In our ongoing studies we
have identified a number of fundamental and practical problems, illustrated below, that
may be of general relevance to quantitative 'hot' enzymology.
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High Temperature Adapted Assay Instrumentation

The conceptually simple rise in temperature required to measure enzymes from hyperther-
mophiles at or near their physiological temperatures poses technical problems of variable
complexity depending on the type of assay. Our work on P. furiosus has focused on redox
catalysis and thus on the use of on-line assays based on the detection of redox dyes
(spectrometry), electrons (direct electrochemistry) and also of gaseous substrates/products
(amperometry).

UV-visible research spectrometers are commonly equipped with variable temperature ac-
cessories; however these usually have not been designed to operate in the 80 – 110 �C
range. Furthermore, they are made to accept 1 cm square cuvettes, some of which, notably
the fused quartz type, do not withstand high temperature for prolonged periods, and so high
temperature colour-based assays can prove to be a costly exercise.

Figure 1. High temperature adaptations of routine assay equipment: (A) UV-vis
spectrometry; (B) direct electrochemistry.

Figure 1a is a picture of a relatively simple solution suitable for routine assay of numerous
samples, e. g., during protein purification. The cuvette house of a fibre optic spectrometer
(Avantes – The Netherlands) has been built into an aluminum block that is part of a heating
plate. The cuvette house has been adapted to take round glass bottles (HPLC type; 1 cm
diameter). The heating block also contains additional holding positions for the pre-thermo-
statting of cuvettes. The HPLC bottles are closed with a septum which does not only allow
for anaerobicity but also for the temperature to be raised up to a few degrees above 100 �C.
The plastic cap allows for rapid cuvette transfer by hand at high temperature.
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Direct electrochemistry on solid electrodes allows determining reduction potentials of
electron transfer proteins and of some enzymes by cyclic voltammetry; it can also be used
to assay redox enzymes in combination with natural or artificial electron transfer partners
by measuring the extent of a catalytic wave in cyclic voltammetry. We have previously
described a simple three electrode electrochemical cell for direct protein electrochemistry
built around a small drop of solution (typically 10 – 50 ml) on top of a flat activated glassy
carbon disc as the working electrode [7]. This design can be readily adapted for high
temperature studies up to circa 90 �C by surrounding the cell with a thermostatted water
jacket connected to a circulating water bath (Fig. 1b). The drop of solution is protected
from evaporation by overlaying it with a small amount of immersion oil as used in micro-
scopy or in PCR instruments for DNA multiplication. The reference electrode is of the Ag/
AgCl type (saturated KCl) which, contrast to calomel eletrodes, can be operated up to at
least 100 �C and provides a – temperature dependent – well defined reference potential [8].

A similar solution of isothermal junctions between electrodes by means of a temperature
controlled water jacket is possible for amperometrically assaying gaseous substrates (O2,
H2, NO, N2O) with the familiar membrane covered electrochemical Clark cell, or oxy-
graph, the combined electrode of which is platinum versus Ag/AgCl. Here, solvent eva-
poration is not an issue in view of the larger cell volume (1 – 2 ml) and smaller evaporating
surface (1 mm diameter port for injections/degassing). Temperature specs for commercial
versions of the Clark cell will typically be limited to rather low values (40 � C), but
jacketed cells are readily home made of polycarbonate and can be run up to nearly boiling
temperature.

The Problem of Choosing a Proper Assay Temperature

Figure 2 is a 'typical' plot of enzyme activity versus temperature [9]. The example is from
one of the tungsto-enzymes of P. furiosus, Aldehyde OxidoReductase. AOR catalyses the
two-electron oxidation of a range of aldehydes to their corresponding acids. The highest
catalytic competence (kcat/KM) is for the substrate crotonaldehyde when assayed with
benzyl viologen as electron acceptor (Fig. 2):

CH3CHCHCHO + H2O /? CH3CHCHCOOH + 2 H+ + 2e-

but the natural substrate(s) has not been unequivocally identified [10]. AOR is thought to
function in catabolism of proteinaceous material (amino acid degradation). Figure 2 illus-
trates two key aspects of 'hot' enzymology.
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Figure 2. Apparent crotonaldehyde oxidation activity of P. furiosus aldehyde oxidor-
eductase as a function of temperature.

Firstly, as with any enzyme activity, the reaction rate is seen to approximately double with
every 10 degrees increase in temperature. However, for hyperthermophilic enzymes the
dynamic range of temperatures over which activity is practically measurable, is much
greater than for mesophilic enzymes. This fact implies improved possibilities for, e. g.,
the study of temperature-dependent protein conformational changes, and the determination
of activation energies associated with enzyme catalysis. Furthermore, a poor-man's version
of pre-steady-state kinetics presents itself: at laboratory ambient temperatures hyperther-
mophilic enzymes are slowed down to the extent that trapping of enzyme kinetic inter-
mediates would appear to no longer require advanced (stopped flow; rapid quench) equip-
ment. This fascinating possibility of facilely creating kinetically relevant intermediates on a
'hand-mixing' time scale remains largely unexplored to date.

Secondly, and again as with any enzyme, increasing the assay temperature will eventually
lead to the thermal degradation of activity. However, when employing the operational
definition of physiological temperature as the temperature at which the hyperthermophilic
organism exhibits maximal growth rate under optimized laboratory conditions, it is found
more often than not that hyperthermophilic enzymes degrade thermally at a faster rate than
would be compatible with the time scale of their activity assays. In Fig. 2 this is seen as a
deviation of experimental points at high temperature from the fitted exponential. The
dilemma for the enzymologist is obvious: the assay temperature has to be lowered to a
value such that the enzyme will be stable at least for the time span that it takes to measure
its activity. In the example of Fig. 2 this corresponds to circa 80 �C, which can still be
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considered a – suboptimal – physiological temperature as P. furiosus will still grow at
80 �C (be it at a reduced rate). However, different enzymes from the same species vary
drastically in their thermal stability in dilute aqueous solution (cf. ferritin, below) and a
single standard temperature for all enzymes could only be defined after all enzymes would
have been purified and characterized. Clearly, such a normalized temperature would not be
equal to the temperature of maximal growth. It is therefore suggested that kinetic data on
(hyper)thermophilic enzymes be reported at the highest temperature at which their activity
is stable over the time period required for a reliable assay (if lower than the temperature of
maximal growth), and that this information be extended with data on activity and stability
as a function of temperature.

Interference of Non-Catalytic Reaction at High

Temperature

Ferritin is a small (circa 20 kDa) a-helical protein that spontaneously polymerizes into a
cage-shaped homo 24-mer, and that ubiquitously occurs in all domains of life. Its main
physiological function is thought to be the storage of iron and/or a protection against
oxidative stress [11]. Ferritin takes up Fe(II) ions and converts these in the presence of
an oxidant, e. g., O2, into a core of ferrihydrite. Its activity can be assayed by measuring the
increase in light scattering at, e. g., 315 nm from the growing Fe(III) core. Non-biological
oxidation of Fe(II) by O2 at ambient temperatures is usually very much slower than ferritin-
catalysed oxidation. A structural ferritin gene in P. furiosus can be cloned and overex-
pressed in E. coli resulting in an extremely thermostable 24-mer the Fe(II) oxidation
activity of which is resistant to 10 h boiling at 100 �C or 30 min autoclaving at 120 �C [12].

When assayed at 25 �C this ferritin exhibits cooperative kinetics (Hill coefficient n » 2) and
a half-maximal activity for K0.5= 5 mM Fe(II). At 25 �C the non-catalytic rate of Fe(II)
oxidation for [Fe(II)]= 5 mM is negligible compared to the ferritin catalysed rate. When the
temperature is raised to 85 �C the Fe(II) oxidation activity increases by circa two orders of
magnitude consistent with an approximate two-fold increase in rate for every 10 �C in-
crease in temperature. However, this activity can only be measured at relatively low
[Fe(II)] £ 0.3 mM. At [Fe(II)]= 5 mM the rate of non-catalytic oxidation is comparable to
that of ferritin-catalysed oxidation, and this interference precludes a complete kinetic
analysis at high temperature. This example illustrates interference of a background reaction
under in vitro assay conditions to the extent that kinetic analysis is limited to non-physio-
logical temperature (P. furiosus does not grow at 25 �C).

High-temperature studies of P. furiosus ferritin have pointed to another technical problem
of 'hot' biochemistry: the extreme thermostability of this protein is reflected in the fact that
differential scanning calorimetric measurements fail to reveal a 'melting' temperature up to
120 �C [12]. It appears that calorimetry is not a practical option to study unfolding of these
types of proteins.
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Determination of Reduction Potentials at High

Temperture

A key thermodynamic parameter to be determined in the study of redox proteins is the
reduction potential, Em, of the prosthetic group(s). An Em value reflects the relative stability
of the oxidized versus the reduced form of a compound and thus can be dependent on a
number of environmental parameters, e. g., pH and ionic strength, but also: temperature.
This raises the question at what temperature redox properties of (hyper)thermophilic pro-
teins should be determined and reported. Em values of proteins are not necessarily linear
functions of temperature, e. g., due to temperature-dependent protein conformational
changes. Consequently, Em values should preferably be determined at physiological tem-
perature, which is, however, not a trivial problem as can be illustrated on the example of P.
furiosus rubredoxin, a small (6 kDa), thermostable electron transfer protein with a single
Fe(II/III) redox prosthetic group. Its Em can be determined as a function of temperature by
direct voltammetry on activated glassy carbon as shown in Fig. 3. Apparently, no tempera-
ture-dependent conformational changes occur over the studied temperature range because
the reduction potential is found to be linear in T with an approximate -1.5 mV change per
degree increase [13].

Figure 3. Reduction potential of P. furiosus rubredoxin as a function of temperature
as determined with direct electrochemistry (((plus))) and with EPR monitored
titration (.).
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An alternative technique to determine Em values is bulk titration monitored with EPR
spectroscopy. Substoichiometric additions of reductant (dithionite) or oxidant (ferricyanide)
are made to the protein solution in the presence of a cocktail of redox mediators to ensure
redox equilibrium between the protein and the detection electrode (platinum), and when
equilibrium is reached (i. e. a constant voltage reading) then a sample is drawn and rapidly
frozen for cryogenic EPR analysis in order to determine the extent of reduction of the
prosthetic group. The importance of this method lies in (1) its general applicability to
metalloproteins that usually exhibit an EPR signal either in their oxidized or in their
reduced state, and (2) the finding that many proteins, notably redox enzymes do not exhibit
finite electron transfer rates with bare electrodes, which precludes general application of
the direct voltammetry method. Remarkably, when the bulk titration method is applied to
P. furiosus rubredoxin, the outcome is Em » +80 mV independent of whether the titration is
done at 20 �C or at 80 �C [13]. This observation suggests that, during the cooling down of
the EPR sample towards its freezing point the rubredoxin protein sufficiently rapidly adapts
its structure so that the determined Em value always corresponds to the sample's freezing
temperature whatever the initial sample temperature was (cf. Fig. 3). The general implica-
tion would be that reduction potentials of (hyper)thermophilic electron transfer proteins at
physiological temperatures cannot be determined accurately by EPR monitored redox
titrations. Whether this conclusion also holds for larger proteins, notably enzymes, is not
yet clear at this time.

Enzyme Activation During Heat-Up

The enzyme hydrogenase catalyses the activation of molecular hydrogen in nature either
for its oxidation to protons or for its formation from protons [14]:

2 H+ + 2e- /? H2

The most common form of the enzyme has an active centre consisting of a heterodinuclear
cluster of nickel and iron bridged by cysteinato sulfurs and with structural CO and CN-

ligands coordinating the Fe ion. In purified NiFe-hydrogenase this unusual centre is fre-
quently found to be in an inactivated form which can be activated by anaerobic incubation
under hydrogen. The activation process may involve the removal of a bridging oxo or
peroxo group and the concomitant or subsequent reduction of the dinuclear cluster [14].
The rate of activation depends on the source of the enzyme and on its history. P. furiosus
makes a soluble NiFe-hydrogenase the metal centre of which is in an inactive, oxidized
form after purification of the enzyme at ambient temperature. EPR spectroscopic studies
have shown that this hydrogenase goes through an auto-activation cycle when heated up
anaerobically to, e. g., 80 �C [15]. The mechanism of auto-activation is unknown, but it may
involve one or more molecules of H2 trapped in the protein's H2 channelling system during
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isolation. The general implication of these observations is that (hyper)thermophilic en-
zymes may exhibit a broad range of extents of activation depending not only on the
temperature of assay, but also on the time of pre-incubation at this temperature.

Change of Substrate Solvation with Temperature

In addition to the already mentioned aldehyde oxidoreductase, AOR, P. furiosus synthe-
sizes at least four more tungsten-containing oxidoreductases, one of which is named for-
maldehyde oxidoreductase, FOR, because for all tested aldehyde substrates this enzyme has
the highest kcat for formaldehyde [16]. The physiological relevance of this observation has
however been questioned because the apparent KM for formaldehyde is unrealistically high,
namely of the order of 10-2 M [16]. As with AOR, also FOR is thought to function in a
degradation pathway of proteinaceous material.

Formaldehyde is a unique aldehyde in its very strong tendency to be hydrated in aqueous
solution. The hydration equilibrium lies well towards the direction of methylene glycol
formation such that only a very small fraction is in the free formaldehyde form:

HCHO + H2O /? HOCH2OH

So what is the actual substrate of the FOR-catalysed oxidation reaction: is it methylene
glycol or formaldehyde? A reasonable answer is suggested by temperature-dependent
Michaelis–Menten analysis. At 20 �C the KM= 40 mM and at 80 �C the KM= 6 mM for total
formaldehyde (free plus hydrated); however, when these values are re-calculated for free
formaldehyde using the temperature dependence of the dissociation constant for methylene
glycol [17] the KM » 0.03 mM is independent of temperature [18]. It thus appears that free
formaldehyde is an excellent substrate for the enzyme FOR. This example illustrates
another general rule of 'hot' biochemistry: the non-biological hydration chemistry of the
substrate may be very different at mesophilic versus (hyper)thermophilic temperatures.

Conclusions

In comparison to the study of their mesophilic counterparts exploration of the quantitative
enzymology of thermophilic enzymes, and, a fortiori, of hyperthermophilic enzymes raises
a number of additional problems of a practical and also of a fundamental nature.

Established methods of analysis have to be adapted to handle samples at high temperatures.
For some methods this can be a relatively simple technical adjustment (colorimetric assays,
cf. Fig. 1), but for other methods attempts at adaptation can reveal intrinsic limitation (EPR
monitored redox titration, cf. Fig. 3).
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Unfolding of hyperthermophilic proteins may be intrinsically difficult to study as these
proteins may not exhibit melting in the temperature range in which commercial calorime-
tries operate.

The study of redox properties of hyperthermophilic redox enzymes may be intrinsically
difficult because common methods to determine reduction potentials do not work at high
temperatures.

Activation mechanisms for enzymes purified in an inactivated form can be a complex
function of temperature.

Non-biological substrate chemistry (e. g., hydration; oxidation on air) may strongly vary
with temperature and may thus complicate temperature-dependent enzymology.

When physiological temperature is defined as the optimal growth temperature of a hy-
perthermophilic micro-organism, it is frequently difficult to assay activities at this tem-
perature because the enzymes may have limited stability in isolated form in dilute solu-
tions.

In summary, with a view to the standardization of assay conditions for hyperthermophilic
enzymes it is advised that data be reported either at optimal growth temperature or, if this is
not feasible, at the highest possible temperature at which assays can be reliably run.
Particularly in the latter case it is of relevance also to obtain data at lower temperatures
to allow for cautious extrapolation.
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Abstract

The dynamic behaviour of metabolic networks is determined by the
kinetic properties and the cellular levels of the enzymes and transpor-
ters involved. Changes in the concentrations of enzymes can be as-
sessed by proteomics measurements or – more indirectly – by gene
expression analyses. However, a straightforward interpretation of such
data with respect to metabolic functions of the cell is difficult as a
simple correlation between changes of enzyme levels and changes of
fluxes in a metabolic network does not exist. Here we outline a
theoretical concept to exploit information on changes of enzyme con-
centrations for predicting changes of stationary fluxes and this way to
characterize changes in the functional status of cells or tissues. The
basis of our concept is a novel variant of flux-balance analysis which
we call MinMode-decomposition. The basic idea of this concept is to
approximate flux distributions in metabolic networks as linear combi-
nations of functionally motivated minimal flux modes (MinModes).
They are defined as minimal flux modes supporting a unit flux
through only one of the target reactions of the network. This theore-
tical concept will be applied to metabolic networks of bacteria
(Methylobacterium extorquens) and human red blood. Based on simu-
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lated data we demonstrate that a good prediction of observed flux
changes can be achieved if the decomposition of flux changes into
MinModes is performed such that a maximal correlation with ob-
served changes in enzyme activities is accomplished.

Introduction

All cellular functions are ultimately linked to the presence of metabolites (such as proteins,
nucleotides, fatty acids, phospholipids etc.) produced by the so-called metabolic network
comprising thousands of enzyme-catalysed chemical reactions and carrier-mediated trans-
port processes. The rate (herein called flux) through a given process, i. e. the amount of
material chemically converted or transported per time unit, is controlled by various reg-
ulatory mechanisms. The set of all fluxes in a metabolic network is called flux distribution.
The flux distribution may dramatically change with changing functional status of the cell
(e. g. turning on the glycolytic flux when switching from the resting to the working muscle).
It is an important goal of quantitative biochemistry to determine the flux distribution that
determines the functionality of the cell. Such studies may help to reveal the relative
importance of a specific enzyme and to predict the impact on the flux distribution if the
enzyme is not active, e. g. due to a mutation or due to the administration of an enzyme
inhibitor. The latter aspect is of central importance for the development of novel drugs
interfering with the cellular metabolism.

Experimental determination of metabolic flux rates by means of tracer studies is time-
consuming and tedious. Therefore, various mathematical concepts have been developed to
analyse the full spectrum of flux modes possible in a metabolic network (structural analy-
sis) or to predict flux distributions (semi-quantitative analysis). The common basis for all
these concepts is the stoichiometric matrix S =(Sij) representing the number of molecules of
metabolite (i) formed or utilized in reaction (j). The stoichiometric matrix S is a m x n
matrix where m corresponds to the number of metabolites and n is the number of reactions
for which at least one catalysing enzyme is available in a given cell type [1]. The presence
of a particular reaction can be evidenced by biochemical studies or – with some precaution
– deduced from proteomic or genomic data [2 – 5].

Most modelling approaches assume the spatial distribution of metabolites to be homoge-
neous so that the kinetic behaviour of the network can be described by a system of ordinary
differential equation systems,

d X
dt

S vi
ij j

j

m[ ] =
=

∑
1

(1)

[Xi] is the concentration of the i-th metabolite (i = 1,2,...,m) and vj denotes the flux through
the j-th reaction (j = 1,2,...,n). The fluxes vj constitute the so-called flux vector v = (vj), in
this paper referred to as a flux distribution. For quasi-stationary metabolic states where
changes of the external conditions of the cell (e. g. changes of substrate concentrations or
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hormonal effectors) are slow compared with the characteristic time-dependent response of
the intra-cellular metabolism, a further simplification in the mathematical description of the
network can be achieved by calculating the stationary solution of equation system (1),

S vij j
j

m

=
∑ =

1

0 (2)

The most advanced and satisfactory modelling approach is to solve the equation systems
(1) or (2) with explicit flux vector v composed of rate equations relating the fluxes to the
concentrations of the metabolites and external signals. However, such a straightforward
modelling approach requires detailed knowledge of the kinetic properties of each partici-
pating enzyme. Even for the relatively simple metabolic network of bacteria as, for exam-
ple, Escherichia coli this information is currently only available for the minority of en-
zymes involved. Therefore, computational studies of whole-cell metabolic networks de-
mand alternative mathematical concepts. Existing non-kinetic concepts can be subdivided
into two categories: Structural methods of network analysis and flux-balance analysis
(FBA). Structural network analysis aims at exploring the full set of flux modes that may
exist in a network with known stoichiometry. Simply speaking, these methods provide an
overview of the many routes along which a given metabolite can be converted into another
metabolite. Various algebraic concepts have been developed to define a basic set of
“fundamental” flux modes which linearly combine to all possible flux modes in the net-
work [1, 6, 7]. The definitions of such basic flux modes differ in the way that the reversible
reactions are partitioned in forward and backward rates [8]. The two most prominent
“fundamental” sets of flux modes are the so-called elementary modes [7] and the extremal
pathways [6]. They have been used to re-define metabolic pathways [9], to check the
robustness of the metabolic network against enzyme knock-outs [10, 11], the identification
of thermodynamically infeasible cycles [12, 13] and the determination of so-called minimal
cut sets, i. e. minimal sets of enzymes that have to be knocked out in order to completely
abolish the flux through a given set of reactions [14]. The main obstacle in the application
of structural analyses to large networks is the enormous number of possible flux modes
arising from the combinatorial multiplicity with which single reactions can be composed to
a longer route. For example, for a simplified metabolic network of Escherichia coli con-
sisting of 106 reactions and producing five different end products from one initial substrate,
27100 elementary modes exist. Addition of three further initial substrates increases the
number of elementary modes to 507632 [15]. This combinatorial explosion [16] implies
that basic mode sets for networks with several hundreds of reactions cannot be calculated
on commonly available computers. A lot of effort has been put into the development of
faster algorithms to reduce computation time [15]. However, even if better algorithms
allow the computation of fundamental modes for larger networks, inspection of all these
modes and evaluation of their physiological significance remains extremely difficult. At-
tempts have also been undertaken to decrease the size of fundamental mode sets by
incorporating additional constraints, for example, transcriptional regulation and environ-
mental conditions [17] or kinetic and physiological feasibility [18, 19] into the computing
algorithm. However, the formulation of such constraints requires profound a priori knowl-
edge of physiological and regulatory details.
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Besides structural network analyses, the concept of flux-balance analysis (FBA) has be-
come a widely used method to estimate unknown fluxes in metabolic networks [20]. FBA
postulates an objective function relating the flux distribution to a specific physiological
function of the cell and to determine a flux distribution that optimizes this objective
function. The idea behind this approach is that cells are capable of setting up an optimal
flux distribution to produce a functionally relevant metabolic output. Most applications of
FBA have used an objective function that considers only a single cardinal function of the
cell as, for example, the accumulation of cell material (biomass) during the S-phase of the
cell cycle. However, even primitive cells have to generate a metabolic output that simulta-
neously meets several functional demands. To overcome the restriction of FBA to mono-
functional objective functions we have recently proposed the principle of flux minimization
[21 – 23]. According to this principle, functionally relevant target fluxes, i. e. fluxes gen-
erating metabolites that are either used as building blocks for the synthesis of complex
biomolecules or exported, should be accomplished with a minimal sum of internal network
fluxes.

This work presents some ideas how the concept of structural network analyses can be
unified with the concept of flux-minimization. As exemplary metabolic networks we will
consider the central metabolism of Methylobacterium extorquens and the redox- and energy
metabolism of human erythrocytes: Both networks have already been studied in previous
work of our group [24, 25]. In the first part of this paper we show, only very few
elementary modes are actually needed to decompose flux distributions calculated by flux-
balance methods. However, the decomposition of the FBA solution into elementary modes
is not unique and not all of the fundamental modes used in this decomposition allow for a
clear physiological interpretation. Therefore, in the second part of the paper we propose a
new type of fundamental modes which we call minimal flux modes (or short: MinModes).
They are defined as minimal flux modes required to maintain a unit flux through a single
target reaction of the network. According to this definition, there are only as many Min-
Modes as there are functionally relevant target fluxes (17 in the network of Methylobacter-
ium and 4 in the network of erythrocytes). Although MinModes do not form a basis in strict
mathematical sense the examples considered in this article suggest that they can be linearly
combined to provide a good approximation of a given flux distribution. The striking
advantage of such a representation in terms of MinModes is that the coefficients used for
the linear combination have a clear physiological meaning: they represent the metabolic
output of the network in a given steady state and thus can be used as a measure for the
functionality of the cell. Parts of these results have already been published [26].

In the third part of this article we study the relationship between changes of enzyme levels
and changes in the flux distribution. As consistent data sets encompassing changes in the
expression levels of metabolic enzymes and measured flux changes in the network are not
available yet, we settle this study on simulated data. We take the change of the vmax value
of an enzyme as a measure for the change of its concentration. Subsequently we use the
validated kinetic model for the erythrocyte network to simulate changes of the steady state
fluxes elicited by changes in the vmax values of the participating enzymes. As expected,
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there is no simple correlation between these two changes. However, using the decomposi-
tion of flux changes into MinModes as a side constraint we show that the prediction of flux
changes from changes of enzyme levels can be greatly improved.

Exemplary Networks

The theoretical concepts considered in this paper will be applied to metabolic networks of
two different cell types: The bacterium Methylobacterium extorquens AM1 (in the follow-
ing referred to a B-network) and the human erythrocyte (in the following referred to as E-
network). The metabolic scheme for the B-network was originally published by Van Dien
[24, 25]. The scheme used in this paper contains some corrections which we have made in
the light of recent findings [27, 28]. The B-network comprises 68 internal chemical reac-
tions (43 of which are considered reversible), 8 exchange processes with the extracellular
medium (for methanol, succinate, carbon dioxide, formate, formaldehyde, pyruvate, gly-
cine, and serine) and 17 target reactions producing those metabolites required for biomass
synthesis (see Table 1 for more details). While the model includes methanol, succinate, and
pyruvate as alternative substrates, in all calculations methanol was considered the only
available carbon source.

The reaction scheme for the E-model was originally published by Heinrich, Schuster and
Holzh�tter [29, 30]. It comprises 22 internal reactions, 4 exchange processes (for glucose,
phosphate, pyruvate and lactate) and 4 target reactions delivering those metabolites which
are essential for the integrity and functionality of the erythrocyte (2,3-bisphosphoglycerate,
ATP, glutathione and phosphoribosyl pyrophosphate). For the E-network a detailed kinetic
model is available [30] which takes into account all known kinetic properties of the
participating enzymes. This kinetic model allows the computation of reliable stationary
and time-dependent metabolic states which can be compared with results obtained by the
FBA outlined in this paper. The reaction schemes for both networks are shown in Fig. 1.
The involved reactions are explained in the legend of this figure.
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Figure 1. Metabolic networks considered in this article.

A. B-network: Reaction scheme of the central metabolism of Methylobacterium ex-
torquens. The reaction arrows point in the direction of the net reaction under standard
conditions. Compound names in red italic indicate utilization or generation of the
corresponding metabolite during biomass production, blue arrows indicate exchange
fluxes with the external environment. Cofactors have been dropped for better read-
ability. The complete reaction scheme is shown in Table1A. The scheme is based on
information outlined in [21] and derived from the KEGG data base (http://www.ge-
nome.ad.jp/kegg/).

Reactions/Enzymes:

1-methanol dehydrogenase (1.1.1.244), 2-not catalysed, 3-methylene H4F dehydro-
genase (MtdA)(1.5.1.5), 4-methenyl H4F cyclohydrolase (3.5.4.9), 5-formyl H4F
synthetase (6.3.4.3), 6-formate dehydrogenase (1.2.1.2), 7-formaldehyde-activating
enzyme, 8-methylene H4MPT dehydrogenase (MtdB), 9-methylene H4MPT dehydro-
genase (MtdA) n/a, 10-methenyl H4MPT cyclohydrolase (3.5.4.27), 11-formyl
MFR:H4MPT formyltransferase (1.2.99.5), 12-formyl MFR dehydrogenase
(1.2.99.5), 13-serine hydroxymethyltransferase (2.1.2.1), 14- serine-glyoxylate amino-
transferase (2.6.1.45), 15-hydroxypyruvate reductase (1.1.1.81), 16-glycerate kinase
(2.7.1.31), 17-enolase (4.2.1.11), 18-PEP carboxylase (4.1.1.31), 19-malate dehydro-
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genase (1.1.1.37), 20-malate thiokinase (6.2.1.9), 21-malyl-CoA lyase (4.1.3.24), 22-
pyruvate dehydrogenase (1.2.4.1), 23-citrate synthase (2.3.3.1), 24-aconitase (4.2.1.3),
25-isocitrate dehydrogenase (1.1.1.42), 26-a-KG dehydrogenase (1.2.1.52), 27-succi-
nyl-CoA synthetase (6.2.1.4), 28-succinyl-CoA hydrolase (3.1.2.3), 29-succinate de-
hydrogenase (1.3.5.1), 30-fumarase (4.2.1.2), 31-phosphoglycerate mutase (5.4.2.1)
,32-phosphoglycerate kinase (2.7.2.3), 33-glyceraldehyde-3-P dehydrogenase
(1.2.1.12), 34-aldolase (4.1.2.13), 35-fructose-1,6-bisphosphatase (3.1.3.11), 36-phos-
phoglucose isomerase (5.3.1.9), 37-glucose-6-phosphate dehydrogenase (1.1.1.49),
38 – 6-phosphogluconate dehydrogenase (1.1.1.44), 39 transketolase (2.2.1.1), 40-
transaldolase (2.2.1.2), 41- transketolase (2.2.1.1), 42-malic enzyme (1.1.1.38), 43-
pyruvate kinase (2.7.1.40), 44-pyruvate carboxylase (6.4.1.1), 45-PEP carboxykinase
(4.1.1.32), 46- b-ketothiolase (2.3.1.16), 47- acetoacetyl-CoA reductase (NADPH)
(1.1.1.36), 48- PHB synthase (2.3.1._), 49- PHB depolymerase (3.1.1.75), 50 b-hydro-
xybutyrate dehydrogenase (1.1.1.30), 51-acetoacetate-succinyl-CoA transferase
(2.8.3.5), 52-d-crotonase (4.2.1.17), 53 l-crotonase (4.2.1.17), 54-acetoacetyl-CoA re-
ductase (NADH) (1.1.1.35), 55-crotonyl-CoA reductase (1.3.1.8), 56-unknown path-
way, 57-propionyl-CoA carboxylase (6.4.1.3), 58-methylmalonyl-CoA mutase
(5.4.99.2), 59-NADH-quinone oxidoreductase (1.6.99.5), 60-cytochrome oxidase
(1.10.2.2), 61- ubiquinone oxidoreductase (1.5.5.1), 62-ATPase, 63-NDP kinase
(2.7.4.6), 64-transhydrogenase (1.6.1.2), 65 – 3-phosphoglycerate dehydrogenase
(1.1.1.95), 66-phosphoserine transaminase (2.6.1.52), 67-phosphoserine phosphatase
(3.1.3.3), 68-glutamate dehydrogenase (1.4.1.4)
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B. E-network: Reaction scheme of the energy- and redox metabolism of human
erythrocytes.
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Reaction/Enzymes:

1-glucose transporter GlcT, 2-hexokinase HK (2.7.1.1), 3-phosphohexose isomerase
GPI (5.3.1.9), 4-phosphofructokinase PFK (2.7.1.11), 5-aldolase ALD (4.1.2.13), 6-
triosephosphate isomerase TPI (5.3.1.1), 7-triosephosphate dehydrogenase (NAD)
GAPDH (1.2.1.12), 8-phosphoglycerate kinase PGK (2.7.2.3), 9-bisphosphoglycerate
mutase DPGM (5.4.2.4), 10-bisphosphoglycerate phosphatase DPGase (3.1.3.13), 11-
phosphoglycerate mutase PGM (5.4.2.1), 12-enolase EN (4.2.1.11), 13-pyruvate ki-
nase PK (2.7.1.40), 14-lactate dehydrogenase LDH (NADH) (1.1.1.28), 15-lactate
dehydrogenase LDH (NADPH) (1.1.1.28), 16-ATPase (total) ATPase, 17-myokinase
(adenylate kinase) AK (2.7.4.3), 18-glucose-6-phosphate dehydrogenase G6PD
(1.1.1.49), 19-phosphogluconate dehydrogenase 6PGD (1.1.1.44), 20-glutathione re-
ductase GSSGR (1.8.1.7), 21-glutathione oxidation (total) GSHox, 22-phosphoribu-
lose epimerase EP (5.1.3.1), 23-ribose phosphate isomerase KI (5.3.1.6), 24-transke-
tolase (1) TK1 (2.2.1.1), 25-transaldolase TA (2.2.1.2), 26-phosphoribosylpyropho-
sphate synthetase PRPPS (2.7.6.1), 27-transketolase (2) TK2 (2.2.1.1), 28-phosphate
transporter PT, 29- lactate exchange LacT, 30- pyruvate exchange PyrT

Computational Methods

Calculation of flux-minimized steady-state flux distributions
The computation of flux modes is based on flux balance analysis (FBA). The core of this
method is the optimization of an objective function which relates the flux distribution to
cellular functions. According to the principle of flux minimization [31] the objective
function to be minimized is chosen as:

Φ = ( )+ ( )∑pos v K neg vj j
j

j (3)

where the sum runs over all fluxes in the network and Kj denotes the equilibrium constant
for the j-th reaction. The real functions pos(x) and neg(x) return the absolute value of the
argument x if x ‡ 0 and x £ 0, respectively, and otherwise 0. The functional state of the cell
is defined by fixing non-zero fluxes through so-called 'target reactions' which together with
the steady-state represent constraints of the minimization problem. The constrained flux
minimization problem is solved using the software package CPLEX [32]. Details of the
computational protocol have been described elsewhere [31].

The in vivo state of the B-network is determined by the following values of the fluxes
through the 17 target reactions involved in the production of biomass:
V77= 13.4 (glycine), v82= 1.96 (CH2= H4F), v86= 11.1 (pep), v92= 5.09 (ery4P), v89= 1.92
(tp), v85= 7.24 (serine), v83= 11.0 (CHO-H4F), v93= 92.9 (phb), v90= 16.4 (glc6P), v88= 17.1
(akg), v84= 41.8 (pyruvate), v81= 53.5 (acetylCoA), v87= 41.1 (oaa), v80= 6.8 (succCoA),
v78= 585.3 (atp), v91= 10.4 (pentoP), v79= 235.13 (nadph)
The unit of fluxes is moles precursor metabolite per 1000 g atoms C in biomass. Release of
NADH during biomass production was included in the target flux for NADPH. The rela-
tions between the target flux, i. e. the stoichiometry with which the 17 precursor metabolites
enter the biomass, have been determined by Van Dien [24].
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The in vivo state of the E-network is determined by the following values of the fluxes
through the 4 target reactions:
v9= 0.49 (2,3DPG), v16= 2.38 (ATP), v21= 0.093 (GSH), v26= 0.026 (PRPP)
The unit of fluxes is mM/h.
In the following we will refer to the solution of the minimization problem (3) fulfilling the
steady-state conditions (2) and providing the above values of target fluxes as the global flux
minimum.

Decomposition of the global flux minimum into elementary modes
For the two exemplary networks, elementary modes and the convex basis of elementary
modes were computed using a recent version of the software tool FluxAnalyzer [33].
Decomposition of global flux minimum into the convex basis was performed by solving
the linear program

e C v e= g  ,  minimal (4)

where C is the convex basis of elementary modes written as a matrix, vg is the global flux
minimum and e is a vector of non-negative real numbers.

Definition of minimal flux modes (MinModes)
Besides the global flux minimum defined as the optimal flux distribution in the network
with all target fluxes kept at pre-defined non-zero values, we computed special flux-mini-
mized steady-states by putting the value of only one of the target fluxes to either unity (in
the used flux units). The resulting minimized flux modes we call minimal flux modes
(short: MinModes). They are defined as follows:

A MinMode is a minimal (according to the flux minimization principle) steady state
flux distribution that accomplishes a unit flux through one of the (independent)
target reactions whilst the fluxes through the other target reactions are zero.

This definition is more rigorous than that given in [26], because it presumes the target
fluxes to be independent from each other. Independency of target fluxes means the ex-
istence of a flux-minimized solution that accomplishes a non-zero flux through the chosen
target flux without the necessity to have non-zero fluxes through other target reactions.
This condition may be not always fulfilled. For example, if two metabolites (say A and B)
are produced in one and the same reaction, then under steady state conditions utilization of
A necessarily entails utilization of B. Hence, the first step towards the computation of
MinModes requires to identify clusters of intrinsically coupled target reactions. In the
following we will assume that the definition of 'target fluxes' in the network eventually
includes clusters of coupled output reactions. For the two networks studied in this paper,
the output fluxes are independent, i. e. there are 17 of such MinModes for the B-network
and 4 MinModes for the E-network.
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Results

Elementary modes of the network of Methylobacterium
The model of central metabolism of Methylobacterium extorquens shown in Fig. 1 was
subjected to elementary mode analysis. The network model consists of 93 reactions where-
by 43 reactions are considered irreversible. The complete set of elementary modes for this
model is too large to be computable by means of the program FluxAnalyzer [33] using a PC
equipped with a memory capacity of 768 MB. The enormous amount of elementary modes
network can be envisaged by noting that there are 450251 elementary modes if the com-
putation is simplified by setting 5 of the 17 target fluxes to zero. However, for the
representation of an arbitrary flux distribution knowledge of the convex basis of elementary
modes is sufficient [34]. A convex basis of elementary modes was computable for the
complete B-network. It consists of 7033 elementary modes. Intriguingly, only 21 elemen-
tary flux modes (out of 7033) of the convex basis were actually needed (i. e. had non-zero
coefficients in the linear representation) for the decomposition of the global flux minimum.
Regarding the physiological interpretation of these 21 elementary flux modes further
analysis showed that most of them contain more than one non-zero target flux (see
Fig. 2). Moreover, the choice of basic elementary modes is not unambiguous. This makes
it difficult to assign a specific output of the network to these elementary flux modes.

Figure 2. Occurrence of non-zero input and output fluxes in the 21 elementary modes
required for the decomposition of the global flux minimum for the B-network. Each
column represents an elementary mode, each row represents an input/output flux.
Table fields shaded in grey indicate a non-zero value of the respective flux.
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Elementary modes of the network of the Erythrocyte
The model of central metabolism of the human Erythrocyte has 20 elementary modes. Only
4 elementary modes were actually needed (i. e. had non-zero coefficients in the linear
representation) for the decomposition of the global flux minimum where each of these
modes exactly corresponds to a singular target flux. Thus, for this simple model the
difficulties mentioned for the B-network do not occur.

Calculation of MinModes
According to the definition given above, MinModes are flux-minimized states of the net-
work where only one of the (independent) target reactions carries a unit flux whereas the
flux through all other target reactions is put to zero. As an important property, each of these
modes is associated with a specific output of the network. For the B-network (Methylo-
bacterium extorquens) each MinMode represents the minimal flux distribution required for
the synthesis of a single biomass precursor metabolite. For the E-network (erythrocyte) the
target metabolites ATP and GSH are essential for cellular integrity (maintenance of the
intracellular ionic milieu by the ATP-driven Na-K-pump, protection against secondary
reaction products of radicals via GSH), the two other target metabolites 2,3DPG and PRPP
are indispensable for oxygen binding to haemoglobin and the salvage of adenine nucleo-
tides. The MinModes for the two networks are listed in Table 1.

Inspecting the MinModes of the B-network, we note that the amount of methanol consumed
in each of the MinModes can be split into a carbon providing and an energy (ATP and
redox equivalents) providing part. As an example, the MinMode for the production of the
biomass precursor glycine is plotted in Fig. 3.
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Table 1. Model scheme and the corresponding minimal flux modes (MinModes) of
the B-network. cmm and gfm denote the MinMode composition and the global flux
minimum, respectively.
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Figure 3. Minimal flux mode (MinMode MMglycine ) for glycine synthesis in the B-
network. The MinMode was calculated by minimizing the objective function (3)
where the flux v70 for the release of glycine to the biomass was put to unity and the
other 17 target flux were put to zero. Flux values are depicted next to the reaction
arrow, grey arrows indicate zero fluxes.

Here, the H4MPT-cycle is used for the production of NADPH and NADH (utilized in other
parts of the network) as well as for the complete oxidation of methanol to CO2. The
released carbon is fixed in another part of the network to provide the carbon needed for
the actual synthesis of glycine. The second carbon atom is incorporated via reactions of the
serine cycle. Only two of the reactions that traditionally form the citrate acid cycle, are
used in this MinMode. They are catalysed by the succinate dehydrogenase (29) and the
fumarase (30).

To illustrate the relative importance of the individual reactions for the functionality of the
network we counted how often a non-zero flux through each of the reactions occurs in the
17 MinModes of the B-network. The corresponding statistics (Fig. 4) reveals the ubiquitous
usage of reactions involved in methanol uptake and the energy metabolism. Based on the
frequency with which a reaction has a non-zero flux in the various MinModes one may
depict the 'backbone' of the network. For the B-network this backbone is constituted by the
reactions of serine cycle and formaldehyde metabolism (H4F and H4MPT cycle). On the
other hand, there are 15 apparently redundant reactions that have a zero-flux in all Min-
Modes. This relatively high number of apparently abdicable reactions is certainly due to the
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fact that only those reactions are considered as targets of the network which deliver
metabolites for the synthesis of cellular biomass. Because metabolites other than the
biomass precursors may be relevant for cellular functionality, we have calculated an
extended set of MinModes considering each of the 63 metabolites as a possible and
relevant output of the network. In this set of 58 MinModes only 6 reactions turn out to
be apparently dispensable (reactions: 5, 22, 26, 34, 49 and 52).

Figure 4. Frequency of non-zero fluxes in the 17 MinModes of the in the B-network

Inspecting the 4 MinModes of the E-network, which are equivalent to the 4 elementary
modes required for the decomposition of the global flux minimum, the only difference
between the two MinModes associated with the production of ATP and the production of
2,3DPG is the respective component referring to the particular target reaction.

Composition of flux distributions into MinModes
The MinModes represent canonical flux modes of the network supporting a single meta-
bolic output (or a group of coupled outputs, see above). In real situations the flux distribu-
tion of a cell has to assure simultaneously a multitude of metabolic functions as, for
example, the production of ATP, repair of DNA, elimination of reactive oxygen species
or the synthesis of proteins. Because these metabolic functions must be controlled inde-
pendently in the cell, it is straightforward to postulate that the total flux distribution is a
linear combination of independent component fluxes rather than a globally optimized flux
distribution. The concept presented here of minimal flux modes is an attempt to define
those component fluxes by the following equation:
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v MMd i≈∑α i
i

(5)

Here MMi denotes the MinMode supporting the flux 1 (flux unit) through the i-th target
reaction and the numerical value of the (dimensionless) coefficient ai corresponds to the
actual flux. For example, applying the linear combination (4) of MinModes to the B-net-
work, the coefficient agly that is multiplied with MMgly, the MinMode for the production of
the biomass precursor glycine (Gly), is put to 13.4 as the measured flux of glycine into
biomass amounts to 13.4 flux units.

To check the feasibility of the MinMode decomposition we compared the resulting flux
distribution vd (=MinMode decomposition) with the global flux minimum and with observed
flux values. For the B-network, Fig. 5 depicts the values of the individual fluxes predicted
by the MinMode decomposition and those of the global flux minimum.

Figure 5. Comparison of flux values of the global flux minimum of the B-network
(regular numbers) with flux values obtained by MinMode composition (italic num-
bers). Equal flux values in both approaches are displayed only once (grey/italic). All
metabolites fed into biomass synthesis by target reactions are depicted with green/
italic letters.
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Obviously, the larger the target flux with which a precursor metabolite enters the biomass
the higher the influence of the corresponding MinMode in the combination. In the B-
network, the ATP consumption for biomass formation has a large impact. In contrast to
an “along the way” synthesis of ATP in the global flux minimum, the MinMode MM78

exclusively provides ATP. This makes it plausible, why the MinMode composition predicts
somewhat higher fluxes for ATP synthesis. Minor differences in the flux pattern occurred
for reactions of the H4MPT-cycle, transhydrogenase, NDP kinase, and reactions of alter-
native pathways that work with different cofactors, as for example the conversion of PEP
into malate (reactions 18, 19, 45 and 42, 43) or from methylene-H4MPT into methenyl-
H4MPT (reactions 8 and 9). All flux differences can be accounted for by differences in the
production, conversion or dissipation of energy. To further check the feasibility of the
MinMode composition we compared it with measured fluxes [24]. For 18 out of 21 reac-
tions the fluxes predicted by the MinMode composition are in good accordance with the
experimental data (Fig. 6A). In the cases of malic enzyme, malate dehydrogenase, PEP
carboxylase, and pyruvate kinase, significant differences between predictions and observa-
tions occurred. Noteworthy, the remaining flux discrepancies are even smaller than those
with respect to the global flux minimum.
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Figure 6. A.. B-network. Scattergram illustrating the correlation of experimental flux
values [24] with flux values predicted by MinMode composition. Significant devia-
tions between experimental flux values with flux values predicted by global optimiza-
tion are displayed in grey.B. E-network. Scattergram illustrating the correlation of
flux values calculated by means of a kinetic model [30] with flux values predicted by
MinMode composition.

To check the feasibility of the MinMode composition for the E-network we compared the
predicted fluxes with those calculated by means of a validated kinetic model [30]. Figure
6B reveals an almost perfect prediction for the larger fluxes and acceptable deviations for
the small fluxes. Taken together, the quality of flux predictions based on the MinMode
decomposition was equivalent with the quality achieved by global optimization [31].

Similarity analysis of MinModes
Vectors forming a basis in strict mathematical sense have to be orthogonal, i. e. independent
from each other. This criterion does not hold for MinModes. As demonstrated above with
the MinModes of the E-network, MinModes belonging to different metabolic outputs, e. g.
production of ATP and 2,3DPG, may be very similar. Thus it is practically impossible to
conclude from observed changes of fluxes, which of the two target fluxes have changed.
Therefore we represent those MinModes exhibiting a strong similarity by a single Principal
MinMode and we use the smaller set of such Principal MinModes for the decomposition.
To quantify the similarity of two MinModes, Pearson's correlation coefficient turns out not
to be a reliable measure because the components of flux vectors are not normally distrib-
uted (they contain many zero-fluxes and many tightly related flux values owing to the flux-
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balance conditions). We decided to quantify the similarity between two arbitrary flux
modes MM and MM' by a similarity index (si) defined as the (relative) number of compo-
nents having the same sign in both modes:

si MM MM
N

MM MM MM MM
r

i i
i

N

i i

r

, , , ,' ' '( ) = ( ) ( ) =
=
∑1 1

1

ρ ρ  
 if sgn(MMi )) sgn( )'=⎧

⎨
⎩

MMi

0 else
(6)

In Equation 6, sgn(x) denotes the sign-function (sgn(x) = +1, -1 or 0 if x > 0, x < 0 or x = 0).
The sum in Equation 6 runs over all components except those two referring to the target
fluxes generating the two MinModes MM and MM', respectively. The similarity indices
form the (symmetric) MinMode similarity matrix of MinModes. Figure 7 shows the Min-
Mode similarity matrices for the two exemplary networks. Values larger than the arbitrarily
chosen threshold value of 0.9 (i. e. 90% of the fluxes in the two

Figure 7. Similarity matrices for the MinModes of the B- and E-network.
Similarity between two MinModes was assessed by the similarity index (si) defined in
Equation 5. si-values larger than 0.9 are indicated in grey.

MinModes under comparison are either both zero or point in the same direction) are marked
in grey. We note that three pairs of MinModes calculated for the B-network exhibit perfect
similarity (si = 1). For example, the MinModes associated with the production of the me-
tabolites Glc6P and PentoseP do not differ either in the zero fluxes or in the directionality
of the non-zero fluxes. Plotting the components of these two MinModes against each other
also reveals strong similarity (Fig. 8A). This is due to the fact that the pentose phosphates
are formed in the pentose phosphate pathway which branches from glucose-6-phosphate,
i. e. production of pentose phosphates necessarily involves the production of glucose-6-
phosphate.
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Figure 8. Scattergram illustrating the correlation between the MinModes for the
formation of Glc6P and pentoseP.

The important point is, however, that with methanol as carbon source a large part of the
network is used to produce glucose-6-phosphate. In contrast, in the E-network with glucose
as substrate only two reactions are needed (Glct and HK) to form glucose-6-phosphate. As
a consequence, the two MinModes associated with the production of Glc6P and PentoseP
are completely different (Fig. 8B). This shows that the similarity of two MinModes asso-
ciated with the production of a given pair of metabolites depends strongly upon the
architecture of the network and the available extracellular substrates. From the two simi-
larity matrices shown in Fig. 7 we can identify those target fluxes which are simultaneously
affected by changes in the level of active enzymes. For example, in the case of ATP and
2,3DPG we will not be able to discriminate which cellular requirements have changed with
respect to those two target functions by only inspecting the internal fluxes.
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Based on the similarity matrix, MinModes can be grouped into clusters encompassing all
MinModes with sufficiently high mutual similarity. Figure 9 shows the result of a cluster
analysis of the MinModes for the B-network, performed by using the furthest neighbour
method, i. e. measuring the overall similarity of all MinModes assembled in a cluster by the
smallest pair-wise similarity index.

Figure 9. Dendogram illustrating the clustering of MinModes for the B- and E-net-
work.
Cluster analysis was performed on the basis of the similarity matrices shown in Fig. 7
using the closest neighbour method, i. e. the smallest similarity index for all pairs of
MinModes falling into one cluster is larger than the critical value indicated on the
horizontal axis.

Extraction of Principal MinModes
Using MinModes for the decomposition of flux distributions it seems feasible to represent
those MinModes comprising a large degree of similarity by a single Principal MinMode.
Principal MinModes exhibit a lesser degree of similarity and thus allow a more unambig-
uous decomposition. To this end, we have to define a cut-off value (sic) for MinMode
similarity. MinModes assembled in a cluster possessing a cluster similarity larger than this
cut-off value are lumped together (as a linear combination of its elements) to a single
Principal MinModes (PMMs). Note that Principal MinModes does not satisfy the Min-
Mode definition. Further Principal MinModes are given in terms of those MinModes which
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do not fall into clusters with sufficiently high cluster similarity. The Principal MinModes
obtained by this procedure for the two exemplary networks at a cut-off value of sic= 0.9 are
depicted in Fig. 10.

Figure 10. Definition of Principal MinModes.
MinModes falling into clusters with minimal similarity of 0.9 (see Fig. 9) have been
lumped into a single Principal MinMode.

There are 10 PMMs (instead of 17 MMs) for the B-network and 3 PMMs (instead of 4) for
the erythrocyte network. Obviously, the number of Principal MinModes depends on the
choice of the cut-off value sic for mutual MinMode similarity. At sic= 0.8 we would get
only 3 PMMs for the B-network.

Flux changes induced by changes of enzyme levels: simulated gene expression
To study the changes of stationary fluxes accompanying changes of enzyme levels we used
our comprehensive kinetic model of the erythrocyte metabolism to calculate stationary
states at various enzyme levels. Variations in the amount of an enzyme were accomplished
by varying its maximal velocity. We considered the following two extreme cases of gene
expression. Random gene expression was simulated by multiplying the actual vmax values of
all enzymes with factors randomly chosen within the interval [0.1, 10.0]. 'On demand' gene
expression (see Fig. 11 for a detailed explanation) was simulated by first changing the load
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Figure 11. Illustration of the hypothesis on optimal gene expression.
The simplistic network in panel A is composed of three monomolecular reactions. The
function of the network is to convert substrate A into two different end products C and
D. Under non-saturating conditions the fluxes are given by v1= k1 [A], v2= k2 [B] and
v3= k3 [B] whereby the rate constants k2 and k3 represent the load parameters and the
rate constant k1 is proportional to the concentration of the enzyme catalysing the first
reaction.. Metabolic steady states of the system are defined by the flux-balance con-
dition v1= v2 + v3. Thus, at fixed concentration of the substrate [A]= 1, the output
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k k
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1 2
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Panel B illustrates the dependence of the three stationary fluxes on the load parameter
k2 at fixed values k3= 5 of the second load parameter and k1= 1 of the rate constant for
the first reaction. Increasing values of the load parameter k2 result in a decrease of
flux v3 whereby the increase of flux v2 is sub-linear, i. e. the control coefficient

C
v
k2

2

2

=
∂ ( )
∂ ( )

ln
ln

of the output flux v2 with respect to the load parameter k2 is

smaller than unity. This sub-optimal behaviour becomes successively pronounced
with increasing values of k2. Optimal gene expression is hypothesized both to accom-
plish a maximal response of the output flux v2 towards changes of the load parameter
k2 such that the flux-control coefficient becomes unity, C2 ? 1, and to prevent a
change of the other (independent) output flux v3. This can be achieved by variable
expression of enzyme catalysing the reaction A ?B, i. e. adapting the rate constant k1

to the load parameters according to k1 = g (k2 + k3). The corresponding fluxes
vi

* (i = 1,2,3) in the presence of optimal gene expression are shown in panel C where-
by the proportionality constant was put g = 1/6 so that the load characteristics without
and with gene expression match at k2= 1 (indicated by the dashed vertical line).

parameter ki for target fluxes vi by a given factor h= ki'/ki where ki' is the new value of the
load parameter. This change of the load parameter implies a change of the target flux to the
new value vi' but, in general, this change is smaller than h, i. e. the flux-control coefficient

C
v
vi
i

i

=
1
η

'

of the chosen target flux with respect to the load parameter is smaller than unity.

New vmax values of all enzymes were than determined fulfilling two criteria: (i) the change
of the chosen target flux was also h-fold, i. e. the flux-control coefficient of this target flux
with respect to the load parameter was unity, Ci= 1, and (ii) the other target fluxes remained
at their initial value. This simulated mode of gene expression assures high selectivity in the
cellular response towards changes of the metabolic load.

For these two modes of simulated gene expression, changes in the steady-state fluxes were
expressed as difference between new and initial flux values and these changes were plotted
against the changes in the vmax values of the catalysing enzymes expressed as fold changes
calculated by dividing the new vmax value by its initial value. The scattergrams in Fig. 12A-
C and the associated measures of determination (R2) reveal poor correlations not only for
the random case but also for the two cases of 'on demand' gene expression optimizing the
response of the metabolic system towards an increase in the load parameters kATPase for the
energy consumption and kGSHox for the consumption of GSH. This finding is in clear
contrast to the well-known linear relationship between flux rate and enzyme activity hold-
ing for isolated reactions at fixed concentration of the reactants. In a reaction network,
however, changes in the activity of a single enzyme remain not restricted to changes in the
rate of the corresponding reaction but give rise to changes of all fluxes owing to the
coupling of the reactions through shared reactants and allosteric effectors. This way a local
perturbation of a single enzyme propagates through the whole network and the resulting
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new steady-state flux distribution depends on the specific kinetic properties of all enzymes
in the network. Hence, from the kinetic point of view, a simple correlation between changes
of enzyme levels and changes of the associated fluxes indeed cannot be expected. In the
following paragraph we propose a method to exploit information on changes of enzyme
concentrations to arrive at better predictions of flux changes in the network.
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Figure 12. Scattergram illustrating the correlation between flux changes and changes
of vmax values for the E-network. vmax values were changes either randomly (A) or
applying an 'on demand' gene expression strategy (details given in the main text).
'Observed' flux changes were calculated by using the kinetic model [30] (B) Simulated
'on demand' gene expression accompanying an increase of the load parameter kATPase

for ATP consumption by a factor of h= 2. (C) Simulated 'on demand' gene expression
accompanying an increase of the load parameter kGSHox for GSH consumption by a
factor of h= 100.

Predicting flux changes from changes of enzyme levels by using the flux decomposition
into Principal MinModes
Changes in the stationary fluxes are not independent – they are coupled through the balance
conditions which hold even if there are changes in the amount of enzymes due to variable
gene expression. For example, given that the postulated metabolic network of the erythro-
cyte is correct the fluxes through the glucose transporter (Glct) and the hexokinase (HK)
have to be equal, and the same also holds for any flux changes through these two reactions.
Looking at the data in Fig. 10 not in X ? Y direction but in Y ? X direction one would
expect the data points for Glct and HK to coincide if there was a perfect correlation of flux
changes with changes of enzyme activities. The scattergram in Fig. 12B ('on demand' gene
expression at higher energetic load kATPase) shows that the vmax changes for these two
proteins are different. Although there is no change in the activity of the glucose transporter
and even a decrease (!) in the activity of the hexokinase (HK) the flux through both
reactions has increased by a factor of about 1.2. This is a pure kinetic effect brought about
by a lowered intracellular glucose concentration due to activation (higher expression) of the
phosphofructokinase (PFK), one of the key regulatory glycolytic enzymes. This example
illustrates that some of the flux changes in the network are due to kinetic effects induces by
changes in the expression of those enzymes (as the PFK) exerting the dominant control
over the desired changes in the metabolic output of the network. Regarding the problem of
predicting flux changes from changes of enzyme levels we have to conclude that only some
of the observed changes in enzyme activities are indicative for changes of the associated
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fluxes. For the considered example, the increase in the activity of the PFK actually reflects
an increase in the flux through this enzyme whereas the unaltered activity of glucose
transporter (Glct) does not.

Let us consider the pool of correlated fluxes, i. e. which are related to each other by fixed
ratios in any conceivable flux distributions due to flux balance conditions. Given that
within this pool there exists at least one flux for which the change is not kinetically
determined but predominantly due to a change of the enzyme level. If so, it would make
sense to represent all fluxes belonging to this pool by a single representative flux and to
correlate its change with the average observed changes in the activities of the associated
enzymes. Such a constrained correlation analysis can be accomplished by approximating
the unknown vector Dv of flux changes by a linear decomposition into Principal Min-
Modes PMMi (see Equation 5) the components of which automatically obey the flux-
balance conditions:

∆ ∆v = PMMαi i
i

∑ (7)

The coefficients Dai (i = 1,2,..., number of PMMs) of this decomposition are than deter-
mined by maximizing the correlation between Dv and the observed changes of enzyme
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Here, fold-changes in the vmax values are taken as measure for changes in the enzyme
amounts. Solving the optimization problem (8) we obtain a prediction of the flux changes
in the network. The value of the coefficient Dai indicates the changes of the target fluxes
associated with the Principal MinMode PMMi. Hence, the set of coefficients Dai allow
direct inferences to be made on those changes in the metabolic output the network which
have provoked the observed changes in the enzyme levels.

This procedure was applied to the three “expression patterns” illustrated in Fig. 13A-C. The
similarity index used to extract Principal MinModes for the erythrocyte network was put to
0.9 resulting in the following 3 Principal MinModes given in Fig. 10.
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Figure 13. Scattergram illustrating the correlation between 'observed' flux changes
and flux changes obtained by maximizing the correlation between changes of vmax

values and the MinMode decomposition (6) based on the three Principal MinModes
for the E-network given in Fig. 10. The three simulated cases A-C are explained in
Fig. 11. (A) Random gene expression. Estimated values for the decomposition coeffi-
cients: Da1 = 0.08, Da2 = 0.0, Da3= 0.06. (B) 'On demand' gene expression at in-
creased load parameter kATPase. Da1 = 0.07, Da2 = 0.0, Da3= 0.0, (C) 'On demand'
gene expression at increased load parameter kGSHox. Da1 = 0.0, Da2 = 0.72, Da3= 0.0.
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Figure 13 shows the “observed” (= simulated) flux changes plotted against predicted flux
changes obtained as solution of the optimization problem (7). Even for the simulated case
of random gene expression (Fig. 13A) the concordance between predicted and observed
flux changes is surprisingly good. The values of the coefficients a1, a2 and a3 solving the
optimization problem (7) for the three cases of simulated gene expression are given in the
legend of Fig. 13. According to these values the changes in the maximal enzyme activities
for case B and C were clearly identified as resulting from an increase in either the energetic
or oxidative load.

Putting these findings together we may conclude that the proposed strategy of:

. decomposing the flux distribution into minimal flux modes

. lumping these MinModes together to redundant-free Principal MinModes,

. expressing the unknown flux changes as linear combination of Principal Min-
Modes

. and determining the unknown coefficients of this linear combination by max-
imizing the correlation with observed changes of enzyme level (=vmax values)

provides a powerful means of predicting flux changes in the metabolic network as well as
those changes in the output of the metabolic network having caused these flux changes.

Discussion

As demonstrated for the exemplary network considered herein, the projection of the global
flux-minimized steady-state solution onto the convex basis of elementary modes resulted in
a manageable set of elementary flux modes with non-vanishing coefficients. However,
these “basic” elementary modes were difficult to assign to a specific metabolic output.
Besides this, there are some further shortcomings rendering the convex basis of elementary
modes unsuitable for the decomposition of flux distributions into functionally interpretable
modes. First, the determination of the convex basis is not unique [8]. Thus, choosing
another convex basis of elementary modes, their physiological interpretation can be vastly
different [19]. Second, the coefficients for the non-negative linear decomposition are also
not unique (in our computational protocol we have chosen the coefficients with minimal 1-
norm) and thus their absolute values do not allow conclusions to be drawn with respect to
the relative importance of the various elementary modes. Third, the (subjective) decision on
reversible and irreversible reactions deeply affects the set of elementary modes and thus the
convex basis. In the B-network, 43 chemical reactions are considered irreversible. One
might argue that potentially every chemical reaction can be reversed by increasing the
concentration of the products and/or reduction of the concentration of the substrates.
Setting all reactions as reversible renders many elementary modes a priori physiologically
irrelevant. Elementary modes appearing implausible to the biochemist are, for example,
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inner cycles that operate without exchange of matter with the environment or modes
encompassing reactions with flux directions that are not in concordance with their (large)
change of standard free energy.

In this work we introduced the concept of minimal flux modes (MinModes), defined as flux
minimized steady-state flux distributions enabling the production of a single metabolite.
The production of a certain subset of metabolites defines the functionally relevant output of
the network. The introduction of MinModes means to decompose this output into separate
contributions. The flux cone spanned by the set of MinModes is a true subset of the mode
space. For the Methylobacterium model the convex dimension of the MinMode space is 17,
whereas the convex basis of elementary modes comprises 7033 vectors. The full vector
space spanned by linear combinations of the convex basis with real number coefficients has
the dimension 29. Hence the set of MinModes is not complete, i. e. an arbitrary steady flux
distribution cannot be exactly decomposed into a linear combination of MinModes. On the
other hand, MinModes are attractive because of their clear assignment to specific output
reactions. Because the MinModes are biochemically feasible, the reduced flux cone
spanned by the MinModes is also feasible as a whole, in contrast to the complete flux
cone. Elementary modes and minimal fluxes as introduced in this paper represent two
different methodological concepts that ultimately have the same goal: To decompose the
fluxes in the metabolic network into a set of more simple but physiologically relevant flux
modes. Elementary mode analysis starts with a complete set of all possible and not further
decomposable routes (“top down” approach). The resulting huge set of such elementary
modes has to be reduced to a physiologically relevant and numerically tractable set by
imposing additional constraints [17 – 19]. In contrast, minimal mode analysis starts with a
very small set of modes each of them connected with one physiologically relevant output of
the network (“bottom up” approach). Thus, the number of MinModes cannot be larger than
the number of metabolites occurring in the network. However, MinModes allow only an
approximate description of the true flux distribution as they do not form a complete basis in
strict mathematical sense. Nevertheless, the striking advantage of the MinMode concept is
its applicability to very large whole-cell networks (> 500 reactions) where the effective
handling of elementary modes can be clearly ruled out for computational reasons.

The set of MinModes can be investigated by similar methods as used for analyses based on
elementary modes. For example, the frequency with which a reaction has a non-zero flux
within the set of MinModes can be taken to rank the functional relevance of reactions in the
network. Such analyses may give insight into the evolution of metabolic networks: Reac-
tions with many non-zero fluxes in the MinModes may represent the ancient part of the
network responsible for some basal functions. This part of the network was then succes-
sively complemented by reactions and pathways connected to more specific functions and
thus being less represented in the MinModes. It has to be noted that disabling reactions with
a high number of non-zero fluxes in the set of MinModes does not necessarily lead to
lethality because besides the MinModes (being special flux distributions) alternative routes
may exist. For example, formate dehydrogenase (reaction 6) has a high participation
frequency but was shown to be not essential for growth on methanol [35]. On the other
hand, reactions which upon exclusion from the network (by setting the flux to zero) do not

121

Decomposition into Minimal Flux Modes



allow the determination of a MinMode for each output metabolite are to be considered
essential. Omitting non-essential reactions merely leads to a different pattern of MinModes.
If a mutant lacking a reaction predicted to be not essential is not able to survive or shows
reduced growing capabilities, an important physiological function of this reaction has failed
to be noticed. Therefore, relating the observed phenotype of knock-out mutants with net-
work based classifications of essential and non-essential reactions may provide a valuable
heuristics to unravel the physiological importance of metabolites.

Interestingly there are fifteen reactions of the B-network that do not contribute to any flux
mode. Assuming the synthesis of biomass precursors to be the sole cellular function of the
network, these 15 reactions should be abdicable for cellular growth using methanol as the
only carbon source. Three of these reactions contribute to the degradation of the storage
metabolite PHB. The enzymes PHB depolymerase, b-hydroxybutyrate dehydrogenase and
acetoacetate-succinyl-CoA transferase, able to catalyse the conversion of PHB into acet-
oac-CoA are not required for cellular growth. However, this holds true only for environ-
mental conditions where enough substrate is available. In a starvation phase, the apparently
dispensable PHB degradation becomes important. Another example is the aldolase reaction
converting 2 triose phosphates into Fru-1,6-BP (reaction 34). The flux through this reaction
in every MinMode is zero. Thus, synthesis of Fru-1,6-BP as an intermediate seems to be not
necessary for the fulfilment of the assumed metabolic tasks under the given environmental
conditions. There are two possible explanations for this redundancy. Either, this reaction is
required for enhanced stability and robustness of the network and is abdicable under
conditions where the enzymes catalysing alternative routes are expressed or its metabolic
task is not required under the given conditions. Or, Fru-1,6-BP is required for other
biochemical processes not considered yet, either as a reactant in reactions not included in
the network or as a regulatory metabolite. The latter explanation is very likely because
knowledge of the full spectrum of metabolites necessary to ensure all cellular activities will
be incomplete. For example, it has become known quite recently that presence of Fr-1,6-BP
is an absolute requirement for lactate dehydrogenase activity in Lactobacillus casei [36]
and a similar regulatory function of this metabolite cannot be excluded in Methylobacter-
ium extorquens. Therefore, to take into account a potential role of all metabolites in cellular
functionality a complete set of MinModes should be constructed enabling the production of
all metabolites occurring in the network. If this more systematic approach is applied, only 6
of the 15 previously unused reactions remain. In case the model is correct this redundancy
should be explained solely by network robustness to mutations and changed environmental
conditions. Mutants not able to catalyse these reactions should grow normally. The exam-
ple of a-KG dehydrogenase (reaction 34), one of the 6 abdicable reactions, supports this
hypothesis. The enzyme catalyses the conversion of a-KG into Succ-CoA as part of the
citric acid cycle. For growth on C1 resources this cycle is partly repressed and accom-
plishes an assimilatory role [24, 37]. It could be shown that a lack of this enzyme does not
influence the growth behaviour of Methylobacterium extorquens (while growing on metha-
nol only) [38]. Thus, the classification of reactions into those which are essential and non-
essential has to be considered with precaution because such a classification depends
strongly upon the specific external conditions as well as on the knowledge of the physio-
logical functions that metabolites or reactions may have.

122

Hoffmann, S. et al.



One may wonder whether the proposed computational approach to construct optimal flux
distributions for each output variable of the network is more or less feasible than the
calculation of an optimized flux distribution meeting all target flux simultaneously. The
good concordance between experimentally determined fluxes and calculations based on
MinMode compositions (see Fig. 6) may suggest that optimization of metabolic networks
with respect to single target reactions has been an important goal of natural evolution.
Considering that the relative importance of target fluxes may vary depending on the
specific external conditions of the cell (at the extreme one target reaction as, for example,
the production of glutathione in the presence of oxidative stress, might transiently over-
shoot all others) such a strategy appears to be not implausible because it allows indepen-
dent regulation of different metabolic outputs. Moreover, adding new reactions (and thus
functionality) to an already existing network during the course of natural evolution should
not comprise already achieved optimality. Of course, it is too early to make a sound
judgment, so that further applications of the proposed methods to other, more complex
networks are needed. Based on the same assumption of a minimized total sum of fluxes, the
flux distributions obtained by global and single target optimization show of course only
little differences. Thus the new approach results in a flux distribution that is just as good as
the one obtained by the previous approach. The Minimal Flux Modes 11 few differences
can be illustrated by a simple network (Fig. 14A), consisting of 5 reactions v1,v2,v3,v4,v5
where v4 and v5 are considered as target reactions. Two minimal flux modes can be
calculated for this network. For the MinMode that produces metabolite A by realizing the
flux v4 = 1, we obtain the MinMode ~v =(10010), whereas for the realization of the flux
v5 = 1, the MinMode is ~v =(01001). The sum of fluxes in each MinMode is 2. The combi-
nation of MinModeA and MinModeB results in the flux distribution ~v =(11011) with the
sum of fluxes being 4. The basic flux minimization approach does not presume costs for
enzyme synthesis or different activity levels for an enzyme. Therefore, demanding non-zero
fluxes through both target reactions v4 and v5 gives the same flux distribution. Thus, single
optimization and global optimization may lead to equal solutions as long as no currency
metabolites (as ATP, NADH etc.) are involved. In the case, where v4 is an ATP consuming
and v3 an ATP producing reaction (Fig. 14B), additional fluxes for ATP balancing become
necessary (v6,v7). Here, the sum of fluxes for the single optimized solution would be 4 for
MinModeA.

In combination with MinModeB the sum of fluxes is now 6. Global optimization yields a
suboptimal path for the synthesis of B that contains a non-zero flux for the reaction v3,
resulting in the vector ~v =(2011100) with a sum of fluxes equal to 5. Therefore, for a
global optimization a suboptimal (carbon) route for one metabolite can be chosen if it is of
advantage for the synthesis of another target metabolite.
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Figure 14. A simplistic network illustrating network effects which may cause differ-
ences between fluxes calculated by global minimization and MinMode decomposi-
tion.

The basic idea behind the concept of MinModes presented in this paper is to interpret the
flux distribution in a metabolic network as a superposition of various flux modes each
related to one of the many functional requirements that the cells has to fulfil simultaneously
but with different relative intensities. Hence, any metabolic status can be represented in
terms of the coefficients entering the linear combination of MinModes to the overall flux
distribution. The use of those coefficients simplifies the flux-balance approach considerably
and makes it possible to relate observed changes in metabolic fluxes directly to changes in
the functionality of the cell.

As demonstrated for the MinModes of the two exemplary networks considered, the Min-
Modes may exhibit a remarkable degree of similarity. Generally, MinModes associated with
target reactions located in close vicinity, i. e. belonging to the same pathway, should give
rise to similar MinModes. Thus, to employ MinModes as a sort of 'basic vectors' it seems
feasible to lump together similar MinModes into a single Principal MinModes. On one
hand this leads to a further reduction of the set of relevant MinModes, on the other it also
reduces the clear-cut physiological interpretation of these Principal MinModes as they are
not associated with only one target flux but a certain group of target fluxes. In this article
the definition of such Principal MinModes was accomplished by clustering the MinModes
on the basis of a similarity index that counts the number of pair-wise fluxes pointing in the
same direction or being zero. As with any statistical procedure, it is finally left to the user
to define the minimal degree of similarity that has to be present among all MinModes
lumped together to a single Principal MinModes.

In the last part of this article we have used the decomposition of flux changes into Principal
MinModes to predict changes in metabolic flux rates from observed changes of enzyme
levels. It has to be noted that these results are based on simulated 'gene expression'
experiments where we changed the maximal activities of erythrocyte enzymes and calcu-
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lated the associated flux changes by means of a comprehensive kinetic model available for
the E-network. These simulations required some a priori assumptions to be made about the
regulatory principles underlying variable gene expression. These principles are still widely
unknown. However, there is increasing theoretical and experimental evidence [39, 40] that
temporal gene expression is an important means of cells to adapt their protein synthesizing
capacity to changing external conditions such that the required metabolic output is achieved
with high efficiency. This plausible strategy was the rational behind the simulations of 'on
demand' gene expression which assures a high response of the network to changes in the
demand of specific target reactions whereas the fluxes through other target reaction are
kept at constant values. As expected, for the both extreme cases – random and 'on demand'
gene expression – there was no significant correlation between changes in enzyme activ-
ities and changes in flux rates through the corresponding reactions. This theoretical finding,
questions the naive interpretation of changes in gene expression profiles as to directly
reflect changes in the activity of the underlying pathways.

Using the MinMode decomposition of the unknown flux changes as a side constraint and
determining the coefficients of this decomposition to provide a maximal correlation with
observed changes of enzyme activities, we obtained a significantly better prediction of flux
changes. A further benefit of this strategy is that the values of the coefficients directly
indicate the changes in the target fluxes that have elicited the changes in enzyme activities.
This way it should be possible to make inferences on the functional strategy of cells just
employing information of changes in enzyme levels.

Table 2. Model scheme and the corresponding minimal flux modes (MinModes) of
the E-network.
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Abstract

Modelling, simulation and computational analysis have become im-
portant tools in modern biochemistry. Moreover, their tight integration
with experimental approaches has become an integral part of systems
biology which has attracted scientific and political interest all over the
world. However, published enzymatic data often does not take a
modeller's viewpoint into account, even though in many cases this
would only demand minor adjustments and would serve the commu-
nity a great deal. Supporting users by automating some of the steps in
modelling and simulation adds even more requirements. In the follow-
ing we would like to emphasize a few points that we feel should be
further supported or that have been neglected in the discussion about
the standardization of enzymatic data, but would be valuable for
modellers.

Introduction

Even though computational biochemistry is a quite ancient part of life sciences, its impact
and importance for experimental research has not been acknowledged until recently. The
recent interest obviously stems from the fact that the sheer complexity of the biochemical
network in a living cell (as opposed to simple isolated enzymatic reactions) calls for
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computational help. Thus, today systems biology is understood as the tight integration of
computational and experimental research in order to understand biochemical systems in
their entirety.

In order to set up decent biochemical models we rely heavily on data from experiments and
from previous modelling, especially kinetic data. However, the way this data has been
published in the past is often lacking information crucial for the set-up of models. This has
been recognized recently and discussed at the previous ESCEC meeting. In addition, the
more frequent use of modelling techniques and the increasing size and complexity of
models has led to the development of software tools that support users in the process of
modeling, e. g., Pedro Mendes' group (VBI) and our group have developed COPASI (http://
www.copasi.org) which offers a user-friendly, platform independent facility to set-up mod-
els, and to simulate and analyse them. In the course of developing the software as well as
when performing modelling studies ourselves, we have encountered many problems with
the published enzyme kinetic information. Most of that has been thoroughly and exten-
sively discussed during the previous meeting.

However, we feel that some problems still have been neglected or at least are under-
estimated and we would like to point these out in the following.

Specific Problems

Importance of the kinetic equation
The vast majority of kinetic data published in the literature comprises Vmax and Km values
or other individual rate constants. However, this is only part of the information necessary
for modelling the respective system. In many cases the actual kinetic equation which is
assumed or even was used to derive the published parameter (often by fitting to the
equation) is missing. Without this crucial information, the value of publishing the actual
parameter is greatly diminished. It also does not help too much if authors mention the name
of the corresponding rate-law in the text, as e. g. Bi–Bi- Ping–Pong, etc.; since these terms
are not used in an unambiguous way and therefore can be very misleading. What is actually
needed is the explicit notation of the respective equation – nothing else. This would make
sure that modellers do not have to guess which equation to use. In addition, wrong use, e. g.
using a parameter with the wrong rate law would be avoided. Just to illustrate this obvious
point a little bit further we use the following arbitrary example:
We exchange the kinetic term for the hexose transporter in a model for yeast glycolysis by
Teusink et al. The original term

is exchanged against a somewhat simpler Uni–Uni term

130

Kummer, U. and Sahle, S.



in which Keq equals one. Since product and substrate are glucose and the respective Km

values are assumed to be the same, both terms are actually quite similar. We use the same
parameters in both cases. The resulting models are analysed w.r.t. their steady state beha-
viour. This analysis is done using COPASI (http://www.copasi.org). The results are shown
in Figs 1 and 2.

Figure 1. Steady-state concentrations as computed by COPASI using the glycolysis
model of Teusink et al.
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Figure 2. Steady-state concentrations of the same model as Fig. 1 with the term for
the hexose transporter changed as explained in the text.

It is easy to see that the steady-state concentration of most variables differs by more that ten
percent. Thus, the systems behaviour is significantly changed by this minor change in
kinetics with the same parameters used. This trivial example illustrates the above said
and calls for the inclusion of the notation of the kinetic equation in the standardization of
published enzymatic data.

Finally, if a reaction involves participating species with different stoichiometries, it should
be stated clearly to which participant (substrate or product) the rate law applies (as is often,
but not always, done in literature). Preferably the rate law should be stated for a species
with unity stiochiometry.

The Vmax parameter
Another apparent (and recognized) problem is the publication of the Vmax values. Since
most studies are done in vitro the enzyme concentration contained in the Vmax is the one in
the test tube. However, modellers are usually interested in the enzyme concentration in the
living cell instead. Even though the enzyme of interest has been isolated from cellular
material in most cases, there is often not even an estimate of the amount present in the
respective life material. An estimation of the original amount often is also not possible by
calculating backwards since the results of the purification steps are not reported in suffi-
cient detail.
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In addition, instead of simply reporting the components of Vmax, namely the enzyme
concentration and the rate constant, many authors hamper the calculation of the individual
rate constant by not explicitly writing down the respective enzyme concentration in the test
tube, but rather giving the activity of the enzyme without giving amounts etc. (see unit
notation below).

All in all, this effectively turns Vmax into an unknown variable in most cases, introducing a
lot of fuzziness into the system. Of course, in many if not most cases, there can be no exact
quantificatation of the enzyme of interest in a specific cell type. This implies that parameter
estimation techniques have to be used at some point in time. However, this procedure is
obviously more reliable and much faster if the initial values are good guesses. These
estimates could be very well provided in the primary literature.

Reversible rate laws
The notation of reversible rate laws is another, albeit less severe problem. Reversible rate
laws do not pose any problem when models are written down using ordinary differential
equations (ODEs). Forward and backward flows of a reversible reaction can cancel each
other out so that the overall rate can be given as a single expression. Depending on the
concentrations of the substrates and products the rate can be positive or negative, it is zero
if the reaction is in equilibrium.

However, when modelling biochemical systems containing only relatively low numbers of
the participating compounds, e. g. because of volume limitations (e. g. in vesicles) or
because of functional necessity (e. g. signalling), we often have to refer to stochastic
methods on discrete particle basis [1]. In the stochastic modelling and simulation frame-
work each reaction is characterized by a reaction probability (instead of a reaction rate). A
stochastical simulation works as follows: first the probabilities of all reactions are calcu-
lated. These depend on the concentrations of the species that take part in the reactions.
Then, taking into account the probabilities of all the reactions, it is determined which
reaction will take place next and at which point of time this will happen. This is done by
drawing random numbers from a random number generator. The chosen reaction is then
“executed” by increasing the particle numbers of the corresponding product species and
decreasing the particle numbers of the substrates. So far one single reaction step was
simulated. The whole process is repeated.

This stochastic simulation process ensures that the effects of discreteness (the fact that
particle numbers are always integers) and the effects of stochasticity (the single reaction
events happen at random points of time) are considered.

Concerning the relation between reaction rates and reaction probabilities it is clear that
reaction rates can also be expressed as an average number of reaction events happening in a
unit of time. This in turn can easily be translated into a reaction probability. Thus in many
cases (and under certain conditions) the traditional rate laws and kinetic parameters can be
utilized for stochastic simulations. A problem occurs, however, if the rate law describes a
reversible reaction. Consider for example a reversible reaction in equilibrium. The net rate
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is zero, which means that substrate and product concentrations do not change due to this
reaction. It does not matter that in reality many reaction events in both direction take place.
In the stochastic simulation however every single (forward and backward) reaction event
needs to be simulated. Since the reactions are random, this leads to fluctuations around the
equilibrium. For some short time more forward reaction events may happen, after that more
backward reaction events occur. Only as an average over some time the reaction rate is
zero. Therefore, separate rate laws for the forward and backward part of the reactions need
to be available.

Thus, if rate laws are given for reversible reactions these terms have to be dismantled
which is of course possible to do manually. Due to the increasing size of biochemical
systems modelled and the reuse of parts of a model in other models, an automatization of
this process however would be useful. Thus, e. g. COPASI contains a preliminary tool
which is able to dissect reversible reactions automatically into forward and backward
reactions (Fig. 3), but right now (apart from the trivial mass action case) the respective
kinetics have to be adjusted by the user.

Figure 3. Screenshot of COPASI demonstrating the tool that renders reversible reac-
tions into two irreversible reactions. The two windows show the list of reactions
before and after the conversion.

Simultaneous and combined use of different simulation methods would be facilitated if rate
laws were either written down individually (for forward and backward reactions) or written
down in such a way that they can easily be dismantled automatically by computer pro-
grams. Thus, if the forward reaction rate is simply the first term of the numerator divided
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by the denominator and the backward reaction rate is the second term of the numerator
divided by the denominator as in the following example, an automatic dismantling is
relatively simple, irrespective of e. g. brackets in this term.

An example taken from Holzh�tter et al. [2] as stored in JWS online [3]:

However, another example from the same paper as stored in the database shows a case
where this is not as simple:

Coherent unit notation
Problems with unit notations are mostly associated with the notation of enzymatic activities
and concentrations. It is still common to use units like e. g. “activity per mg freshweight”.
As pointed out above, reuse of the respective kinetic data makes it necessary to compute
the enzyme concentration in the assay. In order to do so, one has to gather all information
from the text (if at all possible) about molecular weight, purity etc. This can be quite
cumbersome and is probably done multiple times by different people in the community.
Instead, it will be much easier if authors do this right away and provide the respective
information in the original text.

Conclusions

Computational biochemistry relies more and more on tools that automate and facilitate
individual steps in the setting up of models and their computational analysis. In addition to
the general requirements of the modelling community, this development adds stronger and
different requirements w.r.t. published enzymatic data. Some of these have been discussed
above. We hope that enzymatic databases like SABIO-RK [4] and BRENDA [5] will also
help by being a useful intermediate layer of information between the primary literature and
the modeller being able to curate enzyme kinetic data in such a way that some of the above
problems will be resolved.
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Abstract

The need to exchange and integrate models drove the community to
design common data format such as SBML. However, as important as
was the definition of a common syntax, we also need to tackle the
semantics of the models. The community recently proposed MIRIAM,
the Minimal Information Requested in the Annotation of Models, a set
of rules for curating quantitative models of biological systems. This
standard lists the condition an encoded model has to meet to fully
correspond to its reference description, and describe how to annotate
each of its components. The Systems Biology Ontology (SBO) aims
to strictly index, define and relate terms used in quantitative model-
ling, and by extension quantitative biochemistry. SBO is currently
made up of five different vocabularies: quantitative parameters, parti-
cipant roles, modelling frameworks, mathematical expressions – that
refers to the three previous branches – and events. SBO can be used
not only to annotate quantitative models, but also biochemical ex-
periements. It is expected that the adoption of those two semantic
layers will favour the reusability of quantitative biochemical descrip-
tions, whether parameters or models.
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Introduction

Until very recent times, life science coped extremely well with fuzzy semantics, and that
for very sound operational reasons. Except for hard-core biochemists and pharmacologists,
concepts like Kd, Kp, EC50 etc. were globally known as inversely proportional to the
“affinity”, and it was sufficient to have a sensible discussion about biological processes.
The Molecular Biology era reinforced even further that trend, by shifting the general
interest from quantitative to qualitative description of physiology. Moreover, when quanti-
tation nevertheless sneaked in, the results were quite often expressed as relative rather than
absolute values. Typically it was the measurement in a mutant or upon a perturbation,
normalised over the same measurement in a wild-type animal, or in unperturbed condition.
With the notable exception of the sequence and structure of macromolecules, biologists
were not really supposed to store and exchange experimental results, but rather to build on
the interpretation of data provided by the authors themselves, who were judged the best
suited to analyse it.

Then entered Functional Genomics. The large genome projects had demonstrated that it
was possible to produce experimental data on a large scale, with a quality control that far
surpassed the standards of isolated academic group [1]. New technologies now promised to
allow a similar large-scale generation for more functional types of data. However, those
technologies were complex and very expensive. As a consequence, the workforce and
degree of expertise needed to put them in application meant that single research groups
could not longer run their own data production. And the costs of experiments also meant
that each dataset should be produced in a limited number of replicates. Biologists finally
had to store and exchange raw data. Despite scale of the datasets, continuous improvements
of computing power offered biologists efficient tools to perform the necessary archival/
retrieval procedures.

The second shock came from the rise of Systems Biology, which increased the general
awareness not only to modelling and simulation of biological processes, but also to quan-
titative biology in general. As a consequence, what was once the territory of a small
population of specialists is now visited by various actors of biomedical research. In parallel,
the formal models used in biology are growing, both in size and complexity. A given
modeller is therefore less likely to be an expert of all the corners of a quantitative model,
whether the biological knowledge or even the mathematical approaches.

This need for quantitative data of high quality calls for a shift of paradigm in the way
experimental parameters are exchanged and re-used, but also theoretical concepts handled.
There is no point to exchanging quantitative data or models if nobody can understand the
meaning of the data and the content of the models beside their initial generators. The
community has to define agreed-upon standards for kinetic data generation and curation,
so that the experimental measurement can be safely reuse. Controlled vocabularies, where
concepts are related one to the other, must be designed for annotating quantitative models
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with connections to biological data resource. Finally, one needs to integrate modelling
work with the other sources of knowledge, and disseminate the large number of models
produced.

To offer a possible answer to those issues, the BioModels.net initiative was launched in
2004 by Michael Hucka, Andrew Finney and the author. BioModels.net
(http://biomodels.net) is an international effort to (1) define community standards for model
curation, (2) design controlled vocabularies for annotating models with connections to
biological data resources, and (3) provide a free, centralised, publicly-accessible database
of annotated, computational models in SBML and other structured formats. In this paper we
will describe two resources belonging to the first and second classes. The third objective
has been tackled with BioModels Database [2] (http://www.ebi.ac.uk/biomodels/)

Minimal Information Requested in the Annotation of

Biochemical Models

Searching for existing models relevant to a specific problem, a scientist comes across a
model named Model1, describing the reactions rA and rB between the molecular compo-
nents X and Y.
What can we make of this model? Where does this model come from? What are exactly the
components X and Y in molecular or cellular terms? It could help a lot to know what
biological process is modelled by rA and rB. Providing one finally elucidates the origin of
the model, and the identity of its components, how can we know that when instantiated, this
model will provide the correct numerical results?

The aim of MIRIAM [3] is to define processes and schemes that will increase the con-
fidence in model collections and enable the assembly of model collections of high quality.
The first part of the guidelines is a standard for reference correspondence, dealing with the
syntax and semantics of the model. A second part is an annotation scheme, that specifies
the documentation of the model by external knowledge. The scheme for annotation can
itself be further subdivided into two sections. The attribution covers the minimum informa-
tion that is required to associate the model with a reference description and an actual
encoding process. The external data resources covers information required to relate the
components of quantitative models to established data resources or controlled vocabularies.

The aim of standard for reference correspondence is to ensure that the model is properly
associated with a reference description and is consistent with that reference description.
The reference description can be a scientific article, but also any other unique publication,
on print or online, that describes precisely the structure of the models, list the quantitative
parameters, and described the expected output. In order to be declared MIRIAM-compliant,
a quantitative model must fulfil the following rules:
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1. The model must be encoded in a public, standardised, machine-readable format
such as (but not restricted to) SBML[4] or CellML[5].

2. The model must be clearly related to a single reference description. If a model is
derived from several initial reference descriptions, there must still be a unique
reference description that references a set of results that one can expect to
reproduce when simulating the derived/combined model.

3. The encoded model structure must reflect the biological processes listed in the
reference description (this correspondence is not necessarily one-to-one).

4. Quantitative attributes of the model, such as initial conditions and parameters, as
well as kinetic expressions for all reactions, have to be defined, in order to allow
to instantiate simulations.

5. The model, when instantiated within a suitable simulation environment, must be
able to reproduce all results given in the reference description that can readily be
simulated.

In order to be confident in re-using an encoded model, one should be able to trace its origin,
and the people who were involved in its inception. The following information should
always be joined with an encoded model:

. A citation of the reference description with which the model is associated, either
as a complete bibliographic record, or as a unique identifier, Digital Object
Identifier (http://www.doi.org), PubMed identifier (http://www.pubmed.gov),
unambiguous URL pointing to the description itself etc.

. Name and contact information for the creators, that is the persons who actually
contributed to the encoding of the model in its present form.

. The date and time of creation, and the date and time of last modification.

. A precise statement about the terms of distribution. The statement can be any-
thing from “freely distributable” to “confidential”. MIRIAM being intended to
allow models to be communicated better, terms of distribution are essential for
that purpose.

The aim of the external data resources annotation scheme is to link the components of a
model to corresponding structures in existing and future open access bioinformatics re-
sources. Such data resources can be, for instance, database or ontologies. This will permit
not only the identification of model components and the comparison of components be-
tween different models, but also the search for models containing specific components.

This annotation must permit to unambiguously relate a piece of knowledge to a model
component. The referenced information should be described using a triplet {“data-type”,
“identifier”, “qualifier”}.
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. The “data-type” is a unique, controlled, description of the type of data, written as
a Unique Resource Identifier. The URIs can be expressed as a Uniform Resource
Locator, e. g. http://www.uniprot.org/ or a Uniform Resource Name, e. g.
urn:lsid:uniprot.org. They have no physical meaning, and if expressed as an
URL, does not have to correspond to an existing website. For instance the URI
representing the enzyme classification is http://www.ec-code.org/.

. The “identifier”, within the context of the “data-type”, points to a specific piece
of knowledge. For instance 2.7.11.17 for a calcium/calmodulin regulated protein
kinase.

. The optional “qualifier” is a string that serves to refine the relation between the
referenced piece of knowledge and the described constituent. Although MIRIAM
standard does not impose any restriction on the use of qualifiers, biomodels.net
nevertheless provides predefined qualifiers, described below.

Such a triplet can easely be exported later using the Resource Description Framework
(http://www.w3.org/RDF/), to ease further automatic treatment. RDF is at the core of what
is called “Semantic Web” (http://www.w3.org/2001/sw/), and one of the basic technologies
that enables modern data interoperability in life science [9]
The following qualifiers are examples that can be used to characterize model components:

[is] The modelling object represented by the model component is the subject of the
referenced resource. For instance, this qualifier might be used to link the encoded model
to a database of models.

[isDescribedBy] The modelling object represented by the component of the encoded model
is described by the referenced resource. This relation might be used to link a model or a
kinetic law to the literature that describes this model or this kinetic law.

The following qualifiers are examples that can be used to characterize the biological entity
represented by model components.

[is] The biological entity represented by the model component is the subject of the refer-
enced resource. This relation might be used to link a reaction to its exact counterpart in
KEGG or Reactome for instance.

[hasPart] The biological entity represented by the model component includes the subject
of the referenced resource, either physically or logically. This relation might be used to link
a complex to the description of its components.

[isPartOf] The biological entity represented by the model component is a physical or
logical part of the subject of the referenced resource. This relation might be used to link
a component to the description of the complex is belongs to.
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[isVersionOf] The biological entity represented by the model component is a version or an
instance of the subject of the referenced resource.

[hasVersion] The subject of the referenced resource is a version or an instance of the
biological entity represented by the model component.

[isHomologTo] The biological entity represented by the model component is homolog, to
the subject of the referenced resource, i. e. they share a common ancestor.

[isDescribedBy] The biological entity represented by the model component is described by
the referenced resource. This relation should be used for instance to link a species or a
parameter to the literature that describes the concentration of the species or the value of the
parameter.

Figure 1: Example of the entry in MIRIAM database describing the Enzyme
Classification.

To enable interoperability, a set of standard valid URIs has to be maintained, and tool
provided to automatically retrieve valid URL(s) corresponding to a given URI. This is the
purpose of MIRIAM Database and the associated Web Services (http://www.ebi.ac.uk/
compneur-srv/miriam/).

MIRIAM is maintained at the EBI using an open relational database management system
(MySQL) and a web application using a free implementation of Java Server Page (servlet
container Apache Tomcat http://tomcat.apache.org/). Each entry of the database contains a
diverse set of details about a given data-type: official name and synonyms, the URIs (URL
and/or URN forms), patterns of identifiers, links to documentation documentation etc. In
addition, each data-type can be associated with several physical locations. An example is
shown on figure.
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Users are able to perform queries such as retrieving valid physical locations (URLs)
corresponding to a given URI (physical location of a generic data-type or of a precise
piece of knowledge), retrieving all the information stored about a data-type (such as its
name, its synonyms, links to some documentation etc.). Moreover, a programmatic access
through Web Services http://www.w3.org/2002/ws/ (based on Apache Axis
(http://ws.apache.org/axis/) and SOAP messages [10]) allows a software not only to re-
solved model annotations, but also to generate the correct URIs based on resource name
and accession numbers.

For instance, a software generating content needs to annotate an enzymatic activity: The
query getURI(”enzyme nomenclature”, ”2.7.11.17”) returns the result
http://www.ec-code.org/#2.7.11.17. Conversely, an interface to a database of enzymatic
activity needs to generate an hyperlink: The query getDataEntries(\)http://
www.ec-code.org/#2.7.11.17\)) returns the result (at the time of redaction of
this chapter) http://www.ebi.ac.uk/intenz/query? cmd=SearchE-
C&ec=2.7.11.17, http://www.genome.jp/dbget-bin/www_bget?
ec:2.7.11.17,http://us.expasy.org/cgi-bin/nicezyme.pl?
2.7.11.17.

Dozens of other methods are available to interact with the database and make the most of
annotations.

Systems Biology Ontology

Whilst many controlled vocabularies exist that can directly be used to relate quantitative
models to biological knowledge, there were no classification of the concepts themselves
used in quantitative modelling. BioModels.net partners recognized that several additional
small controlled vocabularies were required to enable the systematic capture of information
in those models started to develop their own ontology.

The word ontology is defined here in its information science meaning, as a hierarchical
structuring of knowledge. In our case, it is a set of relational vocabularies, that is a set of
terms linked together. Each term has a definition and a unique identifier. Those ontologies
have seen their role in structuring our knowledge growing steadily in life science over the
last few years. The most famous ontology in life-science is Gene Ontology (GO) [11]. They
have actually been used by life scientists for a while, also not recognised as such. The most
obvious examples are the various taxonomies, of organisms, of sequences families or of
protein domains. Less apparent is the fact that other biochemical knowledge management
frameworks, such as the Enzyme Classification, also fulfill many of the criteria necessary
to qualify as an ontology.
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One of the goals of the Systems Biology Ontology (SBO, http://www.ebi.ac.uk/sbo/) is to
facilitate the immediate identification of the relation between a model component and the
model structure. SBO is currently made up of five different vocabularies (Figure 2). Within
a vocabulary, the terms are related by “is a” inheritances, which represent sub-classing.

Figure 2: Partially unfolded view of SBO tree. Highlighted are the terms we use in
the example described in the text.

1. A controlled vocabulary for parameter roles in quantitative models. This CV
includes terms such as “forward unimolecular rate constant”, “Hill coefficient”,
“Michaelis constant” etc.

2. A taxonomy of the roles of reaction participants, including the following terms:
“catalyst”,

3. “substrate”, “competitive inhibitor” etc.

4. A list of modelling framework, that precises how to interpret a mathematical
expression, such as “deterministic”, “stochastic”, “boolean” etc.

5. A classification of mathematical expression used in biochemical modelling. In
particular this controlled vocabulary contains a taxonomy of kinetic rate equa-
tions. Examples of terms are “mass action kinetic”, “Henri-Michaelis-Menten
kinetics”, “Hill equation” etc.
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6. A branch containing the classification of events represented by biochemical
models, such as “binding”, “transport” or “degradation”.

Each SBO term is made up of a stable identifier, a name, a definition, synonyms, a list of
parentages, comments, and, for the mathematical expression branch, an equation. The
identifier is a unique string that is never deleted once it is created. If a term needs to be
suppressed, it is made child of the “obsolete” branch of the corresponding vocabulary. The
name is unique in the ontology, but can change over time. The parentages are of two types,
a subclassing (or subsumption or hyponymy) “Is A”, and a dissection (or meronymy) “Part
Of”. Contrarily to other ontologies such as Gene Ontology, the latter is used only to link
direct children of the root (the five vocabularies).

As an example, the term describing Briggs-Haldane kinetics is described on figure 3.

The annotation of quantitative model components with SBO terms will be an essential step
to reach MIRIAM-compliance. Such an annotation will add the layer of semantics neces-
sary to link mathematical representations of biochemical models encoded in SBML or
CellML with graphical notations such as the Systems Biology Graphical Notation
(http://www.sbgn.org/), or semantically enriched computing formats to represent biochem-
ical knowledge such as BioPAX [12] (http://www.biopax.org). SBO will enhance our
capacity to understand and to programmatically analyse models. Finally, SBO will also
power the search strategies used by the databases of models and kinetics. In the following
we present some examples of SBO use.

SBO to Discriminate between Implicit Hypothesis

The conversion between a continuous and a discrete modelling framework sometimes
requires the transformation of a unique complex rate-equation into the description of
several elementary reactions. The complex rate-equation has been generally derived using
hypothesis that most often are not explicit from the equation itself. As an example, let's
consider the case of a simple irreversible unireactant enzyme catalysis. The transformation
of a substrate S into a product P by an enzyme E as been formalised by Victor Henri in
1903 [13] and later by Leonor Michaelis and Maud Menten in 1913 [14] as following the
kinetic law:

[Term]
id: SBO:0000031
name: Briggs-Haldane equation
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def: ”Rate-law presented in ”G.E. Briggs and J.B.S. Haldane (1925) A note on the kinetics
of enzyme action, Biochem. J., 19: 339 – 339”. It is a general rate equation that does not
require the restriction of equilibrium of Henri-Michaelis-Menten or irreversible reactions of
Van Slyke, but instead make the hypothesis that the complex enzyme-substrate is in quasi-
steady-state. Although of the same form than the Henri-Michaelis-Menten equation, it is
semantically different since Km now represents a psudoequilibrium constant, and is equal
to the ratio between the rate of consumption of the complex (sum of dissociation of
substrate and generation of product) and the association rate of the enzyme and the sub-
strate.
mathml:

Figure 3: SBO term describing Briggs-Haldane kinetics using the OBO flat format

kcatx[E] is equal to the experimental maximal velocity, and KS corresponds to the experi-
mental substrate concentration required to reach half-maximal velocity. Henri-Michaelis-
Menten mechanism assumed an underlying set of three elementary reactions:

In addition, those authors supposed a fast equilibrium between the enzyme/substrate com-
plex and the free enzyme and substrate. As a consequence, KS=koff/kon

One year later, Donald Van Slyke and Glenn Cullen [15] proposed another explanation
based on two successive and irreversible reactions:
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Although the microscopic mechanism is different, the general form of the velocity is
equivalent. However, the constant, equivalent to KS, is now K=kcat/kon.
Finally, in 1924, George Edward Briggs and John Burdon Sanderson Haldane generalised
the mechanism than Michaelis and Menten described, releasing the hypothesis of fast
equilibrium. Instead they replaced it with the famous quasi-steady-state approximation
for the enzyme/substrate complex. The velocity follows yet again the same rate-law.

However, K k k
k

m
off cat

on
= +

.

Now let's say we come accross a model describing a reaction using the Henri-Michaelis-
Menten equation. Here is the SBML description of the reaction:

[SBML code]
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There are several situations where we have to develop an elementary step equivalent,
instead of using directly the combined non-linear version. For instance, we cannot use
such a rate-law when the condition of substrate excess is not met or the total concentration
of enzyme varies significantly. Another situation is the use of stochastic simulation tools.
First, we have to create first an extra species ES. Then we have three possibilities for the
reaction scheme.

With k K koff m on= × .

With k K
k

on
m

cat
= .

With k K k koff m on cat= × −

The second case is determined. In the first and third cases, one of the parameters has to be
estimated, either from external knowledge or using a parameter estimation procedure1.

If the model description is provided without additional information, there is no way to
choose between the three alternatives. On the contrary, the annotation of the model is
sufficient, not only to help us to decide between the three alternatives, but also to auto-
matically convert the parameters and the rate-laws. Note the absence of MathML descrip-
tion of the rate-law in the kineticLaw element, unecessary in this case. Since all the
parameters are local, a software can reconstruct the the rate-law by matching the SBO
term reference on species, parameters and kineticLaw with the ones on the bvar of the SBO
term MathML:
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1 kon was choosen as the unknown, because it does not truly depend on the characteristics of the
enzymatic reaction. Instead, it depends only on the environment (molecular crowding, viscosity)
and scales with the square-root of the mass.



[MathMl code]

An SBO-aware software will have access to the vocabularies of SBO, either as a local
copy, or using a programmatic access to the master copy. It will recognize that the kinetic-
Law represents a Briggs-Haldane kinetics and transform the description of the enzymatic
reaction into the following elementary steps:
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The kineticLaw of the reaction v1 is annotated with the SBO term “second order forward
with two reactants, first order reverse, reversible mass action kinetics, continuous scheme”,
while the kineticLaw of the reaction v2 is annotated with the SBO term “first order
irreversible mass action kinetics, continuous scheme”. Note that the species AB is asso-
ciated with different SBO terms according to the reaction. The procedure would be exactly
the same if instead of continuous descriptions for the elementary reactions, one wanted to
use discrete rate-laws. The only changes would be the SBO terms on the kineticLaw
elements.

Use of SBO to annotate experimental measurements

Precise annotation is not only necessary for theoreticians, but also for experimentalists. It is
unfortunately all too frequent to come across confusions between Vmax and kcat, or Kp, Kd

and IC50. Similarly, the rate-law used to fit the experimental data-point and extract para-
meters is sometimes omitted. This potentially results in incorrect interpretations. This
confusion reduces much the reuse of quantitative information in biochemistry, or even
worse, lead to false interpretations.

A careful annotation of both rate-laws and parameters with the relevant SBO terms would
increase the amount of information transferred from the data generation step to the data
analysis one, minimising the risk of confusion, maximising the value for money of bio-
chemical experimentation, and finally avoiding the continuous reiteration of the same data
generation for different purposes.

Such an annotation could be directly reused by databases of quantitative biochemistry such
as BRENDA [16] or SABIO-RK [17]. SBO terms could serve as a glue between various
part of those knowledge management systems, but could also be used to query the re-
sources, searching for a given parameter or a type of kinetics.

In addition, SBO annotation could help automatically generating part of the resources. For
instance, using a mathematical expression term, one can directly create the adequate forms
to enter the concentrations and parameters, as well as the corresponding structures in
RDBMS tables.

SBO development and export

The Systems Biology Ontology is now listed as part of the Open Biomedical Ontologies
(OBO). OBO is an umbrella for well-structured controlled vocabularies for shared use
across different biological and medical domains. OBO seek to enforce some criteria of
quality, orthogonality and stability among its ontologies. In addition, OBO ontologies share
common formats and processing tools. As other OBO ontologies, SBO is an open-resource,
developed and maintained by the scientific community, and reusable under the terms of the
artistic license (http://www.opensource.org/licenses/artistic-license.php).
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Everybody can submit request for new terms or suggestions to modify the structure of the
ontology, or of the associated services through the Sourceforge project
(http://sourceforge.net/projects/sbo/)

To curate and maintain SBO, we developed a dedicated resource (http://www.ebi.ac.uk/
sbo/). A relational database management system (MySQL) at the back-end is accessed
through a web interface based on JSP and JavaBeans. Its content is encoded in UTF8,
therefore supporting a large set of characters in the definitions of terms. Distributed cura-
tion is made possible by using a tailored locking system allowing concurrent access. This
system allows a continuous update of the ontology with immediate availability and sup-
press merging problems.

At the time we are writing this chapter, SBO is exported in the OBO flat format
(http://www.godatabase.org/dev/doc/obo_format_spec.html). This format is rather unstruc-
tured, easely human-readable and shared by the majority of OBO ontologies. However,
these qualities make the format a rather poor substrate for automated treatments, particu-
larly in our case, where a portion of the content in in a highly structured form (MathML).
At the time the chapter will be published however, it is likely that SBO will alsop be
exported in OBO-XML and OBO-OWL. OBO-XML contains the same information that
OBO-flat, but is expressed in eXtensible Markup Language [18], that permits extensive
computing treatment. In addition it will make the incorporation of the MathML component
of the mathematical expression branch trivial.
Finally, we seek to export SBO also using the Web Ontology Language
(http://www.w3.org/2004/OWL/). OWL builds on RDF http://www.w3.org/RDF/ and URIs
[7], and adds more vocabulary for describing properties and classes, thus improving the
semantics of the format and facilitating automated interpretation.

We are also developing WebServices that will allow software to process SBO, or use it
either to annotate dataset, or to interpret their annotation.

Conclusion and Perspectives

The need to exchange and integrate models drove the community to design common data
format such as SBML. However, as important as was the definition of a common syntax,
we also need to tackle the semantics of the models. It is expected that the adoption of
MIRIAM and the Systems Biology Ontology will enhance the semantic content of quanti-
tative biochemical description and favour their reusability.
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Abstract

Software engeneering today provides tools which minimize the need
for manual coding of the typical components of an application, such
as database, frontend and web application. Visual modelling brings
together users and developers, and allows quick and direct commu-
nication about the topic. In the metabolomics community data models
and XML formats for data interchange such as mzData are currently
emerging. Using these standards as a show case, we present an infra-
structure to support the use of these data standards and the process of
getting there.

Introduction

Most communities in the Life Sciences are facing the problem of how to represent their
data in a suitable way. The perfect data model should be flexible, to represent both standard
and customized experimental set ups, stringent, to allow for validation and error-detection,
machine readable, for storage and retrieval, open to ensure long-term archiving and acces-
sibility, readable by the human eye, for debugging purposes – and of course easy to use.
This contribution gives some experience of implementing software and the infrastructure
for some emerging community data models.

In recent years metabolomics has become an important technology in solving functional
genomics challenges [1] and mass spectrometry (both GC–MS and LC–MS methods) have
been adapted to provide high throughput and broad coverage of metabolites [2, 3]. Large-
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scale metabolomics experiments can produce huge amounts (up to 1 TB per machine per
year) of raw data. Structured storage is the key to efficient access to the data for further
processing and analysis. In addition to raw mass spectrometry data experimental meta-
information is needed to match and compare results from different experiments. A stan-
dardized data exchange format allows community-wide collaboration and provides the
basis for the large training sets needed in machine learning approaches.

Flat Files have been a commonly used storage model for biological data in the past years.
For MS data exchange and as a vendor neutral format, both plain text peaklists or the
(binary) netCDF format are being used. Both provide very little metadata – if at all – about
the measurement set up, such as machine parameters, software used or by whom the
experiment had been conducted. All of this information becomes important if the data is
going to be archived for later (re-)processing. However, this requires parsers and converters
for each client application processing the data.

Community-wide accepted data standards for interchange are currently emerging, such as
mzXML[4] or mzData[5] in the context of the Proteome Standards Initiative (PSI). Con-
verters from proprietary vendor file formats to mzData exist for e. g. Applied Biosystems,
Bruker, Thermo Finnigan etc. For details see the web site of the Sashimi project1 and the
PSI2. The Architecture for Metabolomics (ArMet) describes both metadata and results of
metabolomics experiments [6], and is compliant with the recommended Minimum Informa-
tion about a Metabolomics experiment (MIAMET)[7]. ArMet has been used in the Setup-X
database [8]. All these emerging standards and data models can be used with current
software engineering technologies.

The formalism of choice to describe these data models is a UML (class) diagram, which
shows the “things” or more formally objects that are to be modelled. Examples in Fig. 3 are
the User or a Peaklist. Each object has a set of named attributes of a given data type, such
as Name of type String or Creation_Date of type Time Stamp in the example.

An instance of this data model consists of the set of objects with values assigned to the
attributes. The purpose of a data exchange format is to allow transfer, without loss of
information, to other pieces of software or even remote sites. The conversion process is
also called serialization.

The Extensible Markup Language (XML) is a well-structured markup language. Content
encoded in XML can easily be read by XML parsers, which exist for virtually any pro-
gramming environment. An example of XML is shown in Fig. 1.
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Figure 1. XML excerpt of an mzData entry. Information is given either as an attribute
(like cvParam) or in the body (like IPB Halle) of an attribute.

Modelling

Regardless of which software development process (e. g. Waterfall or Extreme Program-
ming) is adopted, during the early phase the purpose of the system needs to be defined. This
can be done by describing typical use cases or requirements that the software has to fulfil.
An example of such a use case for a repository system is given in Fig. 2.

Figure 2. Use Cases for a repository system, with the user and the repository-institu-
tion as actors, and the two tasks edit/verify and upload as use cases. The connecting
lines are annotated with the role an actor plays.
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The actual data model should be created in close dialogue with the customers or users. A
suitable model representation also for discussion are UML Class Diagrams. Initially, all
“things” of interest should be collected, which will then usually end up as objects or entities
in the final model. Next, their relationships have to be defined, such as “Experiment
contains measurements” or “A Paper has one corresponding author”. The cardinality spe-
cifies that an author is needed for a paper, otherwise it will be rejected.
For data interchange, files need to be exported and imported on different current and future
hardware (Intel, PowerPC) and operating systems (Windows, Unix and others) or sent over
networks such as the internet, so the file representation has to ensure that any differences in
encoding are either recorded for special treatment or that only the minimal consensus is
used. XML is such a file format. The structure of the content can be described using either
a Document Type Definition (DTD) or – more powerful in its expressiveness – an XML
Schema Definition (XSD).

Collaborative Development

For the success (or community-wide acceptance) of a data standard a large body of initial
contributors and supporters is essential. The development should adopt the release-often-
release-early approach also taken in many open source software projects, mentioned as one
of the key points in Eric Raymonds essay “The cathedral and the bazaar” [9]. This will
invite a broad range of comments and possibly fixes to the development version of a
project.

This process of developing open standards and related open source software differs from
commercial software development. Without the personal contact and meetings held in a
company, there is a need for an efficient collaboration platform, wich supports at least a
code repository for sharing the current development, keeping the associated change-logs
and allows release management. The other important task is to foster communication
between the developers, hosting mailing lists (or equivalent functionality) with archives
and search facilities.

The actual choice of platform depends on availability and personal opinion, and can vary
between a general-purpose platform such as SourceForge3 or more targeted environments
such as ProteomeCommons Project4
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MS Data Model:Mzdata

Figure 3. MzData data model. Root object is mzData class, which has descriptive
elements and MS data with their own meta-data.

The mzData standard [10] has been designed over the past two years by the MS working
group of the Proteome Standards Initiative (PSI), with contributions from both academic
and industrial members. It is intended mainly as a file exchange format and shares some
features with the mzXML format which has been developed initially at the Institute for
Systems Biology in Seattle (ISB).

A UML view of the mzData schema is shown in Fig. 3, which has reached version 1.05
since January 20055. The schema covers an administrative description (such as a contact
person or sample ID), a set of mass spectrometry relevant parameters (instrument descrip-
tion, ion source, resolution etc.) and a description of the software (-pipeline) and relevant
arguments that have been involved in creating the file at hand. Finally, the model contains
(a set of) base64 encoded fields with the binary representation of the peaklists (mass,
intensity and optionally further supplementary data, e. g. peak quality etc.).

The files are created either from the instrument software directly, or through converters for
the instrument specific file formats to mzData. Sometimes, where only support for the
mzXML format is available, mzXML can be used as an intermediate with a subsequent
conversion through an mzXML to mzData converter. Up to date information is available on
the respective project web sites.

159

Beyond Flat Files: Data Modelling, Editing, Archival and Interchange

5 A revision of mzData is under review, and expected later in 2006.



Sample Implementation

The implementation is focused around the mzData model, since mzData has been created
and described through a model in the Unified Modeling Language (UML) (see Fig. 3) and
is available as XML schema. This description includes data types, classes, inheritance and
constraints. First we describe the use cases for a simple mass spectrometry repository, then
details on the third-party libraries and components are shown.

Use cases
The following use cases briefly define which actions should be supported by the infra-
structure and applications for a MS repository. The six use cases underlying the imple-
mented applications are:

Use Case1: Preparation for submission
A step which is necessary after an experiment has been performed, and the raw data has
been converted to mzData. Depending on the converter, some fields might be filled with
default or dummy values, such as <institution\s) Not set </institution\s)
or <cvParam cvLabel=\)psi\) accession=\)PSI:1000002\) name=\)-
SampleName\) value=\)test sample\)/\s) Such values need to be edited be-
fore uploading to a repository: the biologist loads the generated mzData file into an editor
and checks the metadata. Once these have been corrected and fields added, the file needs to
be verified against the schema and the defined constraints. If necessary, the file has to be
edited until it passes validation.

Use Case 2.1: Submission of data
This involves both the biologist and the repository system. The biologist selects a file for
upload to the submission form of the repository via a normal web browser. The repository
validates the data against the schema and accepts or rejects the file. Finally, the data is
persisted in the RDBMS.

Use Case 2.2: Batch import
Batch import is needed by the administrators if a large collection of data files need to be
added to the database. A command line tool reads the files and persists them in the
database.

Use Case 3: Curation of data
This is performed by the repository's curators, and is necessary if data needs to be changed
after submission upon request, or to ensure the data quality. The curator connects to the
database, selects an entry and reviews the corresponding values. Changes are persisted in
the database, and a validation step guarantees consistency with the mzData schema.

Use Case 4: Browsing the repository
Allows members of the community to list and search the data in the public repository, and
to download the corresponding XML file.
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Use Case 5: Processing of stored MS data
A user can request this through the XCMS tool at the repository web site. After browsing
the repository as described in Use Case 4, the (set of) mzData entries for processing is
selected, and XCMS-specific parameters are adjusted. The raw MS signals are processed,
retention times are aligned onto a common basis and the results are presented both in a
tabular and graphical form.

Software Choices

Creating such a large system would be impossible without (re-)using a range of third-party
libraries and tools. In this section I describe those that we have chosen for our MetWare
system.

The type of databases most commonly used today are Relational Database Management
Systems (RDBMS). The data is stored in tables, where each row is an entry, having its
attribute values in the columns. Data manipulation and queries are formulated in the
Structured Query Language (SQL), which declares 1) which tables are used in a query,
2) how they are to be joined, and 3) which attributes are extracted.

The connection between the database and the clients is done though the Java Database
Connectivity (JDBC) for Java based standalone clients or the Web frontend, or via Open
Database Connectivity (ODBC) libraries for non-Java clients. These layers eliminate the
need to use proprietary client APIs and wrap them if the database is exchanged for a
different brand. Though the connection is vendor-independent, the SQL dialects are not,
and common pitfalls exist when e. g. porting a MySQL query to Oracle. Another layer of
indirection introducing database adapters can convert generic query statements into the
vendor-specific dialect.

Model Driven Architecture

In a Model Driven Architecture the data model is defined as a Platform Independent Model
(PIM) and afterwards transformed into a Platform Specific Model (PSM) for a specific
architecture and language.

The Eclipse Modelling Framework6 provides code generation facilities for Java classes
implementing the model, adapters for viewing, change notification and undo capabilities
and a basic editor with validation against the model schema. EMF has been used to import
the mzData model and create the model implementation and editor. However, the EMF
itself does not provide database persistence.
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Figure 4. Generated Editor for mzData. The entry is shown as a tree-view, with
properties (values) of the tags shown at the bottom of the window. Context sensitive
menus provide schema-compatible insertion of children or siblings and the verifica-
tion of a (sub-)tree.

The persistence of the EMF objects is handled through an object relational mapping. Java
Data Objects (JDO) from Sun7 offer access to different data stores and manage transac-
tions. Persisted data can be queried and transformed into native Java programming lan-
guage objects. JPOX8 is the reference implementation of the JDO2.0 specification and can
attach to most available relational databases. The eclipse plugin from Springsite9 generates
the metadata for JDO and integrates code that readily allows the editor frontend to be used
on data stored in the database.

The presentation layer of the web application is implemented using Java Server Faces
(JSF) from Sun10, which provide the framework for handling user sessions, lifecycle of
backing objects and navigation between the pages. JSF Tag libraries provide additional
widgets which can be used to present tree views, show popup help or integrate a layout
templating engine.
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Data Processing

For analysis software written in Java that can readily incorporate and use the JDO libraries,
data access can be done in the JDO Query Language (JDOQL), similar to the SQL query
language.

For signal processing tasks mentioned in Use Case 5 (alignment of retention time shifts and
higher level analysis) we integrate a backend service using the XCMS package from the
statistics software R and Bioconductor [11] project. XCMS performs peak picking, reten-
tion time alignment of multiple LC–MS or GC–MS runs and generates a list of differential
mass signals. Communication between R and the application server is done via the Rserve
protocol11. To connect XCMS to the database backend, we created SQL queries which
retrieve the binary data from the RDBMS and feed it into the modified mzData parser. For
a detailed description of XCMS see [12].

Results

We have focused on the creation of the backend storage and applications for the use cases
Use Case 1 to Use Case 3. In the following paragraphs we describe first experience with the
implementation.
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Figure 5. The web interface for the mzData model, showing a part of the tree view.
Example of XCMS output: aligned raw data for a differential mass signal.

The editor for Use Case 1 (preparation of mzData XML files for submission) was the first
to be finished using EMF. A screenshot is shown in Fig. 4. It can easily handle data files of
around 100 MB, which had been acquired on our LC–MS set up using an Applied Biosys-
tems QStar mass spectrometer and were transformed from the instrument-specific wiff
format to mzData with a vendor supplied converter. The validation of said 100 MB file
is completed in less than a second and is no additional burden to the biologist. The editor
can be downloaded at http://msbi.ipb-halle.de/.

The persistence enabled Editor used for Use Case 3 (Curation) that connects to the RDBMS
via JDO offers the same functionality as the standalone version. Since lazy loading is
implemented, only the relevant parts of the data are requested from the database. Even
large collections can be accessed this way.

The web-system is currently being evaluated and improved to provide a biologist-friendly
user interface design for the outlined use cases Use Case 4 and Use Case 5, with modules
(see Fig. 5) existing for both of them. The architecture of the system (application-, R-
statistics- and database server) allows for an easy integration of high-level analyses. Pro-
totypes for these modules are included in the web application.
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Conclusion

The chosen data standards are currently gaining a wider acceptance in the metabolomics
community. A flexible software development process is necessary to accommodate fre-
quent changes without the need for manual adaption of the resulting software. The overall
system consists of the database, R server and web application server, all of which can run
on different machines. To scale to a large number of concurrent users, all three services can
be run on a cluster of machines, sharing the load. A common filesystem layout is not
needed.

We provide the service to biologists working in our institute and close collaborators. A
demo database is available at http://msbi.ipb-halle.de/. In the future we plan to implement a
similar system for the ArMet metadata, and tight integration of externally controlled
vocabulary and ontologies.

Projects starting a standardization effort should consider modelling their data on a public
platform and invite other parties to comment or even participate. Getting the actual model
“right” (flexible, stringent, machine-/human-readable and easy to use) can be expected to
be the hardest task. The standard should be closely followed by software implementing data
capture and handling, with the database access coming last. The MDA approach makes it
possible to recreate the necessary code basis and backend database with minimal manual
coding, since the data standard is hopefully going to evolve.
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Abstract

Computational representation of enzyme function should include the
structural elements of enzymes which deliver catalytic ability. This is
especially important in mechanistically diverse enzyme superfamilies,
whose members catalyze different overall reactions. In such super-
families, evolutionarily conserved elements of structure can be corre-
lated with only conserved aspects of function. The representation of
enzyme function in the Structure-Function Linkage Database, in par-
ticular the specific structure-function relationships, at multiple levels
of evolutionary conservation, aids in the annotation of enzyme func-
tion and in designing enzyme engineering experiments.

Introduction

Computational representations of enzyme function, especially the specific ways in which
enzyme structure delivers catalytic function, aids our ability to predict the function of
newly sequenced enzymes [1, 2] and in efforts to engineer new functions into existing
enzymes. [3] Any such computational representation should have at three main properties.
First, it should be rapidly searchable. Second, there should be valid similarity metrics
defined between any two reactions, allowing users to identify reactions (or substrates or
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products) that are similar to other reactions (substrates, products). This ability is especially
important in enzyme engineering, where a user desires as a starting structural scaffold an
enzyme with a functionality similar to the function being engineered. Third, the specific
contributions to function by structural elements of the enzyme (e. g. active site residues)
should be represented. This allows users to search for specific mechanistic abilities in
potential engineering scaffolds and aids in the annotation of newly sequenced or structu-
rally characterized enzymes.

Several representations of enzyme function are currently available, but they fail to make the
explicit connection between enzyme structure and function, especially with regard to how
conserved structural elements deliver catalytic abilities. The Enzyme Classification (E.C.)
system [4], developed before the wide availability and diversity of crystal structures or
enzyme sequences, classifies enzyme function according to the overall reaction catalyzed
by an enzyme. While the E.C. representation, a series of four hierarchical numbers, allows
for rapid computation and simple similarity functions, it doesn't include the contributions of
the enzyme structure. Reactions in the E.C. system are considered independent of enzyme
structure, leading to cases where enzymes with very different structure-function relation-
ships are classified as similar and vice versa [5]. Recently developed databases of enzyme
reactions such as EzCatDB [6] and MACiE [7] have cataloged a large number of enzyme
reactions and, where available, the individual mechanistic steps they're comprised of,
including the specific amino acids involved in the reactions. These resources, however,
do not provide a representation that has similarity metrics defined upon it, nor do they
represent some of the more subtle ways in which enzyme structure can contribute to
function (e. g. stabilization of a charged intermediate via backbone dipoles). A computa-
tional framework for representing enzyme function in a platform independent manner using
XML has recently been proposed [8]. While the motivation behind CMLReact is reason-
able, it's unclear how well such a scheme, which remains largely undeveloped, will be able
to provide similarity metrics and capture the contributions of enzyme structure. As an
extensible scheme, however, there remains the potential for other computational represen-
tations of function to be absorbed into the CMLReact format.

We focus here on the computational representation of enzyme function within mechan-
istically diverse enzyme superfamilies [9]. These superfamilies are sets of homologous
enzymes which, while often sharing very little sequence similarity to each other, and often
catalyzing different overall reactions with a variety of substrates and products, share the
same fold and conserve a specific partial reaction (of some other aspect of mechanism)
enabled by a conserved set of residues. Study of these superfamilies, especially their
conserved structure-function relationships, provides insights into enzyme evolution and
significantly aids enzyme engineering efforts.
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Methods

We have created an online resource for the study of mechanistically diverse enzyme
superfamilies, the Structure-Function Linkage Database (SFLD) [10, 11]. This database
structures enzymes into a three level hierarchy using both structural and functional criteria.
At the top (superfamily) level are enzymes that share a common partial reaction step,
mediated by conserved elements of structure, while at the bottom (family) level are en-
zymes that catalyze identical overall reactions, via identical mechanisms, using the same
conserved aspects of enzyme structure. The middle (subgroup) level contains sets of
enzymes where particular structure-function relationships are shared, and are specific to
each superfamily. An example of this hierarchy is shown in Figure 1. The SFLD is a rich
resource, containing curated alignments, mechanisms, structures, and sequences of widely
divergent enzymes that share conserved structure-function relationships. Most fields are
also annotated with evidence codes similar to the Gene Ontology (GO) [12] evidence codes
and links to relevant literature references. Due to the time and effort involved in the
curation of mechanistically diverse enzyme superfamilies, the SFLD remains a deep re-
source, containing a wealth of structure-function information about particular superfami-
lies, as opposed to a broad resource that covers all of enzyme space, although more
superfamilies are in the process of being added. The SFLD is freely accessible at
http://sfld.rbvi.ucsf.edu.

Computational representation of enzyme function in the SFLD is accomplished primarily
through the SMILES/SMARTS [13] representation of small molecules and reactions. Over-
all reactions are stored as well as their constituent partial reactions. These reactions can be
searched rapidly using SMARTS queries, allowing users to search for substructures in
substrates and/or products. Figure 2 shows some examples of this type of query. Individual
residues involved in delivering function, as well as their specific participation, where
known, are stored for every structure, and across all sets of proteins at each level of the
SFLD hierarchy. This allows users to quickly align a sequence to a curated alignment and
determine from the annotated residue positions if the query sequence is likely to have a
similar structure-function relationship.

The value of these capabilities is illustrated by our experiments in annotating structures
solved by the Structural Genomics Initiatives (SGI) [14]. We scanned 1,605 structures
solved by the SGI using hidden Markov Models (HMMs) [15] built on the curated se-
quence alignments in the SFLD, and compared their Protein Data Bank (PDB) [16]
annotations to our own predictions of function. Our predictions were made according to
the level(s) of the SFLD hierarchy for which a HMM matched an SGI sequence and the
fraction of annotated conserved active site residues that were matched in the alignment of
the sequence to the curated multiple alignment upon which the HMM was built. In some
cases, we were able to make very specific predictions of enzyme function which have been
validated experimentally by our collaborators. (Gerlt, JA, unpublished)
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Results

Table 1 shows the SGI structures which matched at least one HMM in the SFLD. Targets
for which our predictions of function agree with the current PDB annotations have a white
background. In green are cases where we were able to increase the knowledge about the
target protein, adding some information about the reaction the enzyme is likely to perform.
In the case of 1WUE and 1WUF, targets annotated as being of unknown function, we
accurately predicted their ability to catalyze the synthesis of o-succinylbenzoate, a function
that was subsequently confirmed experimentally [11]. Our analysis was also able to identify
target 1UIY as having been misannotated (orange background in Table 1). This target,
while aligning well to the enoyl-CoA hydratase family of the SFLD, is missing a critical
glutamic acid residue required for catalysis [17].

A key aspect of the organization of enzyme structure-function relationships within the
SFLD is that it allows annotation at multiple levels of granularity. In some cases we can
make predictions of overall function with some certainty (such as with 1WUF), but in
others we can only state that the enzyme performs a partial reaction conserved throughout
the subgroup or superfamily (such as with 1RVK). A more comprehensive discussion of
our annotation of several of the SGI targets listed in Table 1 has recently been published
[11].

Conclusion

The hierarchy of conserved structure-function relationships within an enzyme superfamily
helps us not only avoid the overprediction of enzyme function, but also to make guided
decisions when performing enzyme engineering. Our representation of enzyme function in
the SFLD allows users to rapidly search for similar substrates and products, and through the
annotation of functional residues at each level of the SFLD hierarchy to obtain information
about how particular aspects of enzyme structure deliver catalytic function. This informa-
tion can then be used to identify appropriate starting scaffolds [3, 18].

Our current representation of function is somewhat incomplete, however. While rapidly
searchable and with adequately defined similarity metrics based upon small molecule
chemical similarity, it lacks a formal representation of some aspects of enzyme participa-
tion. For example, the terpene synthase superfamily displays a variety of methods of
stabilizing the positive charge on the carbocation intermediates of its reactions, including
dipole-charge interactions from sidechains and backbone carbonyls, and cation-pi interac-
tions with aromatic sidechains [19]. These aspects are currently stored as text descriptions
in a table of conserved residues, a representation that is not amenable to the sort of
similarity queries we'd like to make. Ultimately, we desire a representation of enzyme
function in which we can quickly answer such queries as, “what are the enzymes that
use a backbone carbonyl to stabilize a positive charge?” and “what are the partial reactions
in which an lysine acts as a Schiff base?” While such queries can be answered through
string matching of the text descriptions of conserved residue function, the results are
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inconsistent due to the freeform nature of the text field-different curators will describe
identical functions in different ways. A more structured representation of the contributions
of a particular aspect of an enzyme structure to a given catalytic step is required to
accurately answer the sorts of questions posed above.

Our current attempts at such a representation involve development of extensions to the
SMILES representation. This allows us to retain some of the major benefits of SMILES,
such as its wide acceptance in third party software, which allows us to implement rapid
substructure searching and well developed similarity metrics between the chemical struc-
tures represented. Work on this extension of SMILES remains an ongoing research project
in our laboratory.

Figure 1: An example of the SFLD hierarchy. This example shows the b-phospho-
glucomutase family, which belongs to the “phosphatase-like I” subgroup, which in
turn belongs to the haloacid dehalogenase superfamily. The middle column shows the
conserved reaction across all members of the hierarchical level (row) and the right-
most column shows the active site residues conserved at each level.

Figure 2: Examples of SMARTS queries and their chemical meanings.
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Table 1: Structures solved by the Structural Genomics Initiative that match hidden
Markov models of the SFLD. Targets with a white background have PDB annotations
that agree with our annotations using the SFLD. Targets with green backgrounds
represent cases in which the SFLD annotations add useful information to the current
PDB annotations. Targets with an orange background represent misannotations in the
PDB that are corrected by the SFLD annotations. Although targets 1kcx and 1uiy
match a family HMM in the SFLD, the fact that they are missing at least one
functionally important residue suggests that they do not perform the designated family
reaction. (CFR: Conserved Functional Residue)
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Abstract

Classical enzyme kinetics, as developed in the 20th century, had as a
primary objective the elucidation of the mechanism of enzyme cata-
lysis. In systems biology, however, the precise mechanism of an en-
zyme is less important; what is required is a description of the kinetics
of enzymes that takes into account the systemic context in which each
enzyme is found. In this paper we present the generalized reversible
Hill equation as a universal rate equation for systems biology, in that
it takes into account (i) the kinetic and regulatory properties of en-
zyme-catalysed reactions, (ii) the reversibility and thermodynamic
consistency of all reactions, and (iii) the modification of enzyme
activity by allosteric effectors. Setting the Hill coefficient to one
yields a universal equation that can successfully mimic the behaviour
of various detailed non-cooperative mechanistic models. Subse-
quently, it is shown that the bisubstrate Hill equation can account
for substrate-modifier saturation, in agreement with experimental data
from Bacillus stearothermophilus pyruvate kinase. In contrast, the
classical Monod–Wyman–Changeux (MWC) equation cannot account
for this effect. The proposed reversible Hill equations are all indepen-
dent of underlying enzyme mechanism, are of great use in computa-
tional models and should lay the groundwork for a “new” enzyme
kinetics for systems biology.
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Introduction

One central aim of classical enzyme kinetics has been the determination of an enzyme's
mechanism from initial rate studies with varying substrate and product concentrations [1,
2]. Kinetic equations have been derived for almost every conceivable mechanism, using
(partial) equilibrium binding or steady-state kinetics, and there has been a continuing focus
on experimental analyses that will be able to discriminate between these mechanisms [2].
The focus in enzyme kinetic analyses has thus been on the characterization of individual
enzyme mechanisms, and many of the resulting kinetic equations (especially those for
cooperative or multi-substrate reactions) are complex and contain numerous parameters.

In the post-genomic era the field of computational systems biology has received increasing
prominence. Its aim is to build kinetic models of cellular pathways, with the individual
pathway components (e. g. enzymes) quantitatively described by mathematical rate laws.
As such, the overall behaviour of the pathway can then be calculated by the models,
needing only the properties of the individual enzymes as input. As a consequence, the
focus of enzyme kinetics has shifted. For a kinetic model, we require a kinetic rate law that
that will describe the response of an enzyme to changes in substrate, product and modifier
concentrations; however, for the overall pathway behaviour, the exact enzyme catalytic
mechanism is unimportant as long as the enzyme rate as a function of substrate, product
and modifier concentrations is adequately described. When building kinetic models from
literature data, one is often faced with the problem that enzymes have not been character-
ized fully. For example, most often only Km values for substrates are available and the
exact mechanism or some of the other kinetic parameters such as Ki values have not been
determined. This forces the modeller to make additional assumptions.

The model construction process would thus be greatly facilitated by a generic equation that
contains fewer parameters and yet describes the kinetic behaviour of the enzyme ade-
quately. In this paper, we present the reversible Hill equation as a candidate for fulfilling
this task. Firstly, the uni-substrate Hill equation is generalized to an arbitrary number of
substrates and products. Secondly, the non-cooperative version of the bi-substrate rate
equation is shown to successfully describe the behaviour of two more complex detailed
mechanistic models, i. e. ordered and ping-pong kinetics. Thirdly, the Hill and Monod–
Wyman–Changeux (MWC) models are compared in terms of their description of allosteric
modifier behaviour, with specific emphasis on whether the modifier effect saturates.
Fourthly, experimental data for pyruvate kinase show modifier saturation, in agreement
with the Hill model but not with the MWC model (Section 4). Finally, the implications of
this work for computational systems biology are summarized.

A Generalized Reversible Hill Equation

The development of a universal rate equation for systems biology relies strongly on the
foundations of the work of Hofmeyr and Cornish-Bowden [3], who generalized the Hill
equation for cooperativity [4] to its reversible form. For a reaction A � P this reads:
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(1)

where a is the concentration of substrate A scaled by its half-saturation constant A0.5

(α = a A/ .0 5 ), p is the concentration of P scaled by P0.5, G is the mass-action ratio, Keq

the equilibrium constant, h the Hill coefficient, m the concentration of allosteric modifier M
scaled by its half-saturation constant M0.5, and s is an interaction factor quantifying the
extent to which binding of a modifier molecule affects substrate and product binding to the
enzyme, thus leading to allosteric inhibition or activation. Apart from its ability to describe
reversible reactions, this equation is significant in that it takes into account-and separates-
the thermodynamic, kinetic and regulatory properties of the reaction [3]. One particularly
useful aspect of this equation is the operational definition of its half-saturation constants.
For example, at zero product and in the absence of modifier (p =m = 0), setting the con-
centration of A equal to its half-saturation constant (a = 1), yields v/Vf = 0.5. The value of
A0.5 can thus easily be determined in an experiment as that concentration of substrate which
yields half of the limiting (maximal) rate.

By following a similar approach as in [3], we have derived the reversible Hill equation for
the two-substrate two-product (bi-bi) reaction A1 + A2 � P1 + P2 ([5]; Rohwer et al., in
preparation). For the case without allosteric modification this equation reads:

(2)

with the equation parameters and half-saturation constants defined as in Equation 1. By
deriving the equation for the three-substrate three-product (ter–ter) case and extending the
general pattern, it is possible to obtain a reversible Hill equation describing a reaction
comprising an arbitrary number of substrate–product pairs [5]. For the reaction
A1 + A2 + ... + An � P1 + P2 + ... + Pn this equation reads:

(3)

where ns is the number of substrate-product pairs, and other parameters defined as in
Equations 1 and 2. Moreover, it has been possible to obtain Hill equations for the one-
substrate two-product (uni–bi) and bi–uni, as well as the bi–ter and ter–bi cases, which
broadens the level of applicability of the reversible Hill equation. Equations 1 – 3 can all be
transformed to their non-cooperative counterparts by setting the Hill coefficient h equal to
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one. The derivations will not be shown here, but will be published in detail elsewhere
(Rohwer et al., in preparation); the reader is also referred to the Master's thesis of Hane-
kom, [5] which can be obtained from the authors of this paper on request.

Equations 1 – 3 thus constitute a set of reversible Hill equations that should be able to
describe most, if not all, enzyme-catalysed reactions occurring in cellular pathways. All the
relevant combinations of different numbers of substrates and products are covered, and by
varying the Hill coefficient, the equation can describe reactions exhibiting positive, nega-
tive or no cooperativity. From this perspective, the equation indeed appears “universal” in
terms of its applicability to cellular reactions. Yet, to be truly worthy of the label “uni-
versal”, it is insufficient merely to be able to apply the equation to all reactions; the
equation will also have to exhibit realistic kinetic properties. This will be addressed in
the following sections in two different ways: first, we investigate the behaviour of the non-
cooperative generalized equation and compare it to more detailed mechanistic models; and
next, we compare the behaviour of the cooperative, allosterically inhibited equation to the
MWC model and validate the results with experimental data from pyruvate kinase.

Non-Cooperative Bi-Substrate Kinetic Models

The kinetics of enzymes with two or more substrates have been studied in great detail. The
field was pioneered by Cleland, who developed kinetic formulations for most conceivable
mechanisms in the early 1960 s [6]. An important focus of this original work was to be able
to derive the mechanism of an enzyme-catalysed reaction from kinetic studies, and any
differences in kinetic behaviour between the various mechanistic models were thus
exploited. The fact that reactions can proceed by (partial) equilibrium binding or steady-
state kinetics, and that the mechanism can proceed via a ternary complex or substituted
enzyme, leads to a multitude of possible formulations, which have been summarized
comprehensively by Segel in the definitive textbook on the topic [2].

Ordered vs. ping-pong kinetics
A kinetic mechanism for a bi-substrate reaction that proceeds via a ternary complex with
compulsory order binding differs substantially from a mechanism that proceeds via a
substituted enzyme. In the former case (termed “ordered” mechanism from here on), both
substrates are bound to the enzyme before catalysis occurs and the products are released.
Moreover, the substrates cannot bind randomly but rather have to bind to the enzyme in a
fixed sequence; likewise, the products are released in a fixed order. For the reaction
A + B � P + Q this can be symbolized as follows (cf. [1]):

E EA EAB EPQ EQ E⇔ ⇔ ⋅ ⇔ ⇔[ ] (4)

and leads to the following formulation of a rate equation [1, 2, 6]:
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(5)

By contrast, in the substituted enzyme mechanism (also termed “ping-pong” mechanism)
the enzyme is modified after the first substrate molecule has bound and product molecule
has been released. The modified enzyme then binds the second substrate, and upon cata-
lysis and release of the second product, the original enzyme is returned. Mechanistically
this is symbolized as follows, with E((prime)) denoting the modified enzyme:

E EA E P E E B EQ E⇔ ⋅ ⇔ ⇔ ⋅ ⇔[ ] [ ]' ' ' (6)

and leads to the following rate equation formulation for the ping-pong mechanism [1,2,6]:

(7)

Is the universal generic equation a good enough approximation?

The fact that ordered and ping-pong mechanisms and their associated rate equations are
quite dissimilar, prompted us to investigate whether these differences result in markedly
altered kinetic behaviour and, hence, are important from a systems biological perspective.
Moreover, both Equations 5 and 7 contain numerous parameters (a Ki value, in addition to a
Km value, for each substrate and product), which have seldom all been determined in
kinetic characterizations reported in the literature. When constructing kinetic models of
pathways, this frequently leads to a lack of data, forcing the modeller to assume parameter
values, particularly for Ki (for an example from our own work see [7]. In contrast to both
the ordered and ping-pong models, the corresponding bi-substrate generic equation, which
is derived from the reversible Hill equation (Equation 2) with h = 1, has fewer parameters,
i. e. only a Km value for each substrate and product and no Ki values, and reads as follows:

(8)

We thus set out to investigate whether the kinetic behaviour of both the ordered and ping-
pong mechanisms could be described equally well by the generic equation. To do this, data
sets were generated with both the ordered and ping-pong mechanistic equations (Equations
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5 and 7) by varying both substrates and both products independently over two orders of
magnitude for three parameter sets (i. e. combinations of Km and Ki values). The generic
equation (Equation 8) was then fitted to both the ordered and the ping-pong data and
goodness of fit assessed by the r2 value [8]. As can be seen from the representative example
in Fig. 1, the quality of fit was near perfect in some cases, and in all cases the r2 value was
grater than 0.94, indicating that the generic equation is capable of successfully mimicking
the kinetic behaviour of both the ordered and the ping-pong mechanistic models.

Figure 1. Examples of good fits of the generic rate equation to ordered and ping-
pong model data. The generic bi–bi rate equation was fitted to data (a) from the
ordered rate equation (Equation 5) with the following parameters: KmA = 3.3,
KmB = 3.3, KmP = 0.83, KmQ = 0.83, KiA = 1.0, KiB = 3.0, KiP = 7.5, KiQ = 10.0; and
(b) from the ping-pong rate equation (Equation 7) with the following parameters:
KmA = 1.0, KmB = 1.0, KmP = 1.0, K mQ = 10.0, KiA = 1.0, KiB = 1.0, KiP = 1.0,
KiQ = 10.0. Keq was fixed at 10 in all cases. The original ordered and ping-pong data
are indicated in black, the generic bi–bi fitted model in cyan. The generic equation
was fitted on the complete data set where both substrates and both products were
varied independently over two orders of magnitude. The plots show the fits at
p = q = 0.1. Reproduced from [8] with permission from the Institution of Engineering
and Technology.

While the fit was not always as good as in Fig. 1, it could be improved considerably by
reducing the range of product concentrations included in the analysis. Since we varied both
substrates and products over two orders of magnitude, this analysis really presents a “worst-
case” scenario and in many cases of real-life kinetic models, the variation in substrates and
products will be less.

This section has evaluated the performance of the universal rate equation in non-coopera-
tive cases. In the next section, we investigate how the equation fares when dealing with
cooperative and allosteric kinetics.

Cooperativity and Allosteric Modifier Saturation

Enzymes following normal Michaelian kinetics require an 81-fold increase in substrate
concentration to “switch on” (increase their rate from 0.1 V f to 0.9 V f). By comparison,
enzymes that obey cooperative Hill kinetics only need a 9-fold increase in substrate con-
centration for the same effect (for a Hill coefficient of 2). Cooperative enzymes are thus
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sensitive to small changes in substrate concentration and it is important that such coopera-
tive enzymes be regulated with a high degree of precision [1]. Inhibition or activation by
allosteric effectors is one mechanism that accomplishes such regulation, and it is a ubiqui-
tous motif in metabolic pathways. It therefore becomes important to be able to describe the
kinetics of such allosteric enzymes accurately in kinetic models.

Allosterically regulated cooperative enzyme reactions are usually modelled with irreversi-
ble MWC kinetics [9]. However, when Hofmeyr and Cornish-Bowden [3] derived the uni-
substrate reversible Hill equation (Equation 1 above), they also demonstrated that this
equation predicts substantially different allosteric inhibition kinetics, compared to the
MWC equation. In particular, the Hill model shows modifier saturation in that at high
substrate concentration the allosteric inhibitor ceases to have an effect, whereas the MWC
equation does not show this saturation and the inhibitor always has an effect irrespective of
the substrate concentration. Allosteric inhibitors in the MWC equation thus behave analo-
gously to competitive inhibitors. The effect was, however, only demonstrated for the uni–
uni case.

Since most enzyme-catalysed reactions in biochemical pathways have two or more sub-
strates and products, we first set out to demonstrate that the difference between the Hill and
MWC models with respect to allosteric modifier saturation also exists for the bi-substrate
case. As the inhibitor saturation effect has to our knowledge not been demonstrated ex-
perimentally, we subsequently present data for the allosteric enzyme pyruvate kinase,
which also show saturation of the allosteric modifier effect, thus lending support to the
Hill equation and contrasting with the MWC model.

Modifier saturation in Hill vs. MWC
The bi-substrate Hill equation for the irreversible reaction A + B ? P + Q with allosteric
modifier M reads as follows [5]:

(9)

with b= b/B0.5 and the other parameters defined as in Equations 1 and 2. The MWC
equation for the same reaction is given by:

(10)

where V f is the limiting enzyme rate, KmA and KmB are the intrinsic dissociation constants
for substrates A and B from the R-form of the enzyme, [I] is the inhibitor concentration, Ki

is the intrinsic dissociation constant for inhibitor I from the T-form of the enzyme, n is the
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number of enzyme subunits and L0 is the equilibrium ratio of L0/R0 in the absence of
substrates and products. This equation was derived by simplifying the generalized MWC
model of Popova and Sel'kov [10] along the assumptions of the original paper of Monod et
al. [9]: (i) the reaction is irreversible, (ii) the T-form of the enzyme does not participate in
catalysis, (iii) the inhibitor only binds to the T-form, and (iv) the substrates bind only to the
R-form of the enzyme, which is catalytically active.

Figure 2. Enzyme activities of the Hill and MWC models as a function of inhibitor
concentration at different substrate conditions. (a) Bi-substrate Hill equation
(Equation 9) with h = 2 and s= 0.1. (b) Bi-substrate MWC equation (Equation 10)
with n = 2 and L = 10. Data are plotted in double logarithmic space. Substrates A and
B were varied simultaneously; their scaled concentrations are i: 150, ii: 25, iii: 2 and
iv: 1. Reproduced from [19] with permission from the Institution of Engineering and
Technology.

These two models (Equations 9 and 10) were then compared by plotting the reaction rate as
a function of the concentration of allosteric inhibitor for different values of the substrate
concentrations, which were increased together (Fig. 2). The results clearly demonstrate that
the bi-substrate Hill model shows substate-modifier saturation in that increasing the modi-
fier concentration above a certain threshold (here, m » 103) ceases to have an effect on the
reaction rate. Moreover, the inhibitory effect is nullified at high substrate concentrations.
The bi-substrate MWC model does not show this saturating effect, analogous to the uni-
substrate case [3].

Experimental verification of modifier saturation in pyruvate kinase
Since the Hill and MWC models can be clearly distinguished using the effect of modifier
saturation, we investigated experimentally whether this effect would be present in a bi-
substrate cooperative enzyme. Bacillus stearothermophilus pyruvate kinase is a microbial
cooperative enzyme that exhibits cooperativity towards its substrate phosphoenolpyruvate
(PEP) [11]. The cooperative kinetics, structure and thermal stability of this enzyme have
been studied in detail [11 – 13], and it has both allosteric activators and inhibitors. More-
over, it can be conveniently assayed with a simple spectrophotometric protocol [14]. Here,
the kinetics of the allosteric inhibitor inorganic phosphate (Pi) were investigated (Fig. 3).
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Figure 3. Relative pyruvate kinase activity as a function of inhibitor (NaH2PO4)
concentration at increasing substrate concentrations. Data were normalized to the
limiting rate measured at 20 mM PEP and 20 mM ADP in the absence of inhibitor.
Note that data are presented in double-logarithmic space. The assay mixture contained
equimolar concentrations of PEP and ADP: 1 mM (.), 4 mM (((odot))), 10 mM
(((square))) and 20 mM (((osquare))). All data points are the average of 3 – 5 inde-
pendent determinations € SE. Experiments demonstrating the saturation of the inhibi-
tory effect (4 mM substrates at ‡ 91 mM inhibitor; 1 mM substrates at ‡ 32 mM
inhibitor) were all performed in five-fold. Reproduced from [19] with permission
from the Institution of Engineering and Technology.

At high substrate concentrations, Pi could no longer inhibit the enzyme, even at high levels.
In addition, modifier saturation is clearly visible when the substrates were present at 1 mM
(Pi concentrations above 32 mM did not inhibit the enzyme further). At 4 mM substrate
concentrations, saturation of the inhibitory effect was also visible for [P1]391 mM. When
comparing these results with the kinetic plots in Fig. 2, it is clear that the data are consistent
with the Hill model but not with the classical MWC model.

Discussion and Conclusion

This paper has described a new universal rate equation for systems biology, which is based
on the reversible Hill equation. The equation can be written for an arbitrary number of
substrate–product pairs, as well as for uni–bi, bi–uni, bi–ter and ter–bi reactions. In addi-
tion, an arbitrary number of either independent or competing allosteric modifiers can be
treated [5]. By varying the Hill coefficient through values ranging from less than one to
greater than one, the equation can exhibit negative cooperativity, no cooperativity (i. e.
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Michaelian kinetics) or positive cooperativity. These features make the universal rate
equation so generic and versatile that it should be possible, in principle, to use it for
describing the kinetics of any enzyme-catalysed reaction.

The derivation of the generalised reversible Hill equation was based on the same assump-
tions as the uni-substrate case [3], i. e. (i) the limiting case of cooperativity (active sites are
either empty or fully occupied, partially liganded enzyme species are not considered),
(ii) random equilibrium binding of substrates, products and modifiers to the enzyme, also
in the form of dead-end complexes, (iii) independently acting binding sites that do not
influence each other, and finally (iv) generalization from the number of subunits (n) to the
Hill coefficient (h), which can take on non-integer values (also less than one).

Although allosteric effects in the generalized reversible Hill equation presented in this
paper only affect the binding strength of substrates or products through changing their
apparent half-saturation constants (i. e. so-called “K-enzymes”), it should be pointed out
that the reversible Hill equation has also been rewritten to include effects of allosteric
modifiers on the catalytic properties of an enzyme (i. e. so-called “V-enzymes”) [15, 16].
The details are not included here for lack of space; however, they contribute to the
universality of the reversible Hill equation in its application to computational systems
biology.

The non-cooperative formulation of the universal rate equation is capable of succesfully
mimicking the kinetic behaviour of both the ordered and the ping-pong mechanistic models
(Fig. 1). The equation for random bi–bi kinetics was not included in the analysis, since its
derivation is based on equilibrium binding of substrates and products [2, 6] (the derivations
of the ordered and ping-pong models are based on steady-state kinetics). The common
ordered bi–bi mechanism is thus identical to our generic bi-substrate model barring the
existence of the dead-end complexes, which should therefore lead to an even better corre-
spondence than for the ordered and ping-pong mechanistic equations.

The cooperative version of the equation shows substrate–allosteric modifier saturation, in
contrast to the irreversible MWC model, which does not (Fig. 2), and the validity of the
reversible Hill model is corroborated by experimental data for the enzyme pyruvate kinase
(Fig. 3), which also show modifier saturation. Together, these data provide in silico and in
vitro evidence for validation of the universal equation.

The results are significant for two reasons: First, in general, generic equations based on the
reversible Hill equation contain fewer parameters than mechanistic equations. As a result,
fewer parameters need to be measured experimentally, which lessens the burden for ex-
perimental kinetic characterization. Moreover, the parameters can be determined directly
because of the clear operational definition of the half-saturation constants (see Section 2).
In contrast, MWC equations, for example, are mechanistic models that contain intrinsic
metabolite dissociation constants, which cannot be determined directly in such an opera-
tional way, but only through fitting. Secondly, it is unnecessary to know the detailed
mechanism of an enzyme in order to simulate its kinetics for modelling. For computational

184

Rohwer, J.M. et al.



systems biology, enzyme mechanism as such is less important but an accurate kinetic
description in terms of quantification of the reaction rate as a function of substrates,
products and effectors is crucial.

It should be emphasized that not all MWC equations are unable to account for modifier
saturation; it is only the commonly used uni-substrate irreversible formulation [9] and its
bi-substrate form (Equation 10) that have this limitation. In fact, we have shown that the
generalized MWC model of Popova and Sel'kov [10, 17] gives near indistinguishable
behaviour from the generalized reversible Hill equation, including allosteric inhibitor
saturation [18]. The reason for this is that in the generalized MWC model [17], all species
interacting with the enzyme (be it substrates, products or allosteric effectors) can in prin-
ciple bind to both the T- and R-forms and both these enzyme forms are catalytically active
(albeit to different extents), whereas in the original formulation of Monod, Wyman and
Changeux [9], the restrictions outlined below Equation 10 were imposed. However, in
experimental applications the original model has been used almost without exception,
and the generalized form of Popova and Sel'kov has rarely been applied, which makes
the distinction between Hill and MWC equations important.

Although mechanistic equations were derived for initial-rate kinetics (see e. g. [6]), the
universal rate equation presented here is not limited to the analysis of initial rates. We have
developed a new experimental method to obtain kinetic parameters through fitting of
progress curve data obtained from time-course NMR spectroscopy (Hanekom et al., in
preparation). This is especially relevant for systems biology, since many of the high-
throughput techniques of modern biology (transcriptomics, proteomics, metabolomics)
generate such time-series data.

In conclusion, we propose that the universal rate equation presented in this paper should
form the basis of a “new” enzyme kinetics for systems biology. It is simpler than mechan-
istic rate equations, can account for positive, negative or no cooperativity, is thermodyna-
mically consistent and contains fewer parameters than mechanistic equations.
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Abstract

SABIO-RK is a database designed to store and offer access to infor-
mation about biochemical reactions and their kinetics in a comprehen-
sive and standardized manner. It integrates information from several
sources to form a backbone of information necessary to include in-
formation about the kinetics of biochemical reactions. The kinetic data
itself is primarily extracted from literature along with descriptions of
the experimental conditions under which they were determined. This
process is supported by the use of a web-based user interface which
complies with most of the recommendations of the STRENDA com-
mittee for reporting on the results of enzyme/reaction kinetics. In this
paper we describe the main characteristics of the SABIO-RK and its
search and input interfaces.
Availability: http://sabio.villa-bosch.de/sabiork

Introduction

The simulation of biochemical reaction networks depends on the combination of experi-
mental data with modelling methods. A simulation requires information about the kinetics
of the biochemical reactions participating in the network, such as the kinetic laws describ-
ing the dynamics of the reactions with their respective parameters determined under certain
experimental conditions. These data are widely scattered through various publications and
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described in many different formats. Moreover, each special field uses its own vocabulary
and concepts. Thus, the process of integrating the kinetic data to simulate a biochemical
network would be enormously facilitated by the definition and use of standards for report-
ing and exchanging the data obtained, both from experimentalist to modellers and for the
feedback from modellers to experimentalists.

In order to compare kinetic data and integrate them into models of biochemical networks,
kinetic parameters need to be consistently described and related to the kinetic mechanisms,
the equations representing the kinetic laws and the environmental conditions. The known
mechanisms of biochemical reactions should be reflected in mathematical formulas, which
have to be linked to the corresponding parameters, such as kinetic constants and concen-
trations of each reaction participant. As kinetic constants highly depend on environmental
conditions, they can only be specified completely by describing these conditions used for
determination. Data sets based on experiments assayed under similar experimental condi-
tions should be associated to each other to facilitate the comparison.

There is currently a small number of databases containing kinetic data of biochemical
reactions. BRENDA [1] is a comprehensive database on information about enzymes. The
enzyme entries also contain information about the reactions catalysed by the enzyme
including data describing their reaction kinetics and in some cases information about the
mechanism associated with the reaction’s kinetics. Swiss-Prot [2] started to include experi-
mental data like pH- and temperature dependence and kinetic parameters as comments
related to biophysicochemical properties. The BioModels database [3] rather stores pub-
lished mathematical simulation models of biological interest that are annotated and linked
to relevant data resources (e. g. publications or databases), than experimental kinetic data of
single reactions. The models include kinetic law equations and their parameters represented
in SBML (Systems Biology Mark-up Language) format [4] and can be used for simulations
of biochemical reactions or networks.

SABIO-RK, extends and supplements the information content of these databases by storing
highly interrelated information about biochemical reactions and their kinetics, this last
mainly experimentally obtained. It includes reactants and modifying compounds (i. e. in-
hibitors or activators) of reactions, information about the catalysing enzymes, and the
kinetic laws governing the reactions, the latter with their parameters and information about
experimental conditions under which they were determined. Data about biochemical reac-
tions and their rate equations and parameters can be exported in SBML file format.

Most of the above mentioned databases manually obtain their information from publica-
tions. Data is typically loaded using in-house software, which has been designed on the
basis of the structure of the underlying database. However, the ideal case would be that
experimentalists or modellers could use a standard format to report their findings and that
this format could be used by the databases to import kinetics data. Systems biologists use
SBML format [4] to exchange models of biochemical reactions. However, it does not offer
support to describe much of the information that documents the conditions and constraints
of a given model or single experiment, unless this information is included in an unstruc-
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tured open format as a comment or a description of the model. Information such as: under
which experimental conditions does the model hold, or for which organism the data is
reported, are not supported by SBML. It is planned however that this will change in the
near future. In order to facilitate the integration of information the SBML community has
incorporated and recommends the annotation of SBML files with references to controlled
vocabularies and ontologies (see [5]). The STRENDA [6] (Standards for Reporting En-
zymology Data) commission is working on the definition of a standard for reporting on
enzyme activity. The standard should contain the minimum amount of information that
should accompany any published enzyme activity data. The use of references to controlled
vocabularies and ontologies is also of great importance for the implementation of the
STRENDA guidelines.

In this paper, we will report on SABIO-RK and the input interface used to load and store
information about reactions and enzyme kinetics, and how this interface matches in most
points with the current definition of the STRENDA standards especially with respect to the
kinetics of enzymes and reactions. This interface would enable scientists to enter the results
and conditions of their experiments into the database and to export these using a (to be
defined) STRENDA format that can then be used to exchange the data.

SABIO-RK (System for the Analysis of Biochemical

Pathways-Reaction Kinetics)

SABIO-RK is an extension of the SABIO (System for the Analysis of Biochemical Path-
ways) biochemical pathway database, also developed at EML Research [7]. SABIO stores
the fundamental information about biochemical pathways, like reactions and their partici-
pants (enzymes, compounds, etc.). It also offers support for the storage of information
about proteins, protein complexes and genes, all this linked to organism (including strains)
and to biochemical reactions (in the case of enzymes). SABIO integrates data from differ-
ent sources, to establish a broad information basis. Most of the reactions, their associations
with biochemical pathways, and their enzymatic classifications (enzyme classifications of
the International Union of Biochemistry and Molecular Biology [8]) are extracted from the
KEGG database (Kyoto Encyclopaedia of Genes and Genomes) [9].

SABIO-RK combines the data about biochemical reactions stored in SABIO with informa-
tion about their kinetic properties. The kinetic data is mainly manually extracted from
published scientific articles and then verified by curators. A kinetic law � if available in
the article � is associated with a biochemical reaction (defined in terms of its substrates,
products and modifiers) and its catalysing enzyme (typically defined by an Enzyme Clas-
sification number and a description of the enzyme variant, e. g. isoenzyme or mutant). A
reaction can have multiple kinetic laws defined within one or multiple publications. This
may depend on environmental and experimental conditions, enzyme variants, and the
absence or presence of modifiers. As we will see in the next section, a kinetic law entry
will contain data about the organism, tissue, and cellular location where the reaction takes
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place, as well as the type of the kinetic law and the reaction's rate equation. The latter is
shown with its parameters and the experimental conditions (e. g. pH, temperature, buffer)
under which the parameters were determined or for which the parameters hold.

The SABIO-RK database has been conceived to serve the Systems Biology community as
its main user. However it also contains useful information for experimentalist or research-
ers interested in information about biochemical reactions and their kinetics. It aims to
support modellers with high quality data in setting up in-silico models describing biochem-
ical reaction networks.

Figure 1: General concepts contained in the SABIO-RK database. (We have included
plural definitions to facilitate reading.)

Figure 1 shows a general concepts contained in the database (not corresponding to tables in
the database) and their relations. The current version the SABIO-RK web interface allows
users to perform searches for reactions by specifying characteristics (one or many) of the
reactions of interest (Fig. 2). For example the user can specify the pathway to which the
reactions searched should belong to, e. g. Glycolysis; or he or she can specify one or more
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reaction participants (reactants or enzymes), organisms, tissues, or cell types in which the
reaction is reported to occur. Additional search terms include cellular locations, environ-
mental conditions (pH and temperature), or publications in which kinetic data are reported.
The next version of the interface will also enable the user to search for networks or paths of
reactions between two compounds or enzymes.

Figure 2: Search facilities in SABIO-RK. Currently the system only offers the pos-
sibility of searching for reactions and their kinetics, but we plan to expand the search
facilities to search for enzymes, specific parameters, and for compounds.

The system retrieves all entries satisfying the given criteria and indicates whether there is
kinetic information available. A three colour-code is used to indicate this. Green means that
for the associated reaction there are kinetic data available matching all search criteria. For a
search like “find all reactions within the Glycolysis pathway for Homo sapiens which take
place in liver”, this would mean that there is kinetic data reported on the respective reaction
in human liver. Yellow means there are kinetic data available, but not matching all search
criteria. For example, the kinetic data were not determined for Homo sapiens but for Rattus
sp, or not in liver but in heart. Red indicates that there are no kinetic data stored for the
reaction reported.
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Apart from showing the availability of kinetic data for the specified reactions, the system
will also indicate whether there is kinetic data available for the enzymes catalysing each of
these reactions (see Fig. 3). We took this approach to offer complementary or alternative
information about kinetic data for related reactions catalysed by the same enzyme. The
availability of kinetic data for the enzyme is shown using the same three- colour code as
used for the reactions. By clicking on a reaction, further information about it is displayed:
Reactants, pathways in which it participates and enzymes catalysing this reaction that are
reported with kinetic data in the database for a specific organism. Additional information
about the enzyme (name, synonyms, classification and reactions it catalyses) can similarly
be obtained by clicking on the EC number.

Figure 3: Results screen, showing the entries found for the given criteria (Glycolysis
in Homo sapiens) and for each of these the availability of kinetic data.

From the result screen listing the specified reactions, the user can view the kinetic data
belonging to each reaction, or all kinetic data available for the enzymes catalysing this
reaction. In a new window the entries containing kinetic data for one reaction or one
enzyme are listed. The user is presented with an overview showing for each entry the data
on organism, tissue, enzyme classification and the variant of the enzyme. The expanded
version of an entry shows all the kinetic data and additional information extracted from a
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publication, like environmental conditions. The information source of each database entry
is indicated and linked to the PubMed database [10] in order to allow the user to refer to the
original publication (Fig. 4).

Figure 4: Kinetic data entry.

The results on reactions and their corresponding kinetic laws and parameters can be stored
and exported in a SBML (Systems Biology Mark-Up Language) formatted file. This format
has been established as a standard exchange format between different tools including
modelling and simulation software. The export is facilitated by using the libSBML API
[4]. Not only single reactions, but also reaction clusters can be exported. The SBML file
lists all the compounds (named species in SBML) belonging to the reactions as participants
or modifiers. If a compound is present in more than one reaction, it will only be defined
once in the file and will be referred to in the corresponding reactions. Thus, the reactions
are coupled by the overlapping compounds.

Due to the limitations of the SBML file format, the data exported requires some simplifica-
tions. For example no information about the experimental conditions, under which the
parameters were determined, can be exported yet, although we plan to incorporate this
information as annotations in the SBML file. Because parameter values can only be single
values but no ranges, we include as parameter value the mean of the parameter range (if
given). Also, the standard deviations of the parameters stored in the database, cannot be
exported. Another restriction of the SBML format is the limitation to one kinetic law for
each reaction. Thus, multiple kinetic laws (e. g. pseudo-first order kinetics) for one and the
same reaction cannot be exported in one file.

As of June 2006, data of over 520 publications were inserted into the SABIO-RK database,
corresponding to over 5100 database entries for 1100 different biochemical reactions and
325 distinct EC classes in 194 organisms. The stored parameters mainly describe steady-
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state kinetics for metabolic reactions. Around 40% of all entries have a rate equation. The
database entries describe around 4600 enzyme activities (like rate constants, kcat or Vmax),
4600 Km and 1000 Ki (inhibitor constant) values.

Data Input

The information about the kinetics of biochemical reactions is mainly extracted from text in
a manual process carried out by student helpers. They use a web-based interface (Fig. 5) to
enter the data into a temporary database. The main objective of this user interface is to
supply a uniform format that the students and curators can employ to include the data found
in the publications. The interface supports the students by pre-processing the data intro-
duced and by offering the possibility to choose terms from predefined thesauri (here of
course also allowing the introduction of new terms); this helps to avoid redundancies just
because of aberrant notations or typing errors. The system will verify amongst other things
if the parameters defined in a kinetic law are all defined as parameters, even if they do not
have values associated with them.

Figure 5: Input of the reaction data (substrates, products and modifiers) together with
information about the pathway (optional) and about the enzyme.

Ideally students extract the following information for each reaction reported within a
publication:

. Reaction defined by substrates and products

. Modifiers of the reaction (activators, inhibitors, catalysts, cofactors)

. Cellular location of compounds

. Enzyme classification number

. Swiss-Prot accession number(s) (of the enzyme)

. Variant of the enzyme (wild type or a certain isoenzyme or mutant)

. Kinetic law type (e. g. Michaelis–Menten, Ping–Pong Bi–Bi)

. Kinetic law formula
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. Kinetic parameters (e. g. Km, kcat, Vmax)

. Concentrations used for reactants, enzymes and modifiers

. Experimental conditions (e. g. temperature, pH, buffer composition)

. Biological source (e. g. cell type, tissue, organism, strain)

. Information source (reference)

For most of this information, comment lines are available to add information, for example
about synthetic, labelled derivatives of physiological compounds or host organism for a
recombinant enzyme.

In order to provide a better understanding of the interface, let us now go over the support
offered by the system in the introduction of the fields mentioned above.

Input of reactions’ data
To begin with, the student may enter some of the names of the reactants (substrates and
products; we will also refer to these as species), followed by a database search which in
turn displays all reactions stored in the database in which the reactants are involved. By
choosing the appropriate reaction, all relevant information is automatically extracted from
the database and displayed in the corresponding fields such as: species name, species
stoichiometry and species role (substrate, product). However, it might be that the reaction
is not found; in this case the user may enter all information manually. After the introduction
of the substrates and products (in which ever way), the species can be associated to a
location; this is also supported by offering a list of locations. Determining whether a
reaction or a compound is already included in SABIO, is not a trivial issue, given that
the search by name may not suffice to determine synonymic expressions. If a new reaction
is given curators have to verify (as much as possible) whether this reaction is really new or
if it is already in the database with a different notation. To support the curators, we are
working on the development of linguistic methods to obtain compound structures from
names and compare compounds at the level of their chemical structure [11].

Apart from the reactants the user should specify information about the enzyme (if applic-
able) like enzyme classification of the reaction plus Swiss-Prot identifier(s) of the protein
or protein complex. The information of the pathway in which the reaction participates is
optional; for reactions in the database this information is already present.

Addition of kinetic laws (Figure 6a)
By the addition of the kinetic law information, the user is supported by providing a list of
possible kinetic law types. Originally the system automatically offered a default formula
for each type, which could be used by users as a basis; however this feature has been taken
out by petition of the users, who manifested the preference in directly introducing the
mathematical formula as specified in the paper. The user can define parameters and vari-
ables for the kinetic law. In order to avoid the proliferation of unit definitions, the user is
supplied with a list of units. New units can be added, but this is not encouraged unless
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completely necessary (no equivalent found in the list). Additionally, the user is supported
by some verification procedures: all parameters and species referred to in the kinetic law
formula must be defined in the parameter and species lists, respectively; the brackets in the
kinetic law formula must be mathematically correct; naming of parameters must be con-
sistent with SBML rules (e. g. no special characters allowed); parameter types can only be
chosen from a given list of predefined terms (e. g. Vmax, Km, Ki); in case of a parameter–
species relationship (e. g. for Km or concentration value)only predefined species from the
reaction list can be entered. In addition to this, a browser plug-in has been implemented to
allow the visualization of the kinetic law formula as a mathematical formula and not just as
text, helping to verify its correctness.

Experimental conditions (Figure 6b)
In this section the user should introduce the experimental conditions under which the
kinetics were determined. Currently we consider the pH, temperature and the specification
of the buffer, but the system allows the introduction of other conditions.

Figure 6: Input of the kinetic data (a) along with the information about the environ-
mental conditions under which these were determined (b).

General Information (Figure 7)
In this section of the entry form the user is asked to give information about the organism
and tissue (if known) for which the kinetics were determined. Here again the user is
supported by lists of names. Although these fields should belong to the experimental
description, they have been put here due to the fact that typically a publication will report
on the kinetics for multiple reactions under multiple experimental conditions, however the
organism and tissue are commonly constant within a publication. All data in the general
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section can be kept for its use for several kinetic data entries. The information source
should also be given in this section, this is a compulsory field (there cannot be any entry
without information source). The user can select from the list of publications in the
database (using a search function) or introduce a new source. Also included in here is
the possibility to add comments (general to the entry) and currently we have a field to
indicate whether or not the paper provides detail information about the reactions mechan-
ism; this information will be used when the system supports a detailed description of the
reactions’ mechanisms (see future plans).

Figure 7: Input of complementary information to the entry, which very often is shared
amongst many entries within the same publication.

Before the data is finally transferred to SABIO-RK, it is approved, complemented, and
verified by a team of biological experts so as to detect possible errors and inconsistencies.
The curators are faced with problems like synonymic or aberrant notations of compounds
and enzymes, multiplicity of parameter units and missing information about assay proce-
dures and experimental conditions. Frequently, the methods used are described fragmenta-
rily or by a simple reference to another publication, which in turn refers to a third publica-
tion. Hence, it is sometimes almost impossible to get the complete description. Moreover,
the description of a buffer can be very complex, containing for example information about
coupled enzyme reactions or synthetic derivatives of physiological compounds. Chemical
compounds and enzymes often have various alternative names, organisms can be described
by their common or systematic name, and units of kinetic parameters and concentrations can
be written in different ways or can be based on different unit systems. Furthermore, we are
often faced by the problem of missing or partial information in the literature. For example, a
reaction definition can be incomplete, which means that only substrates of reactions are
named without a definition of the reaction products. If the chemical mechanism of the
enzymatic reaction is known, the reaction equation can be completed, but in most cases
this work is very time-consuming, and the result may also be imprecise.
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During the curation process, the data is unified and structured consistently in order to
facilitate the comparison of the kinetic data extracted from different sources, since it was
usually obtained under different experimental conditions or from different organisms,
tissues etc. Furthermore, structured data enable the user to conclude general rules concern-
ing the dependence of a biochemical reaction or an enzyme on environmental changes like
for example increase of temperature or pH variations.

The interface is also used by the curators to check and complete the entries, and supports
them in the administrational work (assignment of papers, statistics etc.). The publications to
be revised have been obtained from PubMed [9], by using several queries leading to papers,
which very likely contain information about biochemical reaction kinetics.

The information supported by this input interface covers most of the fields present in the
STRENDA commissions’ recommendations for the reports about reaction kinetics. Currently
the input interface is being used only internally by the development team on SABIO-RK,
however we hope that in the future experimental partners can directly introduce their data
into the database and make it thus available through the SABIO-RK database interface.

Future Directions

The SABIO-RK project started at the beginning of 2005. Currently the database contains
mainly data about metabolic reactions. However, since cellular signal transduction is a fast-
growing emerging field, one of our main objectives is to incorporate more kinetic informa-
tion about signalling reactions. This includes the representation of molecules in different
activation states, for instance modifications of signalling molecules like phosphorylation or
acetylation of proteins. Another very important objective is the incorporation of detailed
information about reactions’ mechanisms. This will allow the user to obtain information
about the kinetic properties of sub-reactions or binding mechanisms of enzymes and sub-
strates. As mentioned in the data input section, we are keeping track of the publications
having this information to facilitate the process of returning to the adequate literature. An
extension of the data model to store reactions’ mechanisms and the corresponding kinetic
data has already been developed and will soon be implemented together with adaptations of
the user interface.

In order to allow the users to refer to additional information about reactions, pathways,
chemical compounds and enzymes, we are working on the cross-linking and annotation of
the database content to other database resources. In addition, we will apply and annotate
controlled vocabularies and ontologies such as those specified in the Open Biomedical
Ontologies (OBO) [12] to enhance the standardization and comparability of the data stored
in SABIO-RK. With these goals, we will adopt the proposed set of rules for the annotation
of biochemical models described in MIRIAM (Minimum information requested in the
annotation of biochemical models) [5]. The annotations will not only be used for cross-
linking our database to other resources, but also can be exported in the SBML files.
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The information describing environmental conditions under which the parameters were
determined, as well as the literature source from which the data was extracted, cannot be
completely exported in a structured and defined format in SBML. For this reason, we plan
to define new XML based export schemas, in order to facilitate the exchange of detailed
kinetic information together with their constraints.

On the side of the user interface of SABIO-RK we are working on the extension of search
facilities, less reaction oriented, to permit searches for parameters and kinetic laws, e. g.
search for all reactions that follow a certain kinetic law type or for all enzymes of the
pathway glycolysis for which Km values are known. Also planned in the near future is to
enable the user to search for networks or paths of reactions between two compounds or
enzymes. Visual display of the reactions found as well as of the kinetic parameter values is
also scheduled.

One of our biggest aims is to convince scientists to use the input interface to enter data
directly into the database. As a result, all the needed information can be given by the
experimenters and no information is lost. In doing so, users would be able to directly
compare their own experimental results in SABIO-RK with similar kinetic data extracted
from literature or entered by other users.

Summary

SABIO-RK is a database storing highly interrelated information about biochemical reactions
and their kinetics, within the context of cellular locations, tissues and organisms. The
database has a web-based user interface that enables the user to search for biochemical
reactions and their kinetics, based on the characteristics of the reactions and on the environ-
mental conditions under which its kinetics were obtained. Although the main motivation of
SABIO-RK was to act as a resource for modellers of biochemical networks to assemble
information about reactions and their kinetics, the database is also aimed at experimenters
wanting to obtain information about reactions kinetics and compare their own results with
similar published data. The kinetics data is mainly extracted from literature sources by
students and then revised and supplemented by a group of curators. The students employ a
web-based interface to introduce the data in a standardized format. We hope that in the future
both, experimentalists and modellers will be able to use this interface to directly introduce
kinetic study results of their respective experiments or simulations into the database.
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Proteases are enzymes catalysing the hydrolysis of peptides or proteins. They are key
players in a wide range of biological processes such as the release of peptide hormones,
nutrient acquisition, cell growth, differentiation, antigen processing and protein turnover, in
all living organisms. Furthermore it is becoming more and more obvious that the abnormal
functioning of some proteases may lie behind several types of diseases, including inflam-
mation, cancer and Alzheimer's disease. Therefore proteases are attracting an increasing
interest.

The MEROPS database, which is specialized in proteases, lists 555 known and putative
genes encoding proteases in Homo sapiens (31st of August 2006). The number of proteins
acting as proteases in the human organism may even be much higher, since proteins can
develop proteolytic activities although they are not assigned as proteases. The protein
disulfide isomerase A3 (PDIA3, primary accession number: P30101), which main function
is protein folding, is an example for the latter case [1,2], since Kito, Urade and coworkers
published convincing data about a protease activity of PDIA3 [1].

From many of these protease-encoding genes the endogenous substrates and as a result the
physiological roles are as yet unknown. One strategy for deciphering the physiological
roles of proteases is to start with known reaction products of the proteolytic action of
unknown proteases (Fig. 1). For example, the peptide urotensin-II, a potent vasoconstrictor,
is cleaved from its inactive urotensin-precursor by the proteolytic action of an unknown
protease. The knowledge of the sequence of both, the peptide urotensin and its precursor,
allows a reaction specific probe (substrate) to be developed, which can be used in an assay
like the MES (mass spectrometry assisted enzyme screening system) [1] for detecting
urotensin-II-generating activity. After having developed the enzyme assay it can be used
for screening for the presence of the target enzyme in protein fractions and guiding the
purification of the target enzyme to near homogeneity (Fig. 1). For the identification of the
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target enzyme the purified active fraction can be subjected to enzymatic cleavage and mass
spectrometric analysis of the enzymatic peptide fragments followed by database research.
After protein identification the results must be validated by either expressing recombinantly
the identified protein candidate or by simply purchasing it, if possible and by demonstrating
that the enzymatic activity and properties are identical to that of the purified enzyme and its
properties.

Figure 1 Scheme showing the strategy for detection, purification, identification and
verification of proteases from protein extracts.

The MES system is one of the core instruments within the protease-deciphering strategy.
Figure 2 demonstrates a typical read out of the MES system. In this case 2 different protein
fractions were monitored for angiotensin-II-generating activity by incubating the proteins
with the reaction specific probe angiotensin-I. Since the signal intensity of the reaction
product angiotensin-II in the incubate of fraction A increases faster with increasing incuba-
tion time than in fraction B, the angiotensin-II-generating activity of fraction A is higher.
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Figure 2. MES results of a MES assay monitoring angiotensin-II-generating activity
of 2 chromatographic fractions A and B. MALDI-MS spectra of the reaction products
of the incubation of immobilized proteins of fraction A and fraction B derived from
porcine renal tissue. AI: Angiotensin I; AII: Angiotensin II; A(1 – 7): Angiotensin
(1 – 7).

Mass spectrometry based enzyme assays are advantageous compared to UV- or fluores-
cence based enzyme assays because they give information about the identity of the reaction
products and about the fate of the substrate. The control of the identity of the reaction
products reduces the risk of false positive results. Being able to monitor the fate of the
substrate gives the opportunity to notice the presence of additional proteolytic activities
accompanying the target protease. An example for this latter case is given in Fig. 3A. The
MES mass spectrum was obtained after incubating a crude protein fraction obtained from
porcine renal tissue with angiotensin-I. In the spectrum in Fig. 3A, beside the signal of
angiotensin-II, additional signals point to the presence of several other peptidases. The
peptide des-Asp-A-I may be generated by the enzyme ACE-II, which is known to be
present in renal tissue and A(1 – 7) by the renal peptidase neprilysin. With increasing purity
of the angiotensin-II-generating activity the number of the additional peptides decreases.
Nearly homogenous fractions yield the signal of the reaction product of the target protease
only (Fig. 3B).
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Figure 3. Typical MES results of a MES assay monitoring angiotensin-II-generating
activity: MALDI-MS spectra of the reaction products of the incubation of immobi-
lized proteins of a raw extract of porcine renal tissue (A) and of proteins from a
fraction purified to near homogeneity. AI: Angiotensin I; AII: Angiotensin II;
A(1 – 7): Angiotensin (1 – 7); (des-Asp1)-A-I: des-asparaginc acid angiotensin I.

The experience with the mass-spectrometry based assay system MES results in the
1st suggestion:
Control experiments should include a mass spectrometric analysis of the enzymatic
reaction products thus minimizing false positive results, verifying the chemistry of
the catalytic conversion and being able to detect other accompanying enzymatic
activities, which may interfere with the target enzyme.

After purifying the active fraction to near homogeneity the protein will be identified
(Fig. 1). Usually within the purified fractions not only one but several proteins are identi-
fied. Therefore the question arises as to which of the identified proteases may have
proteolytical activities. Comparison of the own experimental data describing the properties
of the protease with those described in the literature helps to verify the identification data.
The verification procedure may be easy, if the identified protein is known as a protease, the
proteolytic activity is its main function and the enzymatic properties are well described.
However proteins may be identified, which have several different functions. An example
for the latter case is the protein disulfide isomerase A3 (PDIA3_human, P30101), which
major catalytic property comprises the disulfide isomerase activity. In such cases it has to
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be proven, if the proteolytic activity is physiologically relevant. Therefore a comprehensive
database analysis and analysis of the original papers is necessary. If this work will give
more confidence about the proteolytic activity of the candidate, the protein should be
recombinantly expressed to prove its proteolytic activity experimentally.

Performing the database analysis about the candidate usually is accompanied with some
trouble, arising from the many synonyms often used for a protein encoded by one single
gene and the still missing standardization of the nomenclature of proteins. Here an example
will be given. The database Swiss-Prot summarizes the following molecular functions of
PDIA3: Cysteine-type endopeptidase activity, phospholipase C activity, protein disulfide
isomerase activity, protein retention in ER, protein import into nucleus and signal transduc-
tion. In the next step the original papers have to be searched for. Using the synonyms
shown in Swiss-Prot for PubMed database searches yielded the results given in Table
1. Because of the confusion concerning nomenclature, some authors used several synonyms
within the title of their papers: “Association of the chaperone glucose-regulated protein
58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes” [1, 2].

Table 1. The numbers indicate the hits in the database search of PubMed performed
with the synonyms of PDIA3 without and with additional keywords.

Keywords
Synonyms

S Isomerase
+ human

Isomerase
+ human + protease

ERp57 119 73 5

p58 480 8 1

58 kDa microsomal protein 0

58 kDa glucose regulated protein 0

ER60 23 10 4

ER-60 32 10 5

ERp60 833 73 8

PDIA3 98 97 10

Table 1 lists only a few of many synonyms known for proteins encoded by the gene
PDIA3. A PubMed data base search was performed with each of the synonyms, with the
combination of the synonyms with the key words “isomerase” and “human” and with the
keywords “isomerase”, “human” and “protease”. The synonyms “p58”, “58 kDa microso-
mal protein”, “58 kDa glucose regulated protein” yielded the worst results, especially
“p58”, but also “ERp60” yielded a huge number of false positive results. More helpful
are the synonyms “ER-60”, “ER60” and “PDIA3”. However, only in those papers, where
the gene sequence of the amino acid sequence or the complete amino acid sequence is
given, one can be sure, that the protein described is identical with that described under
PDIA3 in Swiss-Prot. Therefore in many cases there remains some doubt, whether the
properties described in the publication really belong to PDIA3.
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Suggestion 2:

A standardized nomenclature for enzymes (and all other proteins) is needed, e. g. the
accession number, which gives an unambiguous hint towards its origin and which
should be used by all databases and all journals!

As soon as the database research has yielded positive results towards the proteolytic
function of the candidate protein a validation by an appropriate experiment is necessary.
In some cases a recombinant expression of the candidate protein may be circumvented
because it can be purchased. Independently from the source of the candidate protein it is
strongly recommended that both the identity and the purity of the candidate protein pre-
paration are checked. The following example demonstrates the importance of this recom-
mendation: A protease preparation was purchased, here named protease 1. A size exclusion
chromatography (SEC) of the protease 1 containing fraction was performed (Fig. 4). The
UV-absorption profile of the SEC chromatogram (Fig 4A) monitored at 280 nm already
shows that the protease 1 containing fraction is not pure. The protease 1 activity of the
fractions of the SEC was measured with an appropriate substrate. The protease 1 activity
co-eluted with the fraction with the highest UV absorption. An LC–MS analysis of the
tryptic peptides of the active fraction confirmed the identity of protease 1. Furthermore the
fractions were tested for the target enzyme activity with the MES assay described above.
Surprisingly the target enzyme activity eluted in front of the protease 1 fraction. The
purchased protease 1 fraction was chromatographed with an affinity chromatography and
an aliquot of the eluate was applied to the size exclusion chromatography again (Fig. 4B).
In the resulting fractions no protease 1 activity was detected any more beside the target
protease activity. An LC–MS analysis of the fraction with the target protease activity
confirmed that the target protease is not identical to protease 1.

The example of the impurified protease 1 demonstrates the need for controlling the
identity of the protease responsible for the activity as well as the control of the
purity. Without controlling the purity the false protease would have been assigned
with the defined proteolytic reaction.

The problem of impurities is also given with recombinantly expressed proteins, even
after passing affinity chromatography. Therefore suggestion 3 is recommended.
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Figure 4. Chromatograms of size exclusion chromatographies of a purchased protein
fraction before (A) and after purification (B) with an affinity chromatography. Black
bars: Activity of protease 1. Grey bars: Activity of the target protease.

Figure 5. SDS-PAGE analysis of the lysate of the host cells expressing a recombinant
protein with a His-tag and the eluate of a immobilized-Ni affinity chromatography
(Ni-IMAC)
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Suggestion 3:

Publishing data about the properties of an enzyme should also include 1, proof of the
purity of the enzyme fraction and 2, proof of the identity of the enzyme. The proof
of the purity should not be performed by SDS–PAGE but 2DE including identifica-
tion of all proteins visible in the 2DE-gel or tryptic digest followed by LC–MS/MS
analysis.
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Abstract

The BRENDA enzyme information system (http://www.brenda.uni-
koeln.de) is the largest publicly available enzyme information system
worldwide. The major part of its content is manually extracted from
primary literature. It is not restricted to specific groups of enzymes,
but includes information on all identified enzymes irrespective of the
source of the enzyme. The range of data encompasses functional,
structural, sequence, localization, disease-related, isolation, stability
information on enzyme and ligand-related data. Each single entry is
linked to the enzyme source and to a literature reference. Recently the
data repository was complemented by text mining data which is stored
in AMENDA and FRENDA. A genome browser, membrane protein
prediction and full text search capacities were added. The newly im-
plemented web service provides instant access to the data for pro-
grammers via a SOAP interface. The BRENDA data can be down-
loaded in the form of a text file from the beginning of 2007.

Introduction

The BRENDA (BRaunschweig ENzyme DAtabase) enzyme information system [1, 2] is a
manually annotated repository for enzyme data. Originally published as a series of books
[3] in 1987, it was integrated into a publicly available database in 1998 and has been
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curated and continuously improved and updated at the University of Cologne since then. Its
contents are not restricted to specific groups of enzymes, but include information on all
enzymes that have been classified in the EC scheme of the IUBMB (International Union of
Biochemistry and Molecular Biology) irrespective of the enzyme's source. The range of
data includes the catalysed reaction, detailed description of the substrate, cofactor and
inhibitor specificity, kinetic data, structure properties, information on purification and
crystallization, properties of mutant enzymes, participation in diseases, and amino acid
sequences. Each single entry is linked to the enzyme source (organism and, if applicable,
the tissue, and/or the protein sequence) and to the literature reference. Data queries can be
performed in a number of different ways, including an EC-tree browser, a taxonomy-tree
browser, an ontology browser, and a combination query of up to 20 parameters. However
the huge amount of literature on enzymes does not allow the manual annotation of the
complete literature for all enzymes. The capacity for manual annotation has been restricted
to ~8,000 references per year. To be able to include more literature, text-mining programs
have been developed. Recently, two additional databases (AMENDA and FRENDA) which
contain the results of these procedures, have been added to the BRENDA host. They
complement the existing database with respect to organisms, tissues and references.

Contents of BRENDA

At present, BRENDA contains ~1.9 million manually annotated data for more than 4,000
EC-numbers, on average 500 single entries per EC-number. These data are stored in ~120
tables in a relational database system enabling extensive search modes, i. e. quick search,
full text search, advanced search, substructure search, sequence search, TaxTree search,
ECTree browser, searches in the Genome browser, and searches in more than 20 different
ontologies.

Functional parameters
In total BRENDA holds data for > 140,000 kinetic parameters (Table 1). In addition to the
numeric values, the experimental conditions are given in a commentary as a text in order to
account for the different procedures for enzyme characterization in the laboratory. A web
portal for the deposition of enzyme kinetic parameters has been developed in cooperation
with the STRENDA commission (http://www.strenda.org/) [4]. This will increase the avail-
ability of well-defined kinetic parameters that are essential for systems biology approaches.
Each entry in BRENDA is linked to a literature reference. This makes it possible to retrieve
detailed information from the original literature (provided the literature is accessible as
online version).

The pI-value has recently been included into the section of functional parameters. The
isoelectric point provides information about the pH at which the protein carries no net
electrical charge. This value is of significance for the purification procedure allowing
conclusions about the solubility of the enzyme and its motility in electrophoretic proce-
dures. Presently BRENDA contains more than 1,700 pI-values.
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The reactivity of mutant enzymes can reveal detailed insights into the catalytic process and
may give valuable clues about the active sites, the mechanism of the reaction, or the
regulation. Meanwhile ~19,000 engineered enzymes are described in the database. For
each single modification of the protein sequence, the properties of the resulting enzyme
are described. Kinetic data for these enzymes are included in the respective database
sections.

Table 1. Data statistics for the various sections of the database.

Enzyme Information Single Data*

Nomenclature 70972

Isolation & preparation 53364

Stability 34532

Reaction & specificity 396760

Enzyme structure 232824

Functional & kinetic parameters 191134

Km Value 76894

Ki Value 14014

pI Value 1745

Turnover Number 20493

Specific Activity 30070

pH Optimum 26220

pH Range 6344

Temperature Optimum 13354

Temperature Range 2000

Organism-related information 80964

Source Tissue 56557

Localization 24407

References 91403

Enzyme application 3854

Enzyme-related diseases 52558

Mutant enzymes 18194

* These numbers refer to the combination of enzyme–organism–
(protein-)value.

Organism-related information
Because enzymes and their properties vary greatly depending on the organism (e. g. eu-
karyotic or prokaryotic) it is highly important to link enzyme data to their source organism.
Presently BRENDA covers information on enzymes of more than 7,500 different organisms
(Fig. 1). With ~170,000 single data human enzymes are the most thoroughly described in
the literature, followed by enzymes of the rat (~132,000 entries) and Escherichia coli
(~93,000 entries).
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Figure 1. Organism coverage in BRENDA data.

All organisms are integrated into the BRENDA TaxTree (Fig. 2). The researcher may
search along the TaxTree or switch to higher or lower branches to get an overview in
e. g. a class or family or may focus the search on a specific species. Most of the TaxTree
entries are linked to the NCBI taxonomy database. A small number of organisms cannot be
linked to this tree because they do not appear in the NCBI taxonomy tree.

Figure 2. Sample of the search in the TaxTree.
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BRENDA tissue ontology
For multicellular organisms it is not sufficient to relate enzyme data to the organism alone.
The biochemical and molecular properties of one enzyme in different tissues or cell types
can vary enormously. The information about the source of an enzyme, i. e. the tissue or
cell-lineage therefore is vitally important. The occurrence of enzymes can be restricted to a
specific cell type, cell line, or tissue from uni- and multicellular organisms, or can occur
ubiquitously. BRENDA has developed its own ontology [1] in which the tissues are sorted
hierarchically, corresponding to the format and rules of the Gene Ontology Consortium [5].
The tissue tree in BRENDA is divided into four areas, i. e. animal, plant, fungi and other
sources, separated into subtrees. Most of the terms have definitions and synonyms which all
can be displayed in the hierarchical tree.

In addition to the occurrence of the tissue, the localization of the enzyme within the cell is
given. BRENDA provides a controlled vocabulary in cooperation with the GO consortium.
A common shared vocabulary of the cellular components terms has been developed.
Both, the tissue and localization terms are classified in a concise ontology and the localiza-
tion vocabulary is consistent with the GO terms.

Figure 3. Sample of the search in the BRENDA Ontology (BTO).
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Ligands and metabolites
Enzymes interact with ligands in manifold ways. These can be substrates, products, pros-
thetic groups, cofactors, but also activating, stabilizing or inhibiting compounds. The present
version contains ~88,500 different ligand names. Of these 52,250 molecules are stored as 2D
structures in MOL-format. Generic compound names (e. g. “dextrans” or “carboxylic acid”)
amount to ~10,000 entries. Applying the organism-specific search option ligands occur in:

. 737,240 enzyme/ligand relationships

. 424,186 enzyme/substrate relationships

. 396,270 enzyme/product relationships

. 16,010 enzyme/cofactor relationships

. 107,331 enzyme/inhibitor relationships

. 17,563 enzyme/activating compound relationships

. 26,303 enzyme/metal or ion relationships

When searching for enzyme ligands or response modifiers two different query procedures
are possible:

. Using the name of the compound: This option returns not only the data stored for
the ligand under the given name but applies the integral molecular thesaurus.
The newly generated thesaurus is based on the InChI (IUPAC International
Chemical Identifier) [4] codes of the molecular structures stored as molfiles.
An InChI is a non-proprietary identifier for chemical substances that can be used
in printed and electronic data sources thus enabling easier linking of diverse data
compilations. In earlier versions of the database unique isomeric SMILES [7, 8]
were used for the calculation of the thesaurus. This procedure has been aban-
doned since it sometimes caused problems with complex structures.

InChI = 1/C 21H36N7O16P3S/c1 – 21(2,16(31)19(32)24 – 4-3 – 12(29)23 – 5-6 –
48)8 – 41 – 47(38,39)44 – 46(36,37)40 – 7-11 – 15(43 – 45(33,34)35)14(30)20(42 –
11)28 – 10 – 27 – 13 – 17(22)25 – 9-26 – 18(13)28/h9 – 11,14 – 16,20,30 – 31,48 H,3 –
8H2,1 – 2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-
,14-,15-,16+,20-/m1/s1/f/h23 – 24,33 – 34,36,38 H,22H2

Figure 4. Structure and InChI code for coenzyme A.
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. Performing a substructure search (Fig. 5) with the integrated JME Editor [9].
This is an easy to use Java application for drawing molecules. The search can be
restricted to a specific function (e. g. substrates). The results page displays the
images, names, and synonyms of the found compounds, their function when
interacting with the enzyme and also provides a button for an immediate BREN-
DA search.

Figure 5. Substructure search.

New Databases at the BRENDA Host

For the BRENDA enzyme database the references for manual annotation are chosen from
the results of database searches in literature databases such as PubMed [10] and Chemical
Abstracts (SciFinder) [11]. For some enzyme classes it is possible to include the complete
literature that has been published for a specific enzyme. For the vast majority of enzymes,
however, this is impossible for several reasons.

. the number of annually published references is too large to keep up with in the
manual annotation capacities

. The literature on enzymes also covers aspects which are not in the focus of the
BRENDA database. These may be reports on the genome-annotation, global
expression of proteins, and literature in which the enzyme is used in a standard
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assay as a tool without any information on the enzyme's properties. References
of this kind are not taken into consideration for BRENDA since they would only
increase the statistic number of references per enzyme without providing more
information and may even reduce the conciseness

For specific projects the user however might wish to retrieve a complete list of references
for an enzyme. This would require a PubMed [10] search not only with the recommended
name of the enzyme, but also with all the synonyms which are used. Conducting a single
search for each synonym might be very time-consuming because most enzymes are used
with different names, some even with hundreds of names as can be seen from Table 2

Table 2. Multiple synonyms for enzymes.

EC-number Recommended Name No. of Synonyms

2.7.10.1 receptor protein-tyrosine kinase 416

3.1.21.4 type II site-specific deoxyribonuclease 368

1.6.5.3 NADH dehydrogenase (ubiquinone) 169

3.1.3.48 protein-tyrosine-phosphatase 176

5.2.1.8 Peptidylprolyl isomerase 161

Similarly, searching for the complete literature on an enzyme in a specific organism or
tissue would require searching with all known synonyms, common and scientific names.
Since especially organism names have changed frequently because of taxonomic require-
ments a search in PubMed [10] with organism synonyms would require much time and a
good knowledge in taxonomy. Similarly a search for an enzyme in a specific tissue would
require a detailed knowledge of animal or plant anatomy.

In order to provide complete sets of references for all enzymes two databases were added at
the BRENDA host.

FRENDA
FRENDA (Full REference ENzyme DAta) is an additional database to BRENDA avail-
able to the academic community with BRENDA release 6.2 (June 2006). FRENDA aims at
providing an exhaustive collection of indexed literature references containing organism-
specific enzyme information. Compared to a standard PubMed [10] query, FRENDA also
returns all references on the enzyme published under one of its synonyms.

FRENDA currently covers 1.4 million enzyme/organism combinations from 550,000 dis-
tinct references, automatically extracted from more than 16 million PubMed abstracts (June
2006) [10]. The scientific articles are pre-filtered using MeSH terms [12] � only references
declared as ”enzyme” hits are used (1.6 million remaining abstracts). FRENDA uses a
dictionary-based approach for recognizing named entities (enzymes, organisms) in titles
and abstracts. The dictionaries are compiled from BRENDA and NCBI Taxonomy [10].
The text-mining proceeds in a two-step approach:
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1. Identification of the enzyme names (recommended names and synonyms) in
title, abstract or MeSH terms,

2. Searching for co-occurring organism names (scientific names and synonyms) in
title, abstract or MeSH terms.

The results of this indexing process were classified into 4 reliability categories depending
on the occurrence of search terms in title and/or abstract and/or MeSH terms.

. Enzyme name and organism occur in the title or abstract but not in the same
sentence. These hits are discarded.

. + Enzyme name and organism occur in the same sentence in the abstract or they
both occur in the title

. ++ EC-number occurs in the MeSH-Terms or in the abstract, the organism
occurs in the title or in the Abstract

. +++ Enzyme name and organism occur in the same sentence in the abstract and
they both occur in the title

. ++++ Enzyme name and organism occur in the same sentence in the abstract,
they both occur in the title and the EC-number is found in the abstract or in the
MeSH terms

This classification is provided with the commentaries in the FRENDA database.
The manual evaluation of the quality of the FRENDA approach using 250 randomly chosen
results indicates a precision of 64.8% with a recall of 72% from a set of 250 manually
annotated enzyme-related literature references.

AMENDA
As a subset of FRENDA, AMENDA (Automatic Mining of ENzyme DAta) currently
covers organism-specific information on enzyme localization (more than 30,000 records,
compared to 17,000 records in BRENDA) and source tissues (roughly 150,000 records,
compared to 38,000 records in BRENDA) from a text-mining procedure (to be published).

Search terms for enzyme names, organism names, localization, and sources and tissues are
compiled from BRENDA enzyme synonyms, the BRENDA tissue-tree
(http://obo.sourceforge.net/cgi-bin/detail.cgi?_brenda) and the NCBI Taxonomy [10].
AMENDA is based on the FRENDA co-occurrence approach. Protozoa, viruses, and bac-
teria are excluded for tissue search. References with enzyme/organism hits are searched for
occurrences of tissue terms (singular and plural) and localization terms in title, abstract, and
MeSH terms and further evaluated based on text-mining criteria.

. + Enzyme name, localization (or tissue), and organism (or the corresponding
synonyms) occur in the title or in the same sentence in the Abstract
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. ++ Enzyme name, localization (or tissue) and organism (or the corresponding
synonyms) occur in the title. EC-number is contained in the MESH terms as-
signed to this article or EC-number occurs in the Abstract

. +++ Enzyme name, localization (or tissue), and organism (or the corresponding
synonyms) occur in the title and in the same sentence in the Abstract

. ++++ Enzyme name, localization (or tissue) and organism (or the corresponding
synonyms) occur in the title and in the same sentence in the abstract. EC-number
is contained in the MESH terms assigned to this article or EC-number occurs in
the Abstract

The text mining approach described above was tested on 200 randomly selected results. A
precision of approximately 76.0% for the combined search terms enzyme–organism–tissue/
localization was achieved. In a way similar to FRENDA, the commentaries indicate the
individual reliability level for each data set.

When searching for enzyme data the user can choose which data should be displayed. In
the default selection only the manually annotated BRENDA data are displayed. With each
data set an additional box is displayed which gives the choice to display FRENDA resp.
AMENDA results. Entries from these databases are specifically flagged in order to distin-
guish them from the BRENDA data.

Figure 6. The databases AMENDA and FRENDA can be displayed simultaneously
with the BRENDA data.
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BRENDA Genome Explorer

The BRENDA Genome Explorer is an enzyme-centred genome visualization tool for
browsing and comparing enzyme annotations in full genomes. It closes the gap between
genomic and enzymatic data and allows the alignment of genomes at a given enzyme-
coding gene and its orthologs, thus allowing visual comparison of the genomic environment
of the gene in different organisms (Fig. 2). The underlying genome database is compiled
from EBI Genomes [13] and ENSEMBL [14] and supplemented by UniProt [15] annota-
tions. It can be searched for specific proteins via names, EC-numbers, or UniProt acces-
sions, allowing for a highly target-oriented search.

Figure 7. BRENDA Genome Explorer showing a part of a genome alignment for
Escherichia coli erythronate-4-phosphate dehydrogenase, EC 1.1.1.290.
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Transmembrane Protein Prediction

Transmembrane helices for enzymes are predicted with TMHMM (TransMembrane Hidden
Markov Model) developed by Sonnhammer et al. [16]. With the aid of this tool it is
possible to predict the number, the size and the location of trans-membrane helices, thereby
discriminating soluble and membrane-bound enzymes.

Figure 8. Characteristic output of the trans-membrane prediction tool.

Accessibility

BRENDA is accessible via the various search options (quick search, advanced search,
ontologies, sequence search, Genome Explorer etc.). The database will be downloadable
as a text file from January 2007 on. Access to AMENDA and FRENDA requires a
registration.
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SOAP-Based Web Service

Web services provide a simple way to access the data collection without the need for
downloading, parsing, and preparing an entire database for local queries. Web services
are independent of the internal organization of the database and avoid parsing problems
caused by changes in the text file structure.

BRENDA now provides a SOAP (Simple Object Access Protocol, http://www.w3.org/TR/
soap) based web service comprised of 148 methods covering 52 data fields. Flexible
queries can be performed directly from programs written in different programming lan-
guages (Perl, Java, C++, Python, PHP) on data fields such as substrate, Km-value and pH-
optimum. For any given record returned, a set of complete literature references can be
retrieved using unique reference identifiers. Every data field may be queried by providing
at least one of the three parameters EC-number, organism, or � if applicable � ligand
structure identifier. The ligand structure identifier, which can be queried with the name
of a chemical compound, is used to ensure that all synonyms for a given molecular
structure are also retrieved.

The BRENDA web service also gives access to the data using identifiers from other
databases like UniProt [14] or NCBI Taxonomy [10], as well as ontologies like Gene
Ontology [5] or BRENDA Tissue Ontology [1]. The ontology-based search allows for
queries based on entire branches of the hierarchy, avoiding a complex search for all leaves
in the given branch. For example, an ontology-based search for the term 'brain' or the
respective Gene Ontology identifier will return all tissues and cell types under the umbrella
term 'brain'. The same method can also be applied to search for whole groups of organisms.
The documentation of the BRENDA web service including examples in different program-
ming languages is available at http://www.brenda.uni-koeln.de/soap.

Conclusions

The BRENDA enzyme information system has made a big step forward not only by a
formidable increase in the annotation speed but also by inclusion of data based on text-
mining approaches and by the development of different new methods for data access. The
new funding by an EU grant allows the annotation speed to be increased even further to
bring the backlog down to less than one year and will also allow a substantial increase in
the percentage of ligands with full structural information.
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Abstract

In this contribution we report on the JWS Online project and the
progress that has been made since the first ESCEC meeting. Whilst
maintaining the same user interface, we have completely redesigned
the server part of JWS Online, now a) using webMathematica as the
interface between the HTML pages and the Mathematica [1] Kernel
and b) storing all models as Mathematica packages, and c) using a
PostgresQL [2] database to store a full description of each model.
In the last few years a number of new initiatives have started, of
which some fulfil comparable roles to JWS Online and with some
of which we collaborate. Here we compare JWS Online to these
initiatives focusing on the three aims of JWS Online: 1) to be a
repository for curated kinetic models of biological systems, 2) to be
an easy to use simulator that can be accessed over the internet, 3) to
help in the reviewing of manuscripts containing kinetic models.
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Introduction

Mathematical Biology has a long history, especially in the field of population dynamics,
with famous examples such as the description of Fibonacci for the growth of an idealized
rabbit population and the Lotka–Voltera equations for predator–prey interactions. In these
earlier models equations were often selected more on the basis of ease of use in mathema-
tical analysis and less on knowledge of the biological system. In the neurosciences the work
of Hodgkin and Huxley was a major breakthrough, not only for the understanding of the
generation of the action potential but also in their approach to build a kinetic model of the
neuron using kinetic parameters that were experimentally determined. More recently there
has been a tremendous increase in the interest of applying kinetic models in the field of
molecular and cellular biology. Whereas pioneering work in this field was done in the
1960 s by Chance, Garfinkel, Higgins and Hess e. g. [3], an enormous increase in the last
decade in the construction of detailed kinetic models can probably be related to 1) the
development in experimental fields (e. g. genomics) leading to detailed and information-
rich data sets, 2) the increase in computing power and strength of simulation tools and 3)
further development of strong analysis frameworks, (e. g. dynamical systems analysis,
metabolic and hierarchical control analysis). The combined use of such theoretical, com-
putational and experimental approaches has been characteristic for the field of Systems
Biology, developed over the last five years, aiming at an understanding at a systemic level
via the integration of our knowledge of the system's components (including their interac-
tions).

Detailed kinetic models form a core component of Systems Biology studies. These models
contain the experimental information on the components of the systems and their integra-
tion should result in the systemic behaviour observed for the complete system. These
models are different from the traditional models that are made as simple as possible; such
so-called core models are used to test a hypothesis or to illustrate a theoretical concept.
Their simplicity makes core models amenable to robust mathematical analysis, without
being sidetracked by unnecessary detail. Examples are the two and three variable models
often used in bifurcation analysis of dynamic systems. Core models are important to get an
understanding of the general behaviour of a system or a set of equations but it is often not
possible to directly relate the model to experimental data and model validation is often
made in more qualitative terms. In addition to these core models, systems biology has a
need for a different kind of model, with a high level of detail and a direct, mechanistic
interpretation of the model components. In the Silicon Cell initiative we have advocated
the use of models with a high level of detail, containing experimentally determined para-
meter values (e. g. [4, 5]). We suggest measuring the model parameters of the isolated
components (either in vitro or in vivo) and validating the model against the behaviour of the
complete system, thus clearly separating model construction from model validation. In
addition we suggested a modular approach, i. e. building detailed models of parts of the
system, subsequently validating these models and combining them, followed by an addi-
tional round of validation. Ultimately such an approach would lead to a kinetic description
of a complete system, for instance making a detailed kinetic model for the yeast Saccha-
romyces cerevisiae.
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The Silicon Cell initiative would result in a significant number of models to be constructed.
Even a simple unicellular system contains several thousand reactions, and a sensible split
over modules would need to be made. Adding to the complexity is the capacity of living
organisms to adapt themselves via regulation at the level of gene expression potentially any
of the reaction steps can be modulated. This variable gene expression is one of the reasons
one should model the cell in detail at the level of the enzyme catalysed reaction step. With
time, a large collection of models, including metabolic, signal transduction, cell cycle and
gene expression regulation models will be constructed which upon grouping will ultimately
cover the complete cell.

To be able to link kinetic models together they must obey certain standards in terms of
annotation (e. g. variable names should be identical) and the models should be described in
a standard format (e. g. SBML [6]). In addition to the standardization of formats the models
should also be available in curated form in repositories. In this contribution we highlight
one initiative, JWS Online, which in addition to being such a repository for curated models
is also a simulator with a web interface, making it possible to run the models in a browser.
A third important aspect of JWS Online is its collaboration with scientific journals to assist
in reviewing manuscripts that contain models. We start by describing JWS Online and its
current set-up, focusing on the server side (the user interface was described in the last
ESCEC contribution and has largely remained the same). Subsequently we will compare
JWS Online with other initiatives that have comparable functionalities, i. e. the Virtual Cell,
BioModels, DOQCS, Sigpath, JSim, ModelDB, Web-Cell and the SBML and CellMl
repositories. We limit ourselves to these web-based initiatives, (and apologize for potential
omissions), and have not included stand-alone simulators.

JWS Online

JWS Online [7] is hosted at the National Bioinformatics Node of the University of Stel-
lenbosch. The first version of the web site went online in 2000 and since then a number of
important updates have been made but the three main aims have remained the same. JWS
Online is: 1) a repository of curated models, 2) a web-driven simulator and 3) a review
facility for scientific journals. Models have been added steadily and currently 70 models
are available, in three categories, Silicon Cell models, Core models and Demonstration
models. JWS Online is mirrored at the Vrije Universiteit in Amsterdam (http://jjj.bio.vu.nl),
at the Virginia Bioinformatics Institute (http://jjj.vbi.vt.edu) and at Manchester University
(http://jjj.mib.man.ac.uk).

JWS Online works together with four journals to facilitate reviewing of manuscripts that
contain kinetic models: FEBS J., Microbiology, IEE Proceedings Systems Biology and
Metabolomics. Authors who submit a manuscript containing a kinetic model are requested
to submit their model to JWS Online (jls@sun.ac.za) in electronic format (i. e. SBML or
JWS Online input form). Subsequently the model is converted into a Mathematica package
that is stored in the JWS Online database. Using the JWS Online facility the simulations of
the authors are repeated and if the results cannot be reproduced the authors are contacted to
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resolve the problem. Once the model is curated in this way, a letter is sent to the reviewers
stating how they can access the model on a secure site and reproduce the results of the
authors and otherwise interrogate the model. Once the reviewers have come to a decision
regarding the manuscript, the model is either moved to the public database or deleted.

JWS Online collaborates with a number of other initiatives: the Silicon Cell initiative,
Biomodels (see below), YSBN, the Yeast Systems Biology Network
(http://www.gmm.gu.se/YSBN/), and HepatoSys, the BMBF funded German systems biol-
ogy competence network of hepatocytes (http://www.systembiologie.de/en/index.html),
and the COPASI team (http://www.copasi.org/).

The functionality of JWS Online was discussed in the first ESCEC proceedings [8] and
here we will only briefly summarize the functionality of the simulator and describe the way
the server side of JWS Online works.

JWS Online set-up
The JWS simulation system is based on a client–server architecture, where commands
issued by the client (a Java applet in a web browser) are fulfilled by an instance of
Mathematica running on the server, see Fig. 1 for a flow diagram. This is facilitated by a
webserver (Apache Tomcat [9]) running webMathematica, which is responsible for alloca-
tion of Mathematica kernels from a pool, accepting client commands and sending these to
the Kernel for evaluation, and returning the results to the client.

The JWS models are stored as Mathematica packages. These include values for the model
input parameters, and also define the functionality available for the model. In particular,
functions may be defined which calculate and plot a time course of the model, display the
steady state of the model, or display the results of a metabolic control analysis. The details
of each of these calculations are specific to a particular model, and are described in the
package. In addition, the package may define only a subset of these functions, depending
on what is appropriate for the model. An SQL database contains a full text description of
each model, as well as links to the Mathematica package for that model.

On visiting the JWS site, the user is presented with a welcome screen, displaying basic site
information. The user may then opt to choose a model from the database. An initial
selection page is displayed, in which the user may select any or all of model organism,
model category and subcategory and model author.

The selection request is then sent to the web server, where a Python [10] script extracts
from the database those models that satisfy the selection criteria. These are displayed in the
user's browser as a list, from which the user may choose to display detailed information
about a particular model, or opt to run a model.

The request to run a model is returned to the server, where the webMathematica kernel
manager allocates a Mathematica kernel from the kernel pool. This kernel then loads the
model from the Mathematica model description, and passes the model parameters to the
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JWS Java applet, which is downloaded to the browser. The applet is configured according
to the functionality available for the specific model chosen; certain models, for example,
allow a time-course simulation, steady-state analysis and the determination of metabolic
control analysis information, while others allow only a subset of these.

Figure 1. Flow diagram of the JWS Online set-up.

1) The user selects the link to the database of models, and a page is presented which
allows the user to restrict the models to be displayed by organism type, model
category and sub-category, and model author.

2) A request is sent to a Python script on the web server, which selects those models
from the database, which satisfy the chosen criteria. These are then returned to the
browser, which displays the list of possible models.

3) The user selects the model to run, and a request for the model details is sent to the
server.

4) The webMathematica kernel manager allocates a Mathematica kernel.
5) The Mathematica kernel looks up the model details in a package file.
6) These are then passed to a Java applet, which is downloaded to the browser.
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7) The applet sends a request to the webMathematica kernel manager to evaluate the
model.

8) The evaluation request is sent to the Mathematica kernel, and on completion the
results are returned to the kernel manager.

9) Finally, the results of the computation are sent to and displayed on the client
machine.

JWS Online functionality
Interaction with JWS Online is done through a graphical user interface (GUI). A screen
shot and two result windows are shown in Fig. 2. The interface consists of a number of
panels where the user can make changes to the default parameter values of the model
(Fig. 2, A), control the type of analysis that is required (Fig. 2, B), view a scheme of the
model (Fig. 2, C) and its rate equations (Fig. 2, F) by moving the mouse over the red ovals
in the scheme. Results are shown in separate windows (Fig. 2, D and E) depending on the
type of simulation that is selected. In panel B the user can select for 1) a time simulation
(Fig. 2, arrow 1), giving the options to plot either metabolite concentrations or flux values,
2) a steady-state analysis (Fig. 2, arrow 2), giving the options to do different types of
structural analyses or to analyse for the steady-state solution, or 3) to do a Metabolic
Control Analysis (Fig. 2, arrow 3), giving the options to either calculate the control coeffi-
cients or the elasticity coefficients. After selecting an analysis type the user can evaluate
the model by clicking the Evaluate button (Fig. 2, arrow 4) and the results will be shown in
a separate window. Examples of results windows are shown for a time simulation (Fig. 2,
D) and a MCA analysis for control coefficients (Fig. 2, E).

Figure 2. Screen shot of the JWS Online user interface and result windows. A screen
shot is made of the JWS Online implementation of the model for the regulation of
ammonia assimilation in Escherichia coli [23]. The Interface consists of different
panels, A,B,C,F that allow control over the simulation and give information on the
model (see text for details). In addition two result windows are shown (panel D and E)
displaying a time simulation and an MCA result respectively.
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The JWS Online team
Initially JWS Online was started in 2000 by Jacky Snoep and Brett Olivier as a challenge to
see whether we could run Mathematica simulations over the internet. At that time web-
Mathematica had not been developed and we used JLink to connect Java and Mathematica.
JWS Online was launched in 2000 and has subsequently been significantly improved in a
number of steps, the last one being the conversion to webMathematica on which we report
here and for which Cor Stoof did the necessary Java programming.

At present Jacky Snoep is the PI of the JWS Online project with Carel van Gend as full
time programmer. On a part-time basis Brett Olivier maintains the web site and Riaan
Conradie, Franco Du Preez and Du Toit Schabort assist in coding models for the repository,
Gerald Penkler and Kora Holm draw the metabolic schemes and make literature searches
for manuscripts containing models.

Other Initiatives

Here we give a brief description of some other initiatives that have overlapping function-
ality with JWS Online. We have only listed initiatives that provide a repository of kinetic
models for biological systems that are accessible via the internet (Table 1).

Table 1. A comparison between several web-based initiatives that store kinetic models
and/or make models available for simulation. The initiatives are compared on their
functionality with respect to whether they allow simulations to be run on the site
(simulation), whether they store a collection of models (repository), whether the stored
models are curated (i. e. do the models show the same behaviour as the published
model, curation), whether the models are annotated (annotation) and whether the
initiative is actively busy to add more models (here copying from other initiatives is
not considered active, addition).

Initiative URL Simulator Curation Annotation Addition

JWS Online http://jjj.biochem.sun.ac.za Yes Yes No Yes

Virtual Cell http://www.nrcam.uchc.edu Yes No No No

Biomodels http://www.ebi.ac.uk/biomodels No Yes Yes Yes

WebCell http://webcell.kaist.ac.kr Yes No No No

CellML http://www.cellml.org No No No Yes

SBML http://sbml.org No Yes No Yes

DOQCS http://doqcs.ncbs.res.in/ No Yes Yes Yes

ModelDB http://senselab.med.yale.edu/senselab/ModelDB/ No Yes No Yes

JSim http://nsr.bioeng.washington.edu/ Yes No No Yes

SigPath http://www.sigpath.org/ No No Yes No

The Virtual Cell [11,12] is hosted at the National Resource for Cell Analysis and Model-
ing (NRCAM) at the University of Connecticut Health Center and is a computational
environment that helps in the construction and simulation of models that are cast in terms
of ODEs or PDEs. The Virtual Cell follows a client–server set-up running Java applets;
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clients can store models in a repository and import/export facilities for SBML, CellML and
Matlab exist. The models are not curated or annotated (the client is responsible) and the
Virtual Cell team does not actively add models to the repository.

The Biomodels [13] database is hosted at EMBL-EBI (UK) and is a collaborative effort
between this institute, the SBML team (U.S.A.), the Systems Biology Group of the Keck
Graduate Institute (U.S.A.), the Systems Biology Institute (Japan) and JWS Online. Bio-
models focuses on model curation, annotation and import/export formats of published
models. Models are curated to ensure that the published results can be reproduced. In the
annotation process model components are linked to controlled vocabularies and other data
resources. Models to be included in the database must be compliant with MIRIAM stan-
dards [14]. Both the Biomodels and JWS Online project are actively involved in adding
models to their databases and these models are exchanged in SBML format between the
two initiatives.

DOQCS [15] is hosted at The National Centre for Biological Sciences (NCBS) and is part
of the Tata Institure of Fundamental Research in Bangalore. The Database of Quantitative
Cellular Signaling is a repository of models of signalling pathways. It includes reaction
schemes, concentrations, rate constants, as well as annotations on the models. The database
provides a range of search, navigation and comparison functions. Export of models is
available in GENESIS [16] and MATLAB (http://www.mathworks.com) format.

The CellML [17] and former SBML repositories hosted at the University of Auckland and
CalTech respectively are repositories of kinetic models in XML format. The two modelling
languages have significant overlap, CellML is aiming more at describing systems at the
cellular level while SBML is better geared for reaction pathway models. CellML appears to
have more freedom to define entities as components but is not as widely accepted as a
format in simulation software. The models of the SBML repository have been improved
and incorporated into BioModels Database.

SigPath [18] is hosted at the Weill Medical College of Cornell University, and at the
Mount Sinai School of Medicine, it is an information management system designed to
support quantitative studies on the signalling pathways and networks of the cell. SigPath
focuses on storing, curating and annotating of quantitative information concerning signal-
ling pathways. This information can be manipulated and reactions can be linked to form
kinetic models. Some of these models (which are not curated as such) are available as a
repository and can be exported in a number of formats amongst which SBML.

ModelDB [19] is a repository for published models from the neurosciences, it is part of the
SenseLab project and hosted at Yale University. The models are available in the format in
which it was submitted to the database (e. g. Fortran, NEURON).
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JSim [20] is a simulation environment that can be used for the construction of models, a
selected number of models is also available as Java applets and can be run over the web.
JSim is closely linked to the NSR Physiome project, which provides comprehensive and
downloadable physiological models [21].

WebCell [22] is hosted at the Korea Advanced Institute of Science and Technology
(KAIST) and uses a client–server set-up with Java Servlet Pages and applets. New models
can be added by the clients and stored in the database. The current models in the database
are taken from the JWS Online, Biomodels and SBML repositories. The simulation func-
tionality is similar to JWS Online.
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Abstract

The kinetic modelling of biochemical pathways requires a consistent
set of enzymatic kinetic parameters. We report results from software
development to assist the user in systems biology, allowing the retrie-
val of heterogeneous protein sequence, structural and kinetic data. For
the simulation of biological networks, missing enzymatic kinetic para-
meters can be calculated using a similarity analysis of the enzymes’
molecular interaction fields. The quantitative PIPSA (qPIPSA) meth-
odology relates changes in the molecular interaction fields of the
enzymes with variations in the enzymatic rate constants or binding
affinities. As an illustrative example, this approach is used to predict
kinetic parameters for glucokinases from Escherichia coli based on
experimental values for a test set of enzymes. The best correlation of
the electrostatic potentials with kinetic parameters is found for the
open form of the glucokinases. The similarity analysis was extended
to a large set of glucokinases from various organisms.
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Introduction

One of the aims of systems biology is to provide a mathematical description of metabolic or
signalling protein networks. This can be achieved by constructing a set of differential
equations describing changes in concentrations of compounds with time [1]. Enzyme-
specific parameters, such as ligand binding affinity and catalytic turnover, are needed for
solving these equations. These parameters need to be valid under the desired experimental
conditions. Despite recent developments in enzymatic high-throughput assays, experimen-
tal values of many of the required parameters often are not available for the chosen
organism or enzyme, or have not been determined at the desired temperature or pH [2].

For the construction of a kinetic model, it is essential to have a consistent and reliable set of
enzymatic kinetic parameters. The importance of the uniformity of the measurement and
reporting of enzymatic functional data has been emphasized in [3].

Molecular systems biology deals with the intrinsic molecular interactions and enzymatic
reaction mechanisms of each enzyme involved in the systems biology network [4]. The
generation of quantitative structure–function relationships which relate the enzyme's activ-
ity to molecular interactions between the substrate molecules and critical components of the
enzyme represents one of the challenges of modern enzymology [5].

The SYCAMORE (SYstems biology’s Computational Analysis and MOdeling Research
Environment) is being developed as part of the German systems biology initiative “Hepa-
toSys” [6] (Platform Bioinformatics and Modelling, Groups of Dr Ursula Kummer and Dr
Rebecca Wade, EML Research) and aims at providing guidance to the user in setting up a
biochemical kinetic model, running and analysing the results (see legend of Fig. 1 for
details). When kinetic parameters are absent or inconsistent, structure-based modelling of
the missing kinetic parameters is started.

PIPSA (Protein Interaction Property Similarity Analysis) is used as a means of comparing
the molecular interaction fields of a test set of proteins and relating differences in enzy-
matic rate constants to variations in the electrostatic potentials exerted by the protein. The
PIPSA methodology has been used previously to cluster different proteins according to the
similarity of their electrostatic potentials. Applications include PH domains [7], E2 do-
mains [8], triose phosphate isomerases [9], and Cu,Zn-superoxide dismutases [10]. We
have extended the use of PIPSA to a more quantitative approach (qPIPSA) to relate the
variations of the protein electrostatic potential within a family of enzymes to kinetic
parameters.

The aim of this paper is to present an example of the application of the structure-based
modelling module of the SYCAMORE project. We demonstrate the retrieval of hetero-
geneous protein structural and sequence information from distributed sources. The infor-
mation on a protein from related organisms is then used to estimate the kinetic parameters
for a corresponding protein from a different organism using the PIPSA methodology. This
approach enables the user to detect inconsistent experimental values of kinetic parameters.
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Figure 1. The SYCAMORE (SYstems biology's Computational Analysis and MOd-
eling Research Environment) assists the user in setting up and performing simulations
in systems biology. The user can create a mathematical model by hand or use models
from a depository such as Biomodels [43] or JWS online [44]. During the setup of the
model, experimental kinetic parameters can be retrieved from BRENDA [14] or
SABIO-RK[15]. When experimental parameters are not available for the desired
organism but for a related organism or obtained under different environmental con-
ditions, the modelling of these parameters from protein sequence and structural in-
formation can be initiated. The generated data then flow back into the kinetic model
before the complete model is given to an external simulation engine (such as COPASI
[45]). The final step is the analysis and interpretation of the results of the network
modelling.

As a test case, we apply the method to the discrimination between mammalian and non-
mammalian glucokinases and in particular to the assignment of a Km value to the enzyme
from Escherichia coli. The biochemistry and evolution of glucokinases has been reviewed
in [11 – 13].

Methods

Retrieval of enzymatic structural and kinetic information

The structure-based modelling module within SYCAMORE is a link between the databases
of experimental kinetic data, protein sequence and structure databases and the mathema-
tical kinetic model (see Fig. 1). It is coded in Java as a server–client architecture and
browser-based to allow for maximum portability and ease of accessibility.
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This module is still under development. Currently the user can query the BRENDA [14]
and SABIO-RK [15] databases for existing experimental kinetic parameters. Protein struc-
tural models can be retrieved from the Protein Data Bank (PDB) [16], theoretical models
from ModBase [17] and from the Swiss-Model Repository [18]. Protein sequences are
taken from the Swiss-Prot/UniProt database [19].

The module uses servlets and core classes. The results pages are generated using Java
Server Pages (JSP) which allow static HTML to be mixed with dynamically-generated
HTML pages so that the generated web pages have a dynamic content. The result pages
display in any web browser compliant with XHTML and ECMAscript (Javascript). The
Systems Biology Standard Markup Language (SMBL) [20] was chosen as the file format
standard to communicate between the various applications and modules.

The user has the opportunity to choose retrieved sequence, structural and kinetic data from
the various sources and in the end to review his choice, modify parameters or insert user-
generated alternative values.

Protein interaction property similarity analysis

The structure-based systems biology calculations are performed by comparing molecular
interaction fields such as the electrostatic potential or a hydrophobic field. The PIPSA
method has been described elsewhere [7, 21].

The molecular interaction fields of proteins are compared on a three-dimensional grid over
the superimposed proteins. The difference in the molecular interaction fields can be quan-
tified by the calculation of similarity indices which were originally developed for the
comparison of small molecules. The Hodgkin similarity index detects differences in sign,
magnitude and spatial behaviour in the potential [22, 23].

Generation of protein models

Protein amino acid sequences were taken from the Swiss-Prot database [19]. Multiple
sequence alignment of amino acid sequences was performed using the program ClustalW
[24]. Comparative protein structural modelling was done using Modeller 8v1 [25]. Polar
hydrogens were added using the program WHATIF [26]. The OPLS non-bonded parameter
set was used to assign partial atomic charges and radii. The electrostatic potentials were
calculated with the program UHBD [27]. The linearized form of the Poisson–Boltzmann
equation (LPBE) was solved using the Choleski preconditioned conjugate gradient method.
An ionic strength of 50 mM, a grid dimension of 150 x 150 x 150 �3 and a grid spacing of
1.0 � was employed. The relative dielectric constant of the solvent was 78.0 and that of the
solute was set to 4.0.
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Figure 2. Calculation of molecular fields F1 and F2 on three dimensional cubic grids
for two proteins and definition of the scalar product of the molecular interaction fields
by summing over every grid point on a skin. The Hodgkin similarity index [22,23,46]
is a measure of the pair-wise similarity of the molecular fields.

Results and Discussion

Here we give an illustrative example of the application of structure-based systems biology
for the detection of inconsistent kinetic parameters and the generation of missing para-
meters for use in mathematical modelling of biochemical protein networks.

The conversion of chemical energy in the glycolytic (Emden–Meyerhof) pathway is one of
the best investigated and understood metabolic pathways. The glucokinases (EC 2.7.1.2)
catalyse the first chemical reaction in glycolysis. They phosphorylate glucose at the 6
position by abstracting a phosphate group from ATP. This yields glucose-6-phosphate
and ADP. The virtually irreversible reaction is one of the control sites in glycolysis since
the mammalian glucokinase is not product inhibited.

Glucose + ATP ? Glucose-6-phosphate + ADP (1)

We create here the scenario of a user wanting to model the glucokinase from E. coli by
starting from knowledge about the enzyme in Homo sapiens.
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Retrieval of protein information from distributed resources

In the structure-based estimation of kinetic parameters, the user is faced with the distribu-
tion of necessary data over various resources. The protein information retrieval module
within SYCAMORE simplifies the accession to distributed protein sequence, structural and
kinetic information.

Figure 3. Snapshot of protein information retrieval module within SYCAMORE. It
retrieves heterogeneous protein information such as protein structure, existing experi-
mental kinetic data and sequence information (see text for details).

Figure 3 shows a snapshot of the protein information retrieval module within SYCAMORE.
When querying for the glucokinase from Homo sapiens (Swiss-Prot ID P35557) in Swiss-
Prot, three related protein structures are found: these are the X-ray crystal structures of the
enzyme from Homo sapiens in its closed form (PDB entry 1V4S) and its open form (PDB
entry 1V4T) [28] plus a theoretical model for the human glucokinase (PDB code 1GLK)
based on its homology to the enzyme from yeast. The user may select one of the three
models for subsequent structural modelling.

Below, relevant additional structural information for kinetic modelling from the IntAct [29]
database at EBI are given, such as the interaction of human glucokinase with the glucoki-
nase regulatory protein (GCKR) and the 6-phosphofructo-2-kinase/fructose-2,6-bisphos-
phatase I.
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The next screen displays relevant kinetic information that was found in BRENDA [14]
when searching for enzymes with the same EC number. First data for the glucokinase from
Homo sapiens such as Km values and specific activities for a range of substrates and the
influence of single point mutations on Km are reported. Then data specific to other organ-
isms are also reported.

The user may choose any of the reported parameters for subsequent mathematical model-
ling by clicking on the “use it” button. The user then has the option to review his choice of
parameters, correct or modify them or insert his own parameters manually for the mathe-
matical modelling of the enzyme glucokinase.

PIPSA of the electrostatic potential of glucokinases

Here we present an illustrative case of the structure-based generation of kinetic parameters
from a PIPSA of the electrostatic potential of glucokinases. We analyse the similarity of the
electrostatic potentials of a test set of 8 different glucokinases for which experimental Km

constants for the substrate glucose could be found in the BRENDA database. We set our
focus on the glucokinase from E. coli and demonstrate a procedure to assist the user in the
choice of an appropriate Km value when constructing a kinetic model.

Kinetic constants and comparative protein structural modelling

For the glucokinases from Homo sapiens, Rattus norvegicus, Escherichia coli, Aspergillus
niger, Hansenula polymorpha, Saccharomyces cerevisiae, Streptococcus mutans and Zy-
momonas mobilis Km values for the substrate glucose could be found in the BRENDA
database. They all catalyse an identical chemical reaction. However, they do so with very
different substrate binding affinity, represented by the Km value.

The experimental values found in BRENDA are 0.028 mM (S. cerevisiae) [30], 0.05 mM
(H. polymorpha) [30], 0.063 mM (Asp. niger) [30], 0.095 mM (Z. mobilis) [31], 0.61 mM
(S. mutans) [32] to 6 mM (H. sapiens) [33] and 7.7 mM (R. norvegicus) [34] and thus cover
a range of more than 2 orders of magnitude.

For the glucokinase from E. coli, the available experimental Km values range from 0.78 mM
[35] to 0.15 mM [36]. Since no experimental error bars are given, we would like to check
the completeness and consistency of these values. The user has to make a choice when
setting up a kinetic model of glycolysis in E. coli. We apply the PIPSA method to compare
the electrostatic potentials around the active site and correlate with experimental Km values
from other organisms to suggest a value for E. coli.
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Figure 4. Multiple sequence alignment of glucokinases from Homo sapiens, Rattus
norvegicus, Hansenula polymorpha, Saccharomyces cerevisiae, Aspergillus niger,
Escherichia coli, Zymmomonas mobilis and Streptococcus mutans. The amino acid
sequences of the template structures of the open (PDB code 1V4T) and closed (PDB
code 1V4S) [28] forms of the human glucokinases are also given.

Figure 4 shows the ClustalW multiple sequence alignment of glucokinases with the se-
quences from Homo sapiens of the closed (1V4S) and open forms (1V4T) of the enzyme.
The multiple sequence alignment was used to generate protein structural models by map-
ping the target sequences from Homo sapiens, Rattus norvegicus, Escherichia coli, Asper-
gillus niger, Hansenula polymorpha, Saccharomyces cerevisiae, Streptococcus mutans and
Zymomonas mobilis to the template protein structure of the open (PDB code 1V4T) and
closed forms (PDB code 1V4S) of human glucokinase. For each of the generated protein
models, the electrostatic potential was calculated.

Calculation and comparison of the electrostatic potentials for glucokinases

The mammalian glucokinase undergoes a large conformational change upon substrate
binding [28]. Two of the three layers of the small domain of glucokinase rotate at an angle
of 99 � around a hinge region [28]. The substrate glucose binds to the bottom of the deep
cleft between the large domain and the small domain. In the closed form, glucose is
coordinated by residues from the large and the small domains.
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Figure 5. Calculated electrostatic isopotential isosurface at (0.6 kcal mol-1 e-1 of the
open (left) and closed (right) form of the Hexokinase IV from Homo sapiens [28].

Figure 5 shows the calculated electrostatic potential for the open form (1V4T; left in Fig. 5)
and the closed form (1V4S, right in Fig. 5). The two forms differ in electrostatic potential in
particular around the a13 helix which moves in a different direction to the small domain
upon conformational change [28].

Figure 6. Calculated electrostatic potentials of glucokinases from eight organisms for
which substrate Km values were found in the BRENDA database. The isosurfaces are
shown at 0.6 kcal mol-1 e-1 for the open form of the enzyme.
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Figure 6 shows the computed electrostatic potential of the glucokinases in the other
organisms. All have a large negative patch near the ATP binding region (right side) and
a more positive patch on the left. Visual inspection shows that the electrostatic potential of
the glucokinases from Homo sapiens and Rattus norvegicus appear indistinguishable. There
is, however, a large variation in the distribution of the electrostatic potential across the
organisms.

Figure 7:

Left: Conservation of the amino acid residues in the multiple sequence alignment
displayed on the open form of human hexokinase IV (1V4T) using the Consurf
algorithm (47).

Right: Conservation of the calculated electrostatic potential. Pairwise comparison of
the calculated electrostatic potentials.

Figure 7 shows the conservation of the positions of amino acid residues of the eight
glucokinases mapped onto the crystal structure of the human enzyme in its open form
(left). The most conserved amino acid residues are found in the cleft between the large and
small domains: this is the site where the ligand co-crystallizes in the closed form; and a
patch of conserved amino acid residues in proximity to the ligand binding site, potentially
the entry channel of the substrate. Figure 7 (right) shows the conservation of the electro-
static potential. The most conserved patches of the electrostatic potential of the set of
glucokinases, ranging from blue (no conservation), yellow (intermediate) to patches of
high conservation (coloured in red). The most conserved electrostatic region approximately
overlaps with the region of most conserved amino acid sequences between the two protein
domain and may refer to the entry channel of the substrate. The electrostatic potential near
the ligand binding site, however, is not strictly conserved. The variations in the electrostatic
potentials at this spot may explain the large range of Km values between mammalian and
non-mammalian enzymes.
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Figure 8: Tree diagram of the similarities of the electrostatic potentials of glucoki-
nases in a region of radius 15 � around the ligand binding site.

A more quantitative comparison of the electrostatic potentials is possible with the Hodgkin
similarity indices. The pairwise similarities can be easily visualized in phylogenetic trees
[8]. Figure 8 displays tree diagrams of the similarities of the electrostatic potentials in the
test set of eight glucokinases of the open (left) and closed (right) forms. We used a radius of
15 � around the ligand binding site for the comparison of the electrostatic potentials since
the conservation of the active site was also observed in a phylogenetic analysis of the
primary sequences of hexokinases [11].

For the closed form, the nearest neighbours of the glucokinase from E. coli are the
mammalian glucokinases from Homo sapiens and Rattus norvegicus. This would suggest
a Km value of the E. coli glucokinase in the mM range. This assignment seems improbable
since the sequence identity is very low between glucokinases from E. coli and Homo
sapiens (14% overall sequence identity).

The mammalian glucokinases in liver (hexokinases IV) possess a high Km value (6 – 7 mM)
and act as a sensor of high glucose levels in the blood since the physiological role of
glucokinases in vertebrates is significantly different from that of invertebrates. In mamma-
lians, the glucokinase (hexokinase IV) is the liver-specific isozyme with a glucose sensor
function in hepatocytes [11] and represents 95% of the total hexokinase activity of hex-
okinases. The liver enzymes phosphorylate glucose only when it has reached a high con-
centration in the blood. Thus, isozymes in brain and muscle, which have 50-fold lower Km

values, are activated first. Only when glucose is abundant, is the liver isozyme active and
ensures that glucose is not wasted.

When the electrostatic potentials are computed for protein structural models of the open
form (Fig. 8, left), the closest glucokinase to E. coli is from S. cerevisiae and suggests a Km

value around 0.03 mM for E. coli. This predicted Km value is clearly outside the range of
Km values retrieved from BRENDA: 0.15 mM [35] to 0.78 mM [36]. This discrepancy was
analysed further. The glucokinase from E. coli displays only weak similarity to the other
glucokinases. This had been noticed already by Cardenas et al. [37]. The absence of
homology with other hexokinases suggested an early divergent evolution of hexokinases

247

The Estimation of Kinetic Parameters in Systems Biology of Enzymes



in plants, vertebrates, yeast and bacterial hexokinases. The current investigation suggests
that the glucokinase from E. coli is a very specific hexokinase with a predicted very low Km

value of the same order of magnitude as yeast.

The recently solved X-ray structure of the ATP-dependent glucokinase from E. coli dis-
played a RNase H-like fold [38] which is also found for Homo sapiens [28] and yeast [39]
glucokinases and justifies a posteriori the use of the template protein structure from Homo
sapiens despite the low sequence identity.

When searching for additional investigations of the kinetics of the glucokinase from E. coli
that are not yet included in BRENDA, we found a recent report by Millar and Raines of a
Km value of the glucokinase from E. coli of 0.076 mM [40]. This is significantly lower than
the Km values reported previously ranging from 0.15 mM to 0.78 mM.

This supports our assignment of the glucokinase from E. coli to the family of very specific
bacterial glucokinases with a very low Km value: 0.028 mM (S. cerevisiae) and 0.063 mM
(Asp. niger).

In general, we found a better correlation of the kinetic parameters for the open form of the
enzyme. This was also noticed by Xu et al. who correlated calculated interaction energies
of various sugars with measured kcat/Km values [41]. They came to the conclusion that the
substrate sugar molecules are recognized by binding to the open form of glucokinase.

PIPSA of a large set of glucokinases
The previous application of the PIPSA classification of glucokinases was limited to a small
set of eight experimentally characterized organisms. In systems biology one aims at an
understanding of enzymes in context and also across a larger number of organisms.

The investigation of the similarity of the electrostatic potentials of glucokinases was
extended to a larger set of proteins. All protein sequences that were annotated as either
glucokinases or classified with the EC number 2.7.1.2 were aligned according to their
amino acid sequence identity. Sequences which were annotated as polyphosphate glucoki-
nases, ROK (repressor, open reading frame, and kinase) or for which only fragments were
available, were removed. This led to a set of 164 aligned protein sequences. Protein
structural models were generated based on the template structure of the human hexokinase
IV (HXK4_HUMAN) in its open form. Electrostatic potentials were calculated by solving
the linearized Poisson–Boltzmann equation (as described above in detail).

The 164 proteins were classified according to their Hodgkin similarity indices of the
electrostatic potential in a region of 15 � radius around the ligand binding site (see
Fig. 9). The inserts show magnifications of selected glucokinases from E. coli, Yeast and
Homo sapiens.
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The nearest neighbours to E. coli are the glucokinases from E. coli O6, Shigella flexnen,
Salmonella typhi and Salmonella typhimarium. The enzyme from yeast is closest to various
glucokinases from Xylella fastidiosa and Yersinia pestis. From PIPSA of the electrostatic
potentials, one may expect glucokinases from Sparus aurata (Gilthead sea bream), Cypri-
nus carpio (Common carp), hexokinase IV from mouse, Oncorhynchus mykiss (Rainbow
trout) to exhibit similar kinetic parameters to the enzymes from Homo sapiens and R.
norvegicus. Also the glucokinase EMI2_Yeast (Early Meiotic Induction Protein 2 [42] is
predicted to possess similar kinetic parameters. This glucokinase is involved in sporulation
and is required for the full activation of the early meiotic inducer EMI1 [41]. This gluco-
kinase performs a different physiological role from bacterial glucokinases and thus a high
Km value may be expected.

Figure 9: Tree diagram of 164 glucokinases EC 2.1.7.2 classified by their similarity
in electrostatic potential of the open form in a region of radius 15 � around the ligand
binding site.
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Conclusion and Outlook

Structure-based systems biology provides detailed insight into cellular processes at a mo-
lecular level. It is thus complementary to the abstract mathematical modelling of protein
signaling or metabolic networks. The PIPSA method provides a quantitative structure to
function relationship for enzymes. It quantifies the similarity of molecular interactions
between the substrate molecule and the protein active site for the same enzyme from a
large number of organisms. The large-scale application of PIPSA allows the classification
of enzymes previously uncharacterized and the detection of relationships with other en-
zymes.

Furthermore, the PIPSA method can be used to detect outliers from a series of well-
characterized enzymes. For this use it is critical to have:

i) an extensive annotation of experimental conditions
ii) a detailed and consistent set of experimental data.

Further application and extension of the qPIPSA method to predicting enzymatic Km and
kcat/Km values and the comparative modelling of the glycolytic pathway across multiple
organisms is in progress.

Acknowledgements

We thank the Klaus-Tschira Foundation and the BMBF Systems Biology Initiative Hepa-
toSys for financial support. We are grateful to Dr A. Weidemann for the design and layout
of the SYCAMORE user interface and Dr U. Kummer and Dr. I. Rojas for the scientific
collaboration.

References

[1] Kitano, H. (2002) Nature 420, 206–210.

[2] Gabdoulline, R.R., Kummer, U., Olsen, L.F. & Wade, R.C. (2003) Biophys. J. 85,
1421–1428.

[3] Apweiler, R., Cornish-Bowden, A., Hofmeyr, J.-H.S., Kettner, C., Leyh, T.S.,
Schomburg, D. & Tipton, K. (2005) Trends in Biochemical Sciences 30, 11–12.

[4] Aloy, P. & Russell, R.B. (2005) FEBS Letters 579, 1854–1858.

[5] Kettner, C. & Hicks, M.G. (2005) Curr. Enz. Inhib. 1, 171–181.

[6] http://www.systembiologie.de.

[7] Blomberg, N., Gabdoulline, R.R., Nilges, M. & Wade, R.C. (1999) Proteins 37,
379–387.

250

Stein, M. et al.



[8] Winn, P.J., Religa, T.L., Battey, J.N., Banerjee, A. & Wade, R.C. (2004) Structure
12, 1563–1574.

[9] Wade, R.C., Gabdoulline, R.R. & Luty, B. (1998) Proteins 31, 406–416.

[10] Wade, R.C., Gabdoulline, R.R., Luedemann, S. & Lounnas, V. (1998) Proc. Natl.
Acad. Sci. USA 95, 5942–5949.

[11] Cardenas, M.L., Cornish-Bowden, A. & Ureta, T. (1998) Biochim. Biophys. Acta
1401, 242–264.

[12] Cardenas, M.L. (1997) Biochemical Society Transactions 25, 131–135.

[13] Cardenas, M.L. (2003) in Glucokinase and Glycemic Diseases, ed. Magnuson, M.A.
(Karger, Basel).

[14] Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G. & Schom-
burg, D. (2004) Nucleic Acids Res. 32, D 431–3.

[15] Rojas, I., Kania, R., Wittig, U., Weidemann, A., Goblewski, M. & Krebs, O. (2005)
in Proceedings of the 4th Workshop on Computation of Biochemical Pathways and
Genetic Networks, eds. Kummer, U., Pahle, J., Surovtsova, I. & Zobeley, J. (Logos
Verlag, Berlin), pp. 63–67.

[16] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N. & Bourne, P.E. (2000) Nucl. Acids Res. 28, 235–242.

[17] Pieper, U., Eswar, N., Davis, F.P., Braberg, H., Madhusudhan, M.S., Rossi, A.,
Marti-Renom, M., Karchin, R., Webb, B.M., Eramian, D., Shen, M.Y., Kelly, L.,
Melo, F. & Sali, A. (2006) Nucleic Acids Research. 34, D 291–295.

[18] Kopp, J. & Schwede, T. (2004) Nucl. Acids Res. 32, D230-D 234.

[19] Bairoch, A., Boeckmann, B., Ferro, S. & Gasteiger, E. (2004) Brief. Bioinform. 5,
39–55.

[20] Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin,
A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S.,
Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C.,
Hofmeyr, J.-H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer,
U., Le Novere, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D.,
Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro,
B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wagner,
J. & Wang, J. (2003) Bioinformatics 19, 524–531.

[21] Wade, R.C., Gabdoulline, R.R. & Rienzo, F.D. (2001) Intl. J. Quant. Chem. 83,
122–127.

[22] Good, A.C., Hodgkin, E.E. & Richards, W.G. (1992) Journal of Computer-Aided
Molecular Design 6, 513–520.

251

The Estimation of Kinetic Parameters in Systems Biology of Enzymes



[23] C. Burt, W.G. Richards & Huxley, P. (1990) Journal of Computational Chemistry
11, 1139–1146.

[24] Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) Nucl. Acids Res. 22, 4673–
4680.

[25] Sali, A. & Blundell, T.L. (1993) J. Mol. Biol. 234, 779–815.

[26] Vriend, G. (1990) J. Mol. Graph. 8, 52–56.

[27] Davis, M.E., Madura, J.D., Luty, B.A. & McCammon, J.A. (1991) Computer Phy-
sics Communications 62, 187–197.

[28] Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J. & Nagata, Y. (2004) Structure 12,
429–438.

[29] Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S.,
Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H.,
Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D. & Apweiler, R. (2004) Nucl.
Acids Res. 32, D452–455.

[30] Laht, S., Karp, H., Kotka, P., Jarviste, A. & Alamae, T. (2002) Gene 296, 195–203.

[31] Scopes, R.K. & Bannon, D.R. (1995) Biochim. Biophys. Acta 1249, 173–9.

[32] Porter, V. & Chassy, B.M. (1982) Methods Enzymol. 90, 25–30.

[33] Xu, L.Z., Harrison, R.W., Weber, I.T. & Pilkis, S.J. (1995) J. Biol. Chem. 270,
9939–46.

[34] Tu, J. & Tuch, B.E. (1996) Diabetes 45, 1068–75.

[35] Meyer, D., Schneider-Fresenius, C., Horlacher, R., Peist, R. & Boos, W. (1997) J.
Bacteriol. 179, 1298–306.

[36] Arora, K.K. & Pedersen, P.L. (1995) Arch. Biochem. Biophys. 319, 574–579.

[37] Cardenas, M.L. (2004) in Glucokinase and Glycemic Diseases, eds. Matschinsky,
F.M. & Magnuson, M.A. (Karger, Basel), Vol. 16, pp. 31–41.

[38] Lunin, V.V., Li, Y., Schrag, J.D., Iannuzzi, P., Cygler, M. & Matte, A. (2004)
Journal of Bacteriology 186, 6915–6927.

[39] Kuser, P.R., Krauchenco, S., Antunes, O.A. & Polikarpov, I. (2000) J. Biol. Chem.
275, 20814–20821.

[40] Miller, B.G. & Raines, R.T. (2004) Biochemistry 43, 6387–6392.

[41] Xu, L.Z., Weber, I.T., Harrison, R.W., Gidh-Jain, M. & Pilkis, S.J. (1995) Biochem-
istry 34, 6083–6092.

[42] Enyenihi, A.H. & Saunders, W.S. (2003) Genetics 163, 47–54.

252

Stein, M. et al.



[43] Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H.,
Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L. & Hucka, M. (2006) Nucl.
Acids Res. 34, D689–691.

[44] Olivier, B.G. & Snoep, J.L. (2004) Bioinformatics 20, 2143–2144.

[45] http://www.copasi.org.

[46] Hodgkin, E.E. & Richards, W.G. (1987) Int. J. Quant. Chem. Quant. Biol. Symp.,
105–110.

[47] Glaser, F., Pupko, T., Paz, I., Bell, R.F., Bechor-Shental, D., Martz, E. & Ben-Tal,
N. (2003) Bioinformatics 19, 163–164.

253

The Estimation of Kinetic Parameters in Systems Biology of Enzymes





Kinetic Characterization of Alcohol

Dehydrogenases and Matrix

Metalloproteinases: A Reflection on

Standardization of Assay Conditions

Jan-Olof Winberg

Department of Medical Biochemistry, Institute of Medical Biology,
Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway

E-Mail: janow@fagmed.uit.no

Received: 3rd July 2006 / Published: 31st August 2007

Abstract

The present paper will focus on the characterization of enzymes from
two different types of family, Short Chain Dehydrogenases/Reduc-
tases and Matrixins. The former family includes over 3000 enzymes,
and I have worked mainly with different allelic variants of alcohol
dehydrogenase (ADH) from the fruit fly Drosophila melanogaster and
the ADH in Drosophila lebanonensis. To date, approximately 25
matrix metalloproteinases are known in humans. I will focus here on
both similarities and differences in problems regarding the standardi-
zation of assay conditions and parameters that I have experienced
during my work with these two different enzyme systems.

Introduction

The biochemical characterization of enzymes requires careful and well planned experi-
mental set-ups. Among parameters that need to be considered are the type of buffer to be
used, what pH value is relevant to use, the ionic strength of the assay, are additives
necessary, relevant temperature and what type of assay can be used in kinetic characteriza-
tions. Enzymes vary in their in vivo localization, their interactions with other proteins and
cellular components that may affect their stability as well as their biological activity. By
purification an enzyme is removed from its environment, which results in that some
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enzymes need additives to compensate for the loss of interaction partners. This of course
creates a problem with respect to standardization of enzyme assay conditions, which were
nicely described by Tipton and co-workers [1] in the 2003 meeting on Experimental
Standard Conditions of Enzyme Characterizations. In the present paper, I will focus there-
fore on two problems that frequently occur in the literature with respect to standardization.
The first problem concerns the determination of enzyme concentration used to calculate
kinetic coefficients. The second problem concerns the use of additives that have an effect
on the biochemical parameter studied and to what extent the description of experimental
conditions is sufficient to reproduce reported results. I will elucidate these problems mainly
from my own work with two different enzyme systems, alcohol dehydrogenase from
drosophila (DADH) and matrix metalloproteinases (MMPs). First, the two enzyme systems
will be briefly described, and thereafter I will continue with the standardization problems.

Drosophila Alcohol Dehydrogenase

The ADH (EC 1.1.1.1) from insects is involved in the metabolism of short and medium
sized primary and secondary alcohols, which is converted to their corresponding aldehydes
and ketones (Equation 1), using the coenzyme NAD+ [2]. The ADH is also involved in the
oxidation of the formed aldehydes to their corresponding carboxylic acids (Equation 2)
[3,4].

alcohol + NAD+ /? aldehyde/ketone + NADH + H+ (1)

aldehyde + H2O + NAD+ /? carboxylate- + NADH + 2 H+ (2)

ADH has been found in most of the drosophila species investigated, and some of these
species are polymorphic with respect to the Adh gene such as D. melanogaster, while other
species such as D. lebanonensis are monomorphic [5].

The insect ADHs differ from the well known ADHs from other species such as vertebrates
and plants in that it lacks metal ions and has a much shorter polypeptide chain [6, 7]. At the
beginning of the 1980 s J�rnvall and colleagues used these differences to divide the dehy-
drogenases into families [7] and today, over 3000 open reading frames has been detected
for the family of Short-Chain Dehydrogenases/Reductases (SDR), the family to which
DADH belongs [8]. Enzymes belonging to the SDR family have been found in all species
from humans to viruses [8] and they involve various enzyme classes such as oxidoreduc-
tases, lyases and isomerases. Structurally the SDR enzymes differ from the other families
of dehydrogenases and reductases in that they are one domain enzymes where the N-term-
inal part of the polypeptide chain builds up the coenzyme binding region and the C-term-
inal part the catalytic region [6, 8]. It was first in 1998 that the first 3D structure of a
DADH was reported, and later on followed by binary DADH–coenzyme and ternary
DADH–coenzyme–substrate/product complexes [9–11]. Many studies on DADH have been
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performed in order to understand the evolution and the metabolic function of this enzyme
[5, 12]. DADHs have also been characterized with respect to substrate specificity, coen-
zymes and substrate stereospecificity, inhibitory kinetics, reaction mechanism, pH and
temperature dependence, and interconversion of electrophoretic variants [2, 13–19].

Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) is the name of a group of enzymes either secreted into
the extracellular matrix (ECM) or bound to the cell membrane that together are able to
degrade almost all the structural ECM proteins as well as several non-ECM proteins [20].
MMPs belong to the Clan MA, subclan MAM, family M10, subfamily A (Merops database)
[21]. Typical for MMPs is that they are zinc and calcium dependent. They contain two zinc
ions, one catalytic and one structural. Calcium is necessary both for the stability and the
activity of these enzymes [20]. Based on the substrate specificity, similarities in the
primary structure and organization of the protein domains, the MMPs can be divided into
six classes, matrilysins, collagenases, gelatinases, stromelysins, membrane-type MMPs and
others/new MMPs [22, 23]. The general domain structure of MMPs is shown in Fig. 1 along
with the structure of the different classes of MMPs. Most MMPs contain an N-terminal
signal and pro-domain, a catalytic domain containing the catalytic zinc ion, a hinge domain
and a C-terminal hemopexin like domain. In four of the six membrane-type MMPs (MT-
MMPs), the C-terminal domain ends in a type I transmembrane domain, while two binds to
the cell membrane through a glycosyl-phosphatidyl-inosityl (GPI) anchor. Two other po-
tential MT-MMPs (MMP-23A and B, which have the same primary structure, but are coded
by two different genes) contain a type II transmembrane domain (signal anchor) N-terminal
to the pro-domain, and instead of a hemopexin domain they contain a unique “cystein-
array” and an immunoglobulin-like (Ig) domain. The two gelatinases (MMP-2 and MMP-9)
also contain a fibronectin II-like insert in their catalytic domains, while the hinge-region of
MMP-9 also contains a collagen V-like domain.

What these enzymes have in common is that most are synthesized and secreted into the
extracellular tissues as inactive proenzymes that need to be activated. ProMMPs can be
activated by other proteinases including active MMPs in the tissues or on the cell mem-
brane, by chaotropic agents, organomercurials, reactive oxygen species or oxidized glu-
tathione [24]. Due to the unique sequence (RX[K/R]R) in the end of the pro-domain of the
MT-MMPs, MMP-11, -21 and -28 these enzymes can be activated intracellularily by furin,
a serine proteinase that belongs to the convertase family [22–24]. The activity of MMPs is
also regulated by endogeneous inhibitors such as a2-macroglobulin and the specific tissue
inhibitors of MMPs (TIMPs) [22, 23, 25].
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Figure 1. Schematic representation of the domain structure of MMPs. The general
domain structure of MMPs is shown (top) along with the individual human MMPs
that are classified according to their substrate specificity, similarities in the primary
structure and organization of the protein domains.

Detection of Kinetic Coefficients Requires that the

Amount of Functional Enzyme Active Sites is Determined

To get a full description of an enzyme and its ability to act on various substrates, it is
necessary to determine the kinetic coefficients with substrates, coenzymes and other factors
that are involved in the reaction. Equations 3 and 4 are examples of nomenclature for a two
substrate reaction where S and C represent substrate and coenzyme, respectively.

e
v
 =  + 

[C]
 + 

[S]
 + 

[C][S]
   0

1 2 12φ
φ φ φ

(3)
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e
v
 = 1

k
 + K

k [C]
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k [S]
 + K K

k [C][S]
  

cat

m1

cat

m2

cat

m2 ia

cat
(5)

Independent of nomenclature, to obtain a full description of the kinetic coefficients the
concentration of functional enzyme active sites is required. As can be seen from the above
described examples of nomenclature, in Equation 3 [26] the enzyme concentration is
incorporated in the rate equation while this is not the case in equation 4 [27]. In the latter
case it is necessary to convert Vm to kcat, i. e. the coefficient for the catalytic centre activity
of the enzyme. As kcat = Vm/[e], Equation 4 can be rewritten to Equation 5. With knowledge
of kcat it is possible to get a description of the enzymes capability to act on a substrate, and
also to compare the activity with other similar enzymes.

A large problem is to find a good and reliable method to determine the amount of func-
tional enzyme active sites in order to calculate kcat (1 /N0). In the literature, it can often be
seen that the amount of enzyme used in the calculations is not based on a reliable method
that determines the concentration of functional active sites. Instead, the amount of protein
is determined by a protein detection method such as Bradford, or A280nm and a well defined
extinction coefficient for the enzyme in question. Even if the enzyme preparation can be
regarded to be homogeneous based on SDS-PAGE and isoelectric focusing, none of these
methods are acceptable to determine the amount of functional enzyme. The reason is that
these methods are based on the assumption that the protein concentration is identical with
the concentration of functional active sites in the enzyme, which is not always the case.
Therefore, a reliable value for kcat (1 /N0) can be obtained only if the amount of functional
enzyme is determined by a method that is based on active-site titration. How the titration is
performed depends on the enzyme, and several methods have been described [28]. A good
example of active site titration of ADHs was first shown by Theorell [29], which was based
on the formation of a dead end ternary complex using the alcohol competitive inhibitor
pyrazole. This method has been used in several studies of ADHs [30–32]. Unfortunately not
all ADHs form a strong ternary complex with pyrazole, which is a necessity for its use as a
titrating agent [33]. Under such conditions, it is necessary to find alternative methods. The
method of Theorell [29] has been used on sorbitol dehydrogenase (SDH) from sheep liver,
where DTT (a substrate competitive inhibitor) was used instead of pyrazole [34]. Several
titration methods have been used on proteinases, including the classical titration method of
chymotrypsin [28]. With MMPs, various methods have been used. All are based on a strong
interaction between a synthetic inhibitor or one of the TIMPs and the enzyme active site
[35–37]. Here of course it is important not to use a TIMP that is known to bind to a
proMMPs C-terminal hemopexin-like region such as TIMP-2 to proMMP-2 and TIMP-1 to
proMMP-9 [25].
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The question is whether it is correct or not to report a kinetic coefficient such as kcat and
kcat/Km for a substrate when a homogeneous enzyme preparations has been used and where
it is not possible to obtain the amount of functional enzyme by an active site titration
method. Personally I think this is wrong, even if it is a good reason to assume that the
concentration of functional active-sites is identical with the amount of enzyme detected
with for example A280nm and a well defined extinction coefficient for the enzyme in
question. In such cases it would have been much better to introduce new coefficients that
for example could be denoted kcat(-t) and kcat(-t)/Km where (-t) shows that the coefficient is
not based on active site titration.

Detection of the Substrate Specificity of an Enzyme with

or without Knowledge of The Absolute Concentration

of the Functional Active Sites

Under some conditions it is not possible to determine the concentration of functional
enzyme active sites and hence, the absolute value of the kinetic coefficients. This will of
course limit our ability to compare the absolute activity of enzymes, but it is still possible
to obtain various kinetic characteristics such as the substrate specificity for an enzyme and
compare this with the substrate specificity of another enzyme, detection of inhibitory
compounds and reaction mechanism. A typical example is our early studies of DADHs
[38, 39]. We intended to determine the topology of the enzyme active site long before a
3D-structure of DADH was available. As the topology of the active-site determines the
substrate specificity of the enzyme, we decided to investigate the substrate specificity of the
enzyme by using approximately 100 different structurally well defined alcohols (primary,
secondary, linear, cyclic and bi-cyclic). We faced several problems during these early
studies of DADH, one was the small amounts of enzyme available which were not enough
to perform active site titration, and hence it was not possible to determine the absolute
values of the various kinetic coefficients. The second was the large amount of alcohols that
we planned to use, and how to determine the substrate specificity without obtaining all the
kinetic coefficients and their absolute values. This of course required optimal reaction
conditions in order to determine the specificity of the various DADHs. I will try do describe
some of the problems and how we solved them.

Quantitative estimation of functional enzyme without active site titration
How did we ensure that the same amount of functional enzyme was used in each experi-
ment? This problem was solved simply by using a high saturating concentration of ethanol
as a standard at optimal conditions as described below. We also showed that the enzyme
activity under the condition used with a fixed ethanol concentration was linear with the
variation in enzyme concentration (v = k x [e]), although the absolute [e] was not known.
We therefore presented all data as Vm, Vm/Km and activity at fixed alcohol concentrations
(see below) relative to the activity of ethanol [32, 38, 39]. Later on, when we had enough
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DADH to perform active-site titrations, we used the standard conditions above in the
development of a rate assay that was calibrated against the titration [31, 32]. This of course
allowed us to convert all old relative data to absolute data.

Detection of substrate specificity using a single coenzyme concentration
Which of the kinetic coefficients reflect an enzyme’s substrate specificity? As DADH is a
two substrate enzyme as described above, the substrate specificity is reflected in the kinetic
coefficient N2 in Equation 3 or Km2/kcat in Equation 5 for various alcohols. Our aim was to
get a picture of the substrate specificity by using a fixed NAD+ concentration, vary the
concentration of some selected alcohols and thereafter determine the activity for all alco-
hols at a fixed concentration. In order to use a fixed NAD+ concentration, it is important
that this is high enough so the obtained (app)kcat/Km2 and (app)kcat values are as close as
possible to the values for an infinite coenzyme concentration. This requires that Km1/(kcat

[NAD+]) is much less than 1/kcat and that Km2 Kia/(kcat [NAD+]) is much less than Km2/kcat.
The problem was to find the experimental conditions that were optimal in order to obtain
reliable results. We decided to use a temperature that was used in the classical experiments
on horse liver ADH by Theorell and McKinley-McKee [40] and by Dalziel [41]. Our initial
experiments revealed that optimal conditions were obtained using 0.1 M glycine–NaOH
buffer pH 9.5 and a fixed concentration of 0.5 mM of NAD+. The reason to choose such a
high pH compared to physiological pH is of course the equilibrium of the reaction and the
amount of NAD+ needed to obtain acceptable values of (app)kcat and (app)kcat/Km2. As an
example, at neutral pH with a NAD+ concentration of 1 mM, N1/[NAD+] and N12/[NAD+]
are approximately the same as N0 and N2, respectively [42, 43]. Using 10 mM of NAD+

would have reduced the ratios to be 5 – 10% of the corresponding N coefficient. However
at basic pH (9.5 – 10) these two relations are approximately 2% of corresponding N0 and
N2 coefficient, using 0.5 mM of NAD+ [42, 43]. These calculations are based on the two
substrates ethanol and propan-2-ol using the D. melanogaster alleloenzyme ADHS and the
D. lebanonensis ADH [42, 43]. This can be compared with results for sheep liver Sorbitol
dehydrogenase (SDH), where the corresponding relations (1+ N1/(N0 [NAD+]) and 1 + N12/
(N2 [NAD+])) using 1 mM NAD+ are close to 2 at both pH 7.4 and 9.5 using sorbitol as
varied substrate [34]. Studies of this SDH revealed that the substrate specificity was the
same at neutral and at basic pH [44].

DADH is also able to oxidize aldehydes in the presence of NAD+ to their corresponding
acids (Equation 2) [3, 4, 45, 46]. At pH 7.0, it is not possible to follow this reaction by
determining the production of NADH. This is due to the dismutation reaction (Equation 6;
which is the sum of Equations 1 and 2), i. e. as fast as NADH is produced, it reacts with the
aldehyde and produces alcohol.

2 aldehyde + H2O /? carboxylate� + alcohol + H+ (6)
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However, above pH 9.0 it has been possible to detect NADH production with DADH as the
reduction reaction of aldehyde to alcohol is slower than at neutral pH [3, 4, 45, 46], and
hence an unequal amount of alcohol and acid is produced in the dismutation reaction. It has
been argued that the increase in A340nm, i. e. the release of NADH, is not a direct measure
of the aldehyde oxidation reaction and acid production, and that the resulting kinetic values
cannot be compared with those for alcohol dehydrogenation. This indicates that aldehyde
oxidation can only be studied with methods such as 1H-NMR, gas chromatography or pH-
stat titrations. Due to the amount of enzyme needed, as well as initial-rate measurements
cannot be performed with the two former methods, one would expect that this would limit
the possibility of doing kinetic studies on the aldehyde oxidation reaction. Even if this is
correct to a certain extent, we have shown that it is possible to do kinetic studies by
following the initial-rate production of NADH at pH 9.5, by using a very sensitive filter
fluorimeter specially built to study dehydrogenase reactions [4]. With this instrument we
could detect the continuous production of NADH, with a detection limit as low as 10 nM.
We performed substrate specificity studies, as well as detecting kinetic coefficients for the
aldehyde oxidation reaction and compared this with both the alcohol oxidation reaction and
aldehyde reduction reaction [4]. The combination of dead-end and product inhibitors was
used to determine the reaction mechanism for the aldehyde oxidation pathway, which like
the interconversion between alcohols and aldehydes was consistent with a compulsory
ordered mechanism as shown in Scheme 1. It is important to emphasize that it is necessary
to avoid buffers containing primary or secondary amine groups, as these formed Schiff
bases with the aldehydes. This shows the possibilities to do studies of enzymes if optimal
reaction conditions and optimal instrumentation is used, and that some type of studies is not
possible to perform at neutral pH.

Scheme 1. Reaction mechanism for DADH. The upper pathway shows the intercon-
version between an alcohol (Alc) and an aldehyde (Ald), and the lower pathway the
oxidation of an aldehyde (Ald) to a carboxylic acid (Acid). The mechanism for these
reactions was consistent with a compulsory ordered pathway, where the coenzymes
form binary enzyme complexes.

262

Winberg, J.-O.



Determination of substrate specificity using a single fixed alcohol and NAD+

concentration
In order to use only one alcohol concentration, which is the optimal concentration to use?
As N2 (Km2/kcat) reflects the activity at low alcohol concentrations, one should use a
concentration that is below Km. We used 1 mM of the different alcohols, which was
assumed to be an acceptable concentration. This also appeared to be the case for the
primary alcohols and a lot of the secondary alcohols. Although this concentration proved
to be a little too high with respect to some of the secondary alcohols, it reflected in an
acceptable way the (app)kcat/Km2 values in those cases where these were obtained [32, 38,
39]. The substrate specificity obtained at pH 9.5 has been shown to reflect the substrate
specificity at neutral pH for DADH [42, 43].

Figure 2. Schematic representation of the alcohol binding site in ternary DADH-
NAD+-substrate complexes. The binding of (A) propan-2-ol, (B) ethanol and (C)
acetaldehyde (diol) is shown. The hydrophobic and bifurcated part of the enzyme
active site that interacts with the alkyl groups in alcohols and aldehydes is shown in
grey and labelled as R1 and R2. Also shown is the nicotinamide part of the oxidized
coenzyme NAD+ and the OH-group of the substrates that interacts with the OH-group
in the two conserved residues tyrosine-151 (Y) and serine-138 (X) using D. lebano-
nensis numbering.
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Professor Ladenstein and his group at Karolinska Institutet in Sweden obtained the 3D-
structure of several ternary DADH-NAD+-ketone complexes through X-ray crystallography
[10], and their description of the topology of the active site was exactly as we depicted
from our substrate specificity studies more then 15 years earlier [32, 38, 39]. The kinetic
and X-ray crystallography data showed a hydrophobic, bifurcated substrate-binding site in
DADH, which results in optimal binding and activity with secondary alcohols (Fig. 2a).
Kinetic and X-ray crystallographic data has also shown that the alkyl chain in ethanol and
other primary alcohols as well as aldehydes during reduction with NADH to alcohols binds
to the R1 part of this bifurcated alcohol binding part of the active site (Fig. 2b) [10, 47].
However, in the oxidation of aldehydes to acids, the alkyl chains in the aldehyde binds to
the R2 binding part of the active site (Fig. 2c) [11].

Additives in a Purified Enzyme Preparation May Alter the

Biochemical Properties of the Enzyme

In this part I will take up the importance of a careful description of an enzyme assay, i. e.
the conditions used including the concentrations of all the constituents in the assay. The
example used shows that the amount of additives present in a preparation of proMMP-2
determines whether or not trypsin will act as an activator of this MMP.

The literature states that serine proteinases like trypsin cannot activate proMMP-2. This has
been based on very careful studies by Okada et al., [48] in which they studied the activation
of proMMP-2 by the organic mercury compound 4-aminophenyl mercury acetate (APMA).
In this study, several proteinases including trypsin were also tested as proMMP-2 activa-
tors, and none of these activated the enzyme. The conditions used for the activation with
APMA are very well documented, while the conditions used when trypsin and the other
proteinases were tested, are less well documented. They used various amounts of trypsin
(0.1 – 100 mg/ml) at 22 �C from 5 minutes to 30 hours. What was not explicitly cited was
the concentration used of CaCl2, and if they used Brij-35 in the assay and if so, what was
the concentration. In another article, it was shown that trypsin-2 is an activator of proMMP-
9, but could only partly activate proMMP-2 [49]. However, nothing was mentioned with
respect to reaction conditions such as added Brij-35 or CaCl2.

These results fitted badly with my own studies on the expression of MMP-2 from cultured
fibroblasts [50, 51]. After harvesting the cell-conditioned serum-free medium, we used to
add CaCl2, BSA and Hepes (pH 7.5) to a final concentration of 10 mM, 0.2% and 0.1 M
respectively. This was done in order to protect the enzyme in the freezing (�20 �C) and
thawing processes. The proMMP-2 in these serum-free media was always activated by
trypsin, and we showed that this was not due to the activation of another MMP (collagenase
1/MMP-1) in the media, that then could activate proMMP-2 [51]. In a recent study, we did
check whether trypsin could activate recombinant proMMP-2 [35]. In these studies we
decided to test whether the discrepancies between our results, using cell conditioned media
and those that used purified proMMP-2, could be ascribed to differences in experimental
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reaction conditions, or, that the activation of proMMP-2 in the cell conditioned media
actually was due to trypsin-induced activation of a latent MMP-2 activator in the media
and not through a direct activation of proMMP-2.

Figure 3. Schematic drawing showing the cleavage sites in proMMP-2 produced by
MT1-MMP, APMA, autoactivation and trypsin. MT1-MMP cleaves N-terminal for
the invariant C73 that is linked to the active site zinc in the proenzyme. The inter-
mediate formed is further processed by autoactivation that generates the fully active
62 kDa form of MMP-2. Treatment of proMMP-2 with AMPA results in autoactiva-
tion. Trypsin cleaves C-terminal for the autoactivation site, and at several sites in the
C-terminal region, ending up with a cleavage between R538 and V539 generating an
active 50 kDa form.

The commercial recombinant proMMP-2 used in our studies was delivered from Chemicon,
and contained 100 mg/ml proMMP-2 in 5 mM Tris–HCl (pH 7.5), 0.1 mM CaCl2 and
0.005% Brij-35. In our activation experiments with trypsin, this proMMP-2 stock solution
always ended up 30 – 40 times diluted in 0.1 M Hepes, pH 7.5 prior to the addition of the
different amounts of trypsin, CaCl2 and Brij-35. Other conditions varied were temperature
(4, 16, 22 and 37 �C) and incubation time with trypsin (2 minutes to 24 hours). Our results
showed that trypsin is actually an activator of proMMP-2 that first removes the pro-domain
from the 72 kDa proMMP-2 and generates an active 62 kDa form. This is followed by a
trypsin-induced successive removal of the most C-terminal parts of the hemopexin-like
domain that ends up in a 50 kDa active form of the enzyme as shown in Fig. 3. Without
exogenous added CaCl2 and Brij-35, trypsin induced activation at the low temperatures,
while at 37 �C, the proMMP-2 was only degraded. Both CaCl2 and Brij-35 stabilized the
MMP, which could be activated at 37 �C if only one of these compounds were present.
However in the presence of 0.05% Brij-35, trypsin-induced activation decreased with
increasing concentrations of CaCl2. At 5 and 10 mM CaCl2 (approximately 5 – 10 times
the physiological concentration in tissues) only a small fraction was activated and almost
all the enzyme remained in the proform. Thus the discrepancy in the literature cannot be
ascribed experimental faults or the activation of an unknown proMMP-2 activator in cell
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conditioned media, but was due to various reaction conditions. The trypsin-induced activa-
tion of proMMP-2 generates an active MMP-2 with a slightly shorter N-terminal than the
enzyme activated by the assumed most important biological activator, MT1-MMP, or the
organic mercurial compound APMA (Fig. 3). This difference in structure also resulted in an
altered capacity of the enzyme to degrade the biological substrate, gelatin, and a chromo-
genic substrate, as well as an altered binding strength (Ki) to the biological inhibitor
TIMP-1 [35].

These results clearly demonstrate the importance of various additives and to report their
concentration, as they may affect the parameters studied. By reporting all the additives and
their concentrations, authors allow others to extend their investigation as well as to test the
substance in the published results. As shown above, due to the presence of various additives
in the reaction assay, an erroneous statement about a biological parameter of an enzyme has
been introduced in the literature which is hard to erase.

Conclusions

In order to obtain a full description of the kinetic coefficients, the concentration of func-
tional enzyme active sites is required. This should be obtained by a method based on
active-site titration.

If it is not possible to obtain the amount of functional enzyme by active site titration
methods, my view is that it is wrong to present kinetic coefficients like kcat and kcat/Km

using units such as s�1 and mM�1 s�1, respectively. In a lot of cases it is much better to
present the kinetic coefficients as specific activities or relative activities using Vm and Vm/
Km. In other cases it may be better to introduce new kinetic coefficients, which for example
could be denoted kcat(-t) and kcat(-t)/Km (using units such s�1 and mM�1s-1), where (–t) shows
that the catalytic activity is not based on active site titration.

It should not be necessary to stress that a clear description of conditions used, including all
additives, should be reported.

Standardization of parameters such as pH and temperature can be done to a certain extent
where it is appropriate.
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Robert A. Alberty

I graduated from the University of Nebraska in 1943, did research on blood plasma at the
University of Wisconsin, received my PhD in 1947, and became an Instructor at the
University of Wisconsin. I became interested in enzyme kinetics and was a postdoc with
Linus Pauling at CalTech in 1950 – 51. Back at the University of Wisconsin we isolated
fumarase, determined the rate equations for both the forward and reverse reactions, and
confirmed the Haldane equation, among other things. In 1963 I became Dean of the
Graduate School, and in 1967 I became Dean of the School of Science at MIT. I was so
deeply involved in administration that I had to stop research. When I left the Deanship in
1982, I decided to use computers to study petroleum processing, and that lead me to the use
of Legendre transforms to define new thermodynamic properties. In 1991 I had my “eur-
eka’’ moment when I realized that when the pH is used as an independent variable in
biochemistry, you should not use the Gibbs energy G, but you need to use a Legendre
transform to define a transformed Gibbs energy G’. This lead to a IUPAC-IUBMB report in
1994. I have been building a database (BasicBiochemData3) on the thermodynamics of
biochemical reactions, and have written two books on the subject, the most recent one in
Mathematica.

Rolf Apweiler

is a Team Leader and Senior Scientist at the European Bioinformatics Institute, Wellcome
Trust Genome Campus, Hinxton, Cambridge, UK. He studied Biology with a focus on
Biochemistry and Molecular Biology in Heidelberg, Germany and Bath, UK, and worked
in drug discovery in the pharmaceutical industry. He became involved in Bioinformatics
through the Swiss-Prot project in 1987. He received his PhD in 1994 from the Center for
Molecular Biology, University of Heidelberg, Germany and joined the European Bioinfor-
matics Institute the same year. Dr Apweiler has coordinated the Swiss-Prot work at the
European Bioinformatics Institute since 1994. He also started, among other projects, the
TrEMBL protein database, the Integrated resource of protein families, domains and func-
tional sites (InterPro), Gene Ontoloy Annotation (GOA), the Integr8 web portal, the Gen-
ome Reviews, and the UniProt resource (the sucessor of the Swiss-Prot, TrEMBL and PIR
projects). These projects have organised large amounts of protein information, provided
comparisons between proteomes and aim to produce dynamic, controlled vocabularies that
can be applied to all organisms. In addition, Dr Apweiler has been in charge of the EMBL
nucleotide sequence database since 2001. Dr Apweiler served on many review and editorial
boards and published more than hundred peer-reviewed articles and numerous book chap-
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ters. Rolf Apweiler has also a long-standing interest in data standards and nomenclature as
exemplified in his engagement in the IUBMB Nomenclature Committee, the HUGO gene
nomenclature committee, and in the HUPO Proteomics Standards Initiative.

URLs:
http://www.ebi.ac.uk/seqdb/
http://www.uniprot.org
http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/integr8
http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/embl/
http://www.ebi.ac.uk/GenomeReviews/

Jildau Bouwman

Jildau Bouwman was educated in neuroscience at the vrije Universiteit Amsterdam. She did
a molecular biology internship in synapse development and an electrophysiological intern-
ship on receptor subunit switches during development. In 1999 she started with a PhD
studentship at the Rudolf Magnus Institute for neurosciences in Utrecht. In 2004 she started
her recent position as post-doc in the department of Molecular Cell Physiology at the Vrije
Universiteit Amsterdam. She is involved in the “Vertical Genomics” project. The eventual
goal of the project is to be able to predict how a change in gene expression can influence
metabolic fluxes.

Richard Cammack

is Professor of Biochemistry at King's College, University of London. He graduated from
the University of Cambridge with a BA in Natural Sciences in 1965 and PhD in Enzymol-
ogy, under Malcolm Dixon in 1968. He has over 200 publications on mechanisms of
electron transfer and enzyme catalysis, particularly in iron-sulfur proteins such as hydro-
genases and aromatic dioxygenases. He is currently using EPR spectroscopy to study the
role of iron in health and disease. He is past Chairman (2000 – 2005) of the Nomenclature
committee of the International Union of Biochemistry and Molecular Biology (IUBMB)
and Joint commission on Biochemical Nomenclature (JCBN), and Editor-in-Chief of the
second edition of the Oxford Dictionary of Biochemistry and Molecular Biology.

Athel Cornish-Bowden

carried out his undergraduate studies at Oxford, obtaining his doctorate with Jeremy R.
Knowles in 1967. After three post-doctoral years in the laboratory of Daniel E. Koshland,
Jr., at the University of California, Berkeley, he spent 16 years as Lecturer, and later Senior
Lecturer, in the Department of Biochemistry at the University of Birmingham. Since 1987
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he has been Directeur de Recherche in three different laboratories of the CNRS at Mar-
seilles. Although he started his career in a department of organic chemistry virtually all of
his research has been in biochemistry,with particular reference to enzymes, including
pepsin, mammalian hexokinases and enzymes involved in electron transfer in bacteria.
He has written several books relating to enzyme kinetics, including Analysis of Enzyme
Kinetic Data (Oxford University Press, 1995) and Fundamentals of Enzyme Kinetics (3 rd
edition, Portland Press, 2004). Since moving to Marseilles he has been particularly inter-
ested in multi-enzyme systems, including the regulation of metabolic pathways. More
generally, he has long had an interest in biochemical aspects of evolution, and his semi-
popular book in this field, The Pursuit of Perfection, will be published by Oxford Uni-
versity Press in 2004.

Kirill N. Degtyarenko

Born in Moscow region, Russia in 1967.
In 1989, graduated from the Russian State Medical University, Medico-Biological Faculty
(M.D.; M.Sc. in Biochemistry). Since 1986, he worked under guidance of Prof. Valentin
Uvarov, first at the Department of Biochemistry, MBF and later at the Institute of Biome-
dical Chemistry, Moscow.
In 1992, he defended his Ph.D. thesis on Molecular Evolution of the P450 Superfamily at
the Institute of Biomedical Chemistry (supervisors: Prof. Alexander Archakov and Valentin
Uvarov).
He spent one year at the International Centre for Genetic Engineering and Biotechnology,
Trieste, Italy, before joining the Department of Biochemistry and Molecular Biology, the
University of Leeds, UK in 1995. Since 1998, Kirill has been working at the European
Bioinformatics Institute, Hinxton (near Cambridge).

Martin Field

1982 Undergraduate degree (BA) from St.Catharine's College, Cambridge in
Natural Sciences.

1982 – 1985 PhD at the University of Manchester in quantum chemistry.

1985 – 1989 Postdoctorate at the University of Harvard – theoretical studies of enzy-
matic reaction mechanisms and protein dynamics.

1989 – 1992 Posts at the University of Geneva and at the NIH, Bethesda, Maryland.

1992+ Group leader of the modeling and simulation laboratory at the Institut de
Biologie Structurale in Grenoble.

Martin's general research involves using molecular modeling and simulation approaches for
studying problems of biological interest. Specific interests include the development and
application of hybrid potential techniques for studying enzymatic reaction mechanisms and
other condensed phase processes.
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Wilfred R. Hagen

is a Professor of Enzymology in the Department of Biotechnology at Delft University of
Technology in Delft, The Netherlands. The central research theme in his group is the role
of metal ions in redox biocatalysis. Fred Hagen completed his PhD on EPR of metallopro-
teins at the University of Amsterdam in 1982 with SPJ Albracht and EC Slater. He then
took up an EMBO fellowship, and subsequently an NIH fellowship, at the Biophysics
Research Division of The University of Michigan in Ann Arbor, to work on g-strain (the
theory of EPR spectra from biomacromolecules) with WR Dunham and RH Sands.
In 1984 he returned to The Netherlands to join the Biochemistry Department of C Veeger at
Wageningen University to set up a group on metalloproteins. In 1995 he was appointed to a
chair of Physical Chemistry at the University of Nijmegen, where he headed the high-
frequency EPR spectroscopy group. In 1998 he was also appointed professor of Bioinor-
ganic Chemistry in Wageningen. In 2000 he resigned from both positions and moved to
Delft University of Technology to take up the chair of Enzymology in the Department of
Biotechnology.
http://www.bt.tudelft.nl/enz.

Jan-Hendrik Hofmeyr

is Professor in the Department of Biochemistry at the University of Stellenbosch, South
Africa. He obtained his Ph.D. in 1986 at the University of Stellenbosch after collaborating
with Henrik Kacser (one of the founders of metabolic control analysis) and the enzymol-
ogist Athel Cornish-Bowden. Jannie and his colleagues Jacky Snoep and Johann Rohwer
form the Triple-J Group for Molecular Cell Physiology, a research group that studies the
control and regulation of cellular processes using theoretical, computer modelling and
experimental approaches. He has made numerous fundamental contributions to the devel-
opment of metabolic control analysis and computational cell biology, and with Athel
Cornish-Bowden developed both co-response analysis and supply-demand analysis as a
basis for understanding metabolic regulation. He is a Fellow of the Academy of Science of
South Africa and, with the other Triple-Js, chairs the International Study Group for
BioThermoKinetics. He recently won the Harry Oppenheimer Fellowship Award, South
Africa’s most prestigious science award.

Hermann-Georg Holzh�tter

became professor in 1998 and head of the research group “Theoretical Systemsbiology” at
the Institute of Biochemistry of the Medical School (Charit�) of the Humboldt-University
in Berlin. His academic roots extend back to the late 60 s / early 70 s when he studied
Physics at the Humboldt-University. In 1976, he was awarded his Ph. D. for his research
on the theory of transport in small gap semiconductors and in 1986 he received his
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habilitation (Dr. rer. nat. habil.) for theoretical studies on the dynamics and evolution of
enzymatic networks. Today, his research topics are enzyme kinetics and the modelling of
complex enzymatic networks with an immunological focus.

Carsten Kettner

studied biology at the University of Bonn and obtained his diploma at the University of
G�ttingen in the group of Prof. Gradmann which had the pioneering and futuristic name –
“Molecular Electrobiology”. This group consisted of people carrying out research in elec-
trophysiology and molecular biology in fruitful cooperation. In this mixed environment, he
studied transport characteristics of the yeast plasma membrane using patch clamp techni-
ques. In 1996 he joined the group of Dr. Adam Bertl at the University of Karlsruhe and
undertook research on another yeast membrane type. During this period, he successfully
narrowed the gap between the biochemical and genetic properties, and the biophysical
comprehension of the vacuolar proton-translocating ATP-hydrolase. He was awarded his
Ph.D for this work in 1999. As a post-doctoral student he continued both the studies on the
biophysical properties of the pump and investigated the kinetics and regulation of the
dominant plasma membrane potassium channel (TOK1). In 2000 he moved to the Beil-
stein-Institut to represent the biological section of the funding department. Here, he is
responsible for the organization of symposia (sic!), research (proposals) and development
of new products considering the ideas of the Beilstein-Instiut, such as a medical plant
database, considering the ideas of the Beilstein-Institut. He also co-ordinates the work of
the STRENDA commission which is concerned with the standardization of enzyme data
(see also www.strenda.org).

Ursula Kummer

After finishing her Abitur in Baden-Baden, Ursula Kummer studied Biochemistry, Physics
and Chemistry in T�bingen, Germany and Eugene, Or, USA. She received a MSc in
Chemistry at the University of Oregon, Eugene, Or, USA, a Vordiplom in Physics, a
Diplom in Biochemistry and a PhD in Biochemistry at the University of T�bingen.
Her PhD thesis which combined experimental and computational studies was finished in
1996 and dealt with the Nonlinear Dynamics of Enzymatic Systems.
After postdoctoral time in T�bingen she joined the EML in Heidelberg where she became
group leader in 2000. Since then her group, the Bioinformatics and Computational Bio-
chemistry Group has been working on development of methodologies for the simulation,
modeling and analysis of biochemical networks and on their application. Ursula Kummer is
one of the coordinators of the BIOMS center in Heidelberg.
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Nicolas Le Novere

started his career in the team of Jean-Pierre Changeux at the Pasteur Institute in 1992. He
investigated, using both experimental and bioinformatics methods, the structure and func-
tion of cerebral nicotinic acetylcholine receptors until 1999. After a post-doc in the team of
Dennis Bray at the University of Cambridge, where he worked on the modelling of
bacterial chemotaxis, he came back to France as a CNRS research fellow. He is now Group
Leader at the European Bioinformatics Institute, the british outstation of the EMBL. He
shares his efforts between the modelling of neuronal signalling and the development of
tools and services for Computational Systems Biology. Nicolas Le Novere is co-author of
50 scientific publications. He received in 2004 the Jean-Marie Le Goff award, of the
French Academy of Science, for his work concerning the bioinformatics analysis of Li-
gand-Gated Ion channels.

Thomas S. Leyh

is a Professor of Biochemistry at the Albert Einstein College of Medicine (USA). He is
deeply interest in all levels of protein function: structure, dynamics, ground- and transition-
state structure and energetics, ligand-binding, allostery, the conformational coupling of
energetics, and the higher-order organization of catalysis in the cell. His current projects,
many of which are structurally grounded, include numerous enzymes that are loosely
centered around biomedically relevant issues in sulfur metabolism, isoprenoid biosynthesis
and antibiotic development. Dr. Leyh reviews manuscripts for numerous journals, and has
been a Member of the Editorial Board of the Journal of Biological Chemistry. He has
served as a Member of the Molecular Biochemistry Study Section at the NSF, and the NIH
Biochemistry Study Section where he served as Chairman. He is currently a Member of the
Molecular Structure Function A Study Section at the NIH. He recently spearheaded an NIH
workshop on Functional Genomics, which lead to a new NIH-sponsored program. Dr. Leyh
a member of the Strenda Commission.

Steffen Neumann

studied “Computing in the Natural Sciences” at Bielefeld University, where he focused on
Pattern Recognition, Distributed Systems and Bioinformatics, combined with Neurobiol-
ogy, -psychology and Cybernetics. In 1994/95 he took part in the Erasmus exchange
program at Dublin City University (DCU). From 1999 to 2003 he was assistant researcher
in the group of Prof. Gerhard Sagerer, where he completed his Ph. D. on Protein Docking.
In 2004 Steffen Neumann held a Post Doc Position in the Plant Data Warehouse Group at
the Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben, before he
became head of the Bioinformatics and Mass Spectrometry Group at the Leibniz Institute
of Plant Biochemistry (IPB) in Halle.
The Group is developing a Platform for Metabolomics Research, standardisation and ex-
change formats and integrating data from other -omics fields.
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Scott Pegg

Education
University of California, San Francisco, 1996 – 2001
Ph. D. in Pharmaceutical Chemistry, 2001
Area of Specialization: Bioinformatics and Computer-aided Molecular Design

University of California, Berkeley, 1990 – 1995
B. A. in Molecular and Cell Biology & Computer Science, with honors

Research
Current Research: Dept. of Biopharmaceutical Sciences, UCSF

. Computational methods of describing enzyme function, particularly the explicit
role of enzyme structure-function relationships.

. Computational methods for the development of biosynthetic routes to small
molecules.

Postdoctoral Research: Dept. of Biopharmaceutical Sciences, UCSF 2001 – 2003 (research
advisor: Dr. Patricia C. Babbitt).

. Construction of the Structure-Function Linkage Database, providing links be-
tween protein sequence, structure, and specific chemical function.

Doctoral Research: Dept. of Pharmaceutical Chemistry, UCSF, 1996 – 2001 (research
advisors: Dr. Irwin D. Kuntz and Dr. Patricia C. Babbitt).

. Development of a genetic algorithm for the de-novo design of small molecule
ligands.

. Development and analysis of a methodology for detection of remote protein
homologies in sequence databases.

. Analysis of docking simulations using protein homology models.

Teaching
Instructor: Bioinformatics Algorithms, U.C. San Francisco, 2001 – present.
Lecturer: Introduction of Bioinformatics, U.C. San Francisco, 2001 – present.
Awards and Honors
Eino Nelson Prize for Graduate Research Achievement, U.C.S.F., 1999
NIH Biotechnology Training Grant, 1997
U.C. Regents Graduate Fellowship, 1996
Computer Science Departmental Achievement Award, 1995
NCAA Student Athlete Award (waterpolo), 1994
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Johann Rohwer

is Associate Professor in the Department of Biochemistry at Stellenbosch University, South
Africa. He obtained his Ph.D. in 1997 from the University of Amsterdam, working on the
control and regulation of the bacterial phosphotransferase system under the supervision of
Hans Westerhoff. He then joined Stellenbosch University, where he and his colleagues
Jannie Hofmeyr and Jacky Snoep constitute the "Triple-J Group for Molecular Cell Phy-
siology“, a research group that studies the control and regulation of cellular processes using
theoretical, numerical and experimental approaches.
Johann has contributed to the theoretical development of metabolic control analysis, to its
experimental application, and to the development of software tools for computational
systems biology. His main research interests are the construction of kinetic models of
cellular function, and the application of NMR spectroscopy to the non-invasive study of
metabolism in vivo. He has received the President's Award from the South African Na-
tional Research Foundation and the Silver Medal of the South African Society of Biochem-
istry and Molecular Biology.
Together with the other Triple-Js, he chairs the BTK: International Study Group for
Systems Biology, and he represents his university on the South African National Bioinfor-
matics Network.

Isabel Rojas

Born in Caracas, Venezuela. She graduated as Licentiate in Computer Science at the
Universidad Central de Venezuela (UCV) in 1990 and obtained a Master of Science and
a Diploma in Computer Science from the Imperial College, UK in 1993. She did her PhD in
computer science at the University of Edinburgh, UK, from 1993 to 1997.
Before joining the EML she worked as a database development consultant for a period of 4
years, managing a group of developers as well as training personnel in multiple companies.
She has worked as a lecturer in several computer science disciplines in several Universities
and High-Education Institutions.
She leads the Scientific Databases and visualisation group at the EML Research since June
1999. The group mainly works on the development and databases to support the study and
analysis of biochemical pathways. The development of user interfaces and visualisation
methods for better understanding of the data form also part of the group’s work. Besides
these topics the group works on the development of biological ontologies and methods for
the extraction of biological information from text and biochemical databases.
Since end of 2004 the group has been working on the development of the SABIO (System
for the Analysis of Biochemical Pathways) – Reaction Kinetics (SABIO-RK) database, a
web-accessible system setup to support researchers interested in information about bio-
chemical reactions and their kinetics.
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Hartmut Schl�ter

1981 – 1988: Westf�lische-Wilhelms-University, M�nster (Chemistry)

1988: Diploma (= M. Sc.) in Biochemistry, Faculty of Chemistry, University of
M�nster

1991: Ph. D. (Dr. rer. nat.) in Biochemistry, University of M�nster, Faculty of
Chemistry,
Thesis supervisor: Prof. Dr. H. Witzel

1994: Heinz Maier-Leibnitz prize

1995: Gerhard Hess award (DFG)

1995: Bennigsen-Foerder prize

1991 – 1996: Postdoctoral fellowship at the Medical Faculty of the University of M�nster

1996: Habilitation (Dr. rer. nat. habil.) in Pathobiochemistry at the Medical Faculty
of the University of M�nster

1996 – 2000: Group leader at the Medical Faculty of the Ruhr-University of Bochum

2000-current: Senior Scientist and Head of the Bioanalytical Laboratory of Nephrology,
University hospital Benjamin-Franklin, Free University of Berlin,
now: Charit� – University Medicine Berlin, Campus Benjamin-Franklin,
Joint Facility of the Free University of Berlin and the Humboldt-University
of Berlin

2003-current: (apl.) Professor at the Campus Benjamin-Franklin, Free University of Berlin

Dietmar Schomburg

1974: Diplom in Chemistry at the Technical University ”Carolo-Wilhelmina” in
Braunschweig

1976: Dr. rer.nat. in Chemistry (Structural Chemistry of Organo-phosphorus
compounds)

1985: Habilitation (Dr. rer.nat.habil.) for Structural Chemistry

Scientific Career:

1976 – 1978: Post-Doc in the Chemistry Department at Technical University
Braunschweig.

1978 – 1979: Research Fellow at Harvard University in Cambridge, Mass., U. S. A. in
Professor W.N. Lipscomb's and Professor F.H. Westheimer's groups.

1979 – 1981: Post-Doctoral Fellow in the Chemistry Department at Braunschweig
Technical University

1981 – 1983: Assistant Professor (Hochschulassistent), Braunschweig Technical
University
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1983 – 1986: Head of the x-ray lab at the German Centre for Biotechnology –
GBF (Gesellschaft f�r Biotechnologische Forschung), Braunschweig

1987 – 1996: Head of the GBF Department of “Molecular Structure Research.”

1989 – 1995: Head of CAPE (Center of Applied Protein Engineering)

1990 – 1996: (apl.) Professor at the Technical University Braunschweig

1996 – 2007: Full Professor of Biochemistry, University of Cologne

since 2007: Full Professor of Biochemistry, Technical University of Braunschweig

Jacky Snoep

received his Ph D in 1992 in the fields of microbial physiology and enzymology working on
the control of pyruvate catabolism in bacterial systems. He subsequently worked as a
postdoctoral fellow, first specializing in molecular techniques to apply control analysis
together with Prof. Ingram at the University of Florida and second together with
Prof. Westerhoff at the Netherlands Cancer Institute working on theoretical and modelling
aspects of biological systems.
Currently Snoep is appointed in Cellular BioInformatics at the Free University of Amster-
dam and in Biochemistry at the University of Stellenbosch. He has successfully applied the
multidisciplinary approach of combining theory, computer modelling and experiment to
understand biological systems to topics as diverse as DNA supercoiling and metabolic
engineering of lactic acid bacteria. Since 2001 Snoep has been active in setting up a
database for kinetic models that can be interactively run and interrogated over the internet
at http://jjj.biochem.sun.ac.za.

Matthias Stein

obtained a degree in chemistry and a Ph D in biophysical chemistry from the Technische
Universit�t Berlin. He investigated the enzymatic mechanism of biological hydrogen con-
version by means of magnetic resonance spectroscopy and advanced electronic structure
calculations. He also obtained a Master of Science degree in theoretical chemistry from the
University of Manchester, UK. After his Ph D he worked as an Administrative Manager of
the Collaborative Research Centre (SFB) 498 in Berlin. He did a postdoc at the Royal
Institute of Technology in Stockholm. He then spend three years in industry and worked for
a biotech company in the area of scientific computing and computer-aided drug design. He
is currently a Research Associate at the EML Research gGmbH in Heidelberg and is
working on the derivation of kinetic parameters from protein structures for simulations in
systems biology. The work presented here is part of the German systems biology initiative
within the HepatoSys network.
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Keith Tipton

Degrees etc.
B. Sc. (Biochemistry), St Andrews University (1962); M. A. (1965), Ph. D. (1966);
Cambridge University; M.R.I.A. (1984)

Main Posts:
University of Cambridge: Demonstrator & Lecturer (1965 – 1977). Fellow of King's
College Cambridge (1965 – 1977).
University of Dublin: Professor of Biochemistry (1997 – present).
Fellow of Trinity College, Dublin (1979 – present).
Visiting Professor: Universities of Florence (1976, 1993 & 2003) & Siena (1987 & 1999);
Autonomous University of Barcelona (1988 – 89).

Publications:
Over 250 papers in refereed journals; 35 papers as chapters in books; editor of 19 books,
> 150 abstracts; 1 patent, co-author of three books.

Research Interests:
Enzymology: regulation, kinetics, inhibition, isolation, applications and classification.
Metabolic analysis and simulation. Neurochemistry: depression, degenerative diseases
and ‘neuroprotection’. Biochemical Pharmacology: drug design, ethanol.

Jan-Olof Winberg

Education:
1982, Cand. real., University of Oslo
1990, Dr. philos., University of Oslo.

Positions/graduate employments:
1983 – 86, Research scholar, Genetic Department, The Norwegian Radium Hospital, Oslo.
1986 – 1993, Senior research officer and head of the Biochemical section, Genetic Depart-
ment, University Hospital of Northern Norway, 9038 Tromsø.
1993-, Professor, Department of Biochemistry, IMB, MF, University of Tromsø.

Research activities:
Biochemical and kinetic characterization of alcohol dehydrogenases and matrix metallo-
proteinases.
In vivo, ex vivo and in vitro expression of matrix metalloproteinases and their tissue
inhibitors in diseases such as epidermolysis bullosa and various types of cancer.
Characterization of factors that are involved in the regulation of matrix metalloproteinases
in various types of cancer.
Detection of mutations of collagen type VII in patients with the recessive dystrophic form
of epidermolysis bullosa.
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