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ABSTRACT

Understanding the effects that non-synonymous single nucleotide
polymorphisms have on the structures of the gene products, the pro-
teins, is important in identifying the origins of complex diseases. A
method based on amino acid substitutions observed within homolo-
gous protein families with known 3D structures was used to predict
changes in stability caused by mutations. In the task of predicting only
the sign of stability change, our method performs comparably or better
to other published methods with an accuracy of 71 %. The method was
applied to a set of disease associated and non-disease associated mu-
tations and was shown to distinguish the two sets in terms of protein
stability. Our method may therefore have application in correlating
SNPs with diseases caused by protein instability.

INTRODUCTION

Single nucleotide polymorphisms (SNPs) are the most common source of variation in the
genome. Due to the redundant nature of the RNA triplet code that encodes proteins, many
of these SNPs will not cause an amino acid change in the encoded protein (synonymous
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mutations). However, where a SNP causes an amino acid change (a non-synonymous
mutation) there may be an effect on the structure or function of the encoded protein. Where
protein function is lost, this may lead to disease. It would be extremely useful to be able to
predict which mutations are likely to cause disease. Identifying those SNPs that infer
susceptibility or protection to complex diseases will aid early diagnosis, prevention and
treatments to these diseases [1].

A SNP may affect the function of a protein in three main ways. Firstly, a SNP may affect
the functional residues of a protein i.e. the active site or protein-protein interaction site,
impairing the protein's ability to carry out its function and hence affecting the molecular
pathway within which the protein functions. Secondly, a SNP may affect the stability of a
protein by either destabilizing it (increasing the ratio of unfolded protein to folded protein)
or stabilizing it (decreasing the ratio of unfolded protein to folded protein). A third effect of
SNPs, related to protein stability, is that of causing protein aggregation.

In its native state a protein's 3D structure is folded into regions of secondary structure.
However, under conditions of stress e.g. high temperature, the protein may denature to an
unfolded state which is more flexible and highly hydrated. The stability of a protein reflects
its ability to resist this conformational change under stress. Protein stability differences
between wild-type and mutant proteins can be calculated using the thermodynamic cycle

(Fig. 1).
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Figure 1. The thermodynamic cycle can be used to calculate protein stability changes
between wild-type and mutant proteins.
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The difference in free energy of unfolding of the wild type (j) and mutant (k), AAG, is
calculated by:

99 99 _ v U-F v U-F __ » U »» F
G ="G/" "GV = "GY -G (1)

where ”Gf “F and ”GY™F  represent the free energy change going from the unfolded
(U) to the folded (F) state for the mutant and wild type proteins respectively. Direct
simulation of the unfolding process is not possible. As the total free energy in the full
cycle is zero, the AAG can instead be calculated using the free energy changes associated
with the transformation of j — k in the unfolded and folded state (”Gj[.iand ”G;{ respec-
tively).

Various methods of predicting protein stability changes caused by mutation have been
described and can be grouped into four main categories based on the method used in the
calculation; (1) physical effective energy functions, (2) empirical potential energy func-
tions, (3) machine learning methods and (4) statistical potential energy functions.

Physical effective energy functions (such as molecular mechanics approaches) are currently
only useful for testing small sets of mutants due to the large amount of time required to
compute calculated AAG values [2—5]. The reliability of predictions are also questionable
due to difficulties in sampling in the folded and unfolded states [6]. Empirical energy
functions are fitted to experimental data using a set of weighted terms incorporating
physical and statistical factors with structural knowledge [7, 8]. The empirical energy
function is then tested on a second set of mutants in order to assess the accuracy of the
method. Machine learning methods include neural networks and support vector machines
(SVMs) and use information about mutations, protein sequence and structural information
to fit a non-linear function to experimental data [9—12]. They are similar to empirical
energy functions in their use of experimental data to fit their function and in both cases,
care must be taken that the function is not over-fitted to the training data set. Statistical
potential energy functions are derived using statistical analysis of information from protein
databases such as substitution frequencies, distance potentials and amino acid environmen-
tal propensities [13 —15].

Site Directed Mutator (SDM) is a statistical potential energy function developed by Top-
ham et al., [13] to predict the effect that SNPs will have on the stability of proteins. SDM
uses amino acid substitution frequencies within homologous protein families to calculate a
stability score which is analogous to the free energy difference between a wild-type and
mutant protein. Blind testing on a set of 83 staphylococcal nuclease and 63 barnase mutants
showed a correlation of 0.80 in the predicted stability changes with experimental data [13].

Here we apply SDM to a more extensive set of mutant proteins taken from the Protherm
database [16] and obtain correlations of 0.60 and 0.68 for monomeric and crystallographic
mutants. We also compare SDM's predictive power to other published methods and find
that our method performs comparably or better to other methods in the task of predicting
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whether a mutation will be stabilizing or destabilizing. We apply SDM to a set of disease-
associated mutations and a set of non disease-associated mutations and find that our method
is able to distinguish the two sets of mutations.

METHODS
Homologous Structure Alignment Database (HOMSTRAD)

HOMSTRAD [17] clusters all known protein structures from the PDB [18] into homolo-
gous protein families. These families represent groups of proteins that have a common
evolutionary origin. Most families have an average of 30% sequence identity and no pair
has more than 90% sequence identity to each other. Representative structures for each
protein family are chosen based on the quality of the X-ray analysis and resolution. Where
a family contains two members or more a structural alignment is carried out using COM-
PARER [19]. The alignment is annotated using JOY to identify the local structural envir-
onment of each residue in the alignment [20].

Environment-specific substitution tables

A set of conformationally constrained environment-specific substitution tables (ESSTs)
was constructed as described previously by Topham ef al. [21]. The tables were derived
from 371 protein families from the HOMSTRAD database, consisting of 1357 structures,
and were built using the program Makesub (C. Topham, unpublished). The ESSTs hold the
probability of each amino acid type existing in a particular environment being substituted
by any other amino acid.

Definition of structural environment

The structural parameters that were used to define the local environment of amino acid
residues were main chain conformation, solvent accessibility and hydrogen-bonding class.

1. Main-chain conformation and secondary structure
Nine classes of main-chain conformation were defined: residues were identified
as belonging to either a helix or B-sheet first and the remaining residues were
classified as being a, b, p, t, [, g or e according to their main-chain @-y torsion
angles [21, 22]. The torsion angles and secondary structure assignments were
calculated using the SSTRUC program (D. Smith, unpublished).

2. Relative side-chain solvent accessibility
Three classes of relative side-chain solvent accessibility were defined based on
the method of Lee and Richards [22]. Residues with side-chain relative accessi-
bilities of:
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I. < 7% were defined as inaccessible
II. 7 to 40% were defined as partially accessible

III. > 40 % were defined as accessible

3. Hydrogen bonding
Two classes of hydrogen bonding were defined: residues were classed as either
forming a side-chain hydrogen bond or not. The program, Hbond (J. Overington,
unpublished), was used to identify hydrogen bonds defined by the criterion that
the distance between donor and acceptor was less than 3.5A.

These structural parameters gave a total of 54 local environments (9 main-chain x 3 solvent
accessibility x 2 hydrogen bonding terms).

Prediction of protein stability changes caused by mutation

The algorithm described by Topham er al. [13] was used to calculate a stability score
difference between wild-type and mutant proteins. By analogy to the folding-unfolding
cycle in Fig. 1, the algorithm uses ESSTs to calculate the difference in the stability scores
for the folded and unfolded state for the wild-type and mutant protein structures:

% _ » U s F Q)

ESSTs only take into account the environment of one of the two residues (wild-type or
mutant), therefore it is necessary to consider not only the probability of replacement of the
wild-type residue (R;) in the wild-type environment (g,,,) by a mutant residue type (r) in an
undefined environment (P(r/R;, €,,)) but also the probability of replacement of the mutant
residue type (Ry) in the mutant environment (g, by the wild-type residue (rj) in an
undefined environment (P(ri/R;,, €mu0)-

In order to normalize the probabilities that are combined from different substitution tables,
it is necessary to introduce a reference state. For the wild-type residue (R;) in the wild-type
environment a suitable reference state is the probability of it being conserved in that
environment (P(rj/R;, €,,)). In an analogous way, for the mutant residue type (Ry) in the
mutant environment, a suitable reference state is the probability of it being conserved in
that environment (P(ri /Ry, €muy))-

The difference in stability scores for a mutation in the folded state is therefore calculated
by:

i
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The difference in stability scores in the unfolded state sl.i) is also calculated using
Equation 3 but uses an environmental substitution table (ierived from non-hydrogen
bonded, surface exposed amino acid residues falling outside regions of regular secondary
structure. The stability difference score for the folded and unfolded state for the wild-type
and mutant protein structures is then calculated using Equation 2.

The definition used for accessible, partially buried and buried residues was different to that
used to generate the ESSTs. Our earlier benchmarking had shown that the best results were
obtained when residues with side-chain relative accessibilities of < 17% were defined as
inaccessible, 17 to 59% as partially accessible and >59% as accessible. The higher
percentage solvent accessibilities used here are probably due to the fact that we are trying
to predict the effect of single mutations on protein structure whereas the ESSTs occur in the
context of a protein that may have accepted compensating substitutions elsewhere as a
result of evolution.

Mutant thermodynamic datasets

A subset of the dataset used by Capriotti et al. [11] was used in this study. The mutant
dataset was taken from the Protherm database which houses thermodynamic data for
proteins and mutants [16]. Our method requires knowledge of the local structural environ-
ment of wild-type and mutant residues in order to predict the effect of mutation on the
stability of a protein. If the local environment is incorrectly defined e.g. the protein
functions as a trimer but is defined in the crystallographic asymmetric unit as the protomer,
this may affect our calculation. To remove the effect of such errors we used the Protein
Quaternary Structure (PQS) database to predict the oligomeric state of each of the proteins
in the dataset [23]. Only those proteins that were predicted to be and solved as a monomer
were used. For the same reason, proteins containing heteroatoms in their PDB file other
than water or that were resolved at a resolution >2 A were also removed from the dataset.
This dataset is hereafter referred to as the monomeric set.

A second set of mutants with crystal structures was taken from the Protherm database.
These were all single mutants with monomeric structures. This dataset is hereafter referred
to as the crystallographic set.

A third set of 388 mutants (§388) with thermodynamic measurements conducted at phy-
siological conditions was also used to test our method. The $388 dataset has been used to
test other published methods and therefore allows us to perform a direct comparison of our
method to them.

Building models of mutant proteins
The program, ANDANTE, was used to build models of the mutant proteins by building the

mutant side-chains from a high-quality rotamer library. ANDANTE adds the lowest energy
rotamer to the target and checks for clashes against the backbone [24].
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Assessment of performance

To assess performance of our method in predicting the sign of stability change caused by
mutation we calculate the accuracy:

1+,
Q=( ( ) 4)

t,+f, 4, 1)

where TN, TP, FN and FP refer respectively to the number of true negatives, true positives,
false negatives and false positives.

An alternative way of assessing the performance of our method in classifying correctly the
sign of free energy change caused by mutation is to calculate the Matthew's Correlation
Coefficient (MCC) [25]:

_ -1,
Jo, 1) )6+ 1)+ 1) ©)

In order to assess how well our method predicts stabilizing and destabilizing mutations we
calculate the sensitivity [TP/(TP+FN)] and specificity [TP/(TP+FP)] of stabilizing muta-
tions and the sensitivity [TN/(TN+FP)] and specificity [TN/(TN+FN)] of destabilizing
mutations.

We use a linear correlation coefficient measure (LCC) to assess the performance of our
method in predicting the amount of free energy change caused by mutation

. (Y X7 —(Fx3¥)) (6)
x-S a) |2 r -2 ]

Where r is the correlation coefficient, n is the number of data, and X and Y are the
experimental and assigned stability respectively.

Disease-associated and non-disease-associated SNP data sets

A set of disease-associated mutations (da-SNPs) was compiled from the Online Mendelian
Inheritance in Man (OMIM) and Catalogue of Somatic Mutations in Cancer (Cosmic) [26,
27]. An alternative set of non-disease-associated mutations (nd-SNPs) was compiled from
dbSNP [28]. Where possible, structural homologues were identified using FUGUE [29] and
comparative models built using the program Modeller [30]. Models of the mutant proteins
were created using ANDANTE, as described previously. SDM was then used to predict the
effect of the mutations on the stability of the proteins.
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RESULTS AND DISCUSSION

Monomeric dataset
A dataset of 223 mutants comprising 3 proteins was created after filtering for proteins that:

i. were predicted to function as monomers as well as being resolved as monomers
ii. were resolved at a resolution of < 2A

iii. did not contain any HET atoms other than water in their PDB file.

Prediction of protein stability changes caused by mutation

The correlation of the predicted and observed AAG values for the 223 mutants was 0.60
(Fig.2). A breakdown of the prediction performance shows that our method has an accu-
racy of 0.74 with sensitivity of 0.76 and 0.72 for stabilizing and destabilizing mutations
respectively and specificity of 0.7 and 0.77 for stabilizing and destabilizing mutations
respectively (Table 1).
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Figure 2. The experimentally measured energy changes versus the predicted energy
changes using our method, SDM, on the monomeric dataset. The correlation is 0.60
and the standard error is 1.36 kcal mol-1. Removal of the outlying data point in-
creases the correlation to 0.66.
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There is one outlying data point (lower right hand corner of Fig.2) which involves a
mutation from alanine to cysteine in Ribonuclease H from Escherichia coli (PDB code:
2RN2). Our method predicts this mutation to be highly destabilizing when in fact it is
mildly stabilizing. Looking at the substitution tables used to calculate the score, it is
observed that mutating cysteine to alanine or conserving cysteine in the folded state has
not been observed for that environment (buried, helix, hydrogen bonded). In the unfolded
state mutating cysteine to alanine has not been observed but there is a high probability of
cysteine being conserved. This results in a predicted value of AAG that is hugely destabi-
lizing. It appears that in this case there were insufficient data in the substitution table to be
able to predict the effect of mutating alanine to cysteine on the stability of the protein.
Increasing the number of families used to generate the ESSTs may help to tackle this. In
view of these uncertainties we investigated removal of this one outlier and found that this
increases the correlation to 0.66.

Table 1. Results (accuracy, sensitivity and specificity of stabilizing and destabilizing
mutations and linear correlation coefficient) of SDM's stability predictions for the
monomeric and crystallographic datasets.

Dataset Accuracy Specificity Sensitivity Specificity Sensitivity LCC
+ve +ve -ve -ve

Monomeric 0.74 0.7 0.76 0.77 0.72 0.60

Crystallographic 0.72 0.67 0.66 0.75 0.76 0.68

Crystallographic dataset

A dataset of 252 mutants comprising 3 proteins (Ribonuclease H, lysozyme & trypsin) was
created after filtering for proteins that were predicted to function as monomers as well as
being resolved as monomers. All of these proteins were resolved at a resolution of < 2 A.

The correlation of the predicted and observed AAG values for the crystallographic mutants
was 0.68 (Fig.3). A breakdown of the prediction performance shows that our method has
an accuracy of 0.72 with sensitivity of 0.66 and 0.76 for stabilizing and destabilizing
mutations respectively and specificity of 0.67 and 0.75 for stabilizing and destabilizing
mutations respectively (Table 1).

The results from the monomeric and crystallographic sets are extremely similar except that
the monomeric set has a slightly higher accuracy (0.74 compared to 0.72) and the crystal-
lographic set a higher LCC (0.68 compared to 0.60) (Table 1). The general trend is the
same between the two sets, with the specificity of predicting destabilizing mutations being
slightly higher than that for stabilizing (by ~8 %). The results show that it is not necessary
to have a crystal structure of a mutant protein in order to predict the effect of mutation on
the stability of the protein.
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The fact that the crystallographic set obtained a higher LCC than the monomeric set even
though it had lower accuracy and sensitivity for predicting stabilizing and destabilizing
mutations would appear to be inconsistent. However, the LCC obtained may have been
improved by the presence of data points falling in the lower right hand part of the graph
(Fig. 3).
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Figure 3. The experimentally measured energy changes versus the predicted energy
changes using our method, SDM, on the crystallographic mutant dataset. The correla-
tion is 0.68 and the standard error is 1.35 kcal mol-1.

S 388 dataset

We compared our method's ability to classify mutations as stabilizing or destabilizing to
other published methods by using the S388 dataset. Predictions of the following methods
were used: FOLDX [6], DFIRE [31], PoPMuSiC [14] (all energy-based methods), Neur-
alNet [11] and three SVM methods using sequence only (SO), structure only (TO) and
sequence and structure (ST) information [10]. Results for the energy-based methods and
NeuralNet were taken from Capriotti ef al. [11] and the SVM methods from Cheng et al.
[10].

Our method performs comparably or better than the other methods in the task of classifying
mutations as stabilizing or destabilizing (Table 2). Our method has the 2™ highest correla-
tion coefficient (0.27), equal to the ST SVM (0.27) and bettered only by the TO SVM
(0.28). If we used only accuracy as a measure of performance then all methods perform
comparably with NeuralNet having the highest accuracy (0.87) and DFIRE the lowest
accuracy (0.68). Although the accuracy of predicting whether a mutation is stabilizing or
destabilizing is above 68 % for all the methods, the sensitivity of predicting stabilizing
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mutations is poor. Five out of the seven methods incorrectly classify >56 % of the stabiliz-
ing mutations. Our method has a much improved sensitivity of predicting stabilizing
mutations (0.67) compared to the others reported but still classifies 33 % of stabilizing
mutations incorrectly. The S388 dataset was a more challenging test for our method
considering that it was not filtered using the parameters described for the monomeric set.
It is therefore very encouraging that our method performed comparably or better to other
methods for this task.

Table 2. Comparison of SDM with other methods on §388.

Method MCC Accuracy Sens. (+) Spec. (+) Sens. (-) Spec. (-)
FOLDX 0.25 0.75 0.56 0.26 0.78 0.93
DFIRE 0.11 0.68 0.44 0.18 0.71 0.90
PoPMusSic 0.20 0.85 0.25 0.33 0.93 0.90
NeuralNet 0.25 0.87 0.21 0.44 0.96 0.90
SO 0.26 0.86 0.30 0.40 0.94 0.90
TO 0.28 0.86 0.31 0.42 0.94 0.91
ST 0.27 0.86 0.31 0.40 0.93 0.91
SDM 0.27 0.71 0.67 0.25 0.72 0.94

A general problem with current methods of predicting protein stability changes caused by
SNPs is that they tend to be over-fitted to the mutant dataset they have been developed on.
Most mutations are destabilizing and this is reflected in the mutant thermodynamic datasets
used for developing and testing such methods. Methods that assign all of the samples to the
majority class (destabilizing mutations) will have high accuracy even though the perfor-
mance is poor for the minority class (stabilizing mutations). This trend is observed with the
five methods with the lowest sensitivities for stabilizing mutations (Table 2).

Although our method performs comparably to other methods, it is currently not robust
enough to be applied to all mutant proteins with confidence. The substitutions that the
ESSTs hold are the result of evolution — they do not take into account single mutations. We
are trying to predict the effect of mutating single residues and therefore hypothesize that the
space occupied by the mutant amino acid will not change. Where a single mutation
involves a size change there will be a cost associated. The ESSTs could therefore have
limitations in this respect.

Disease and non-disease-associated SNP data sets
A total of 6182 nd-SNPs and 879 da-SNPs (797 from OMIM and 82 from Cosmic) had

comparative models built of their encoding proteins. The stabilities of all of these modelled
mutant structures were predicted using our method.
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The stability predictions for the nd-SNP set of mutations have a normal distribution for
both buried and accessible mutations (Fig. 4) with most mutations tending to have a neutral
effect on protein stability. However, there is a slight shift in the distribution of buried and
accessible mutations, with buried mutants tending to be more destabilizing. This is to be
expected as mutations within the core of a protein are more likely to perturb the structure
than accessible mutations, and hence are more likely to destabilize the protein.

The stability predictions for the da-SNP set of mutations have a somewhat different dis-
tribution to that observed with the nd-set. Accessible mutations in the da-SNP set have a
largely normal distribution but with smaller peaks observed at -9 to -7 kcal mol™ and 8 to
9 keal mol™! (Fig. 5). Buried mutations, however, have a skewed distribution, with a higher
proportion of buried residues being destabilizing (70.5%) at -5 to 0 kcal mol™' compared to
accessible mutations (52%). This result is similar to that observed with the nd-SNP set
where 72% of buried mutations are destabilizing at the range of -5 to 0 kcal mol™' com-
pared to 52 % of accessible mutations.
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Figure 4. Distribution of accessible and buried residues relative to changes in stability
(AAS) in the nd-SNP set of mutations. Most mutations lie within the -4 to 3 kcal mol-1
range.
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Figure 5. Distribution of accessible and buried residues relative to changes in stability
(AAS) in the da-SNP set of mutations. Most mutations lie within the -5 to 4 kcal mol-1
range.

Work by Randles et al. [32] has shown that mutations that decrease the stability of a single
domain by >2kcal mol™ result in severe disease. This trend has also been observed with
Ig-like protein superoxide dismutase where mutations which lower the stability by more
than 2 kcal mol™! are associated with reduced survival times of patients [33]. Therefore, if
we look at those mutations causing AAG values < -2 kcal mol™ it is observed that 25 % of
buried mutations in the nd-SNP set fall within this range, compared to 43 % in the da-SNP
set. This result is in agreement with previous work which has found that destabilization of
proteins is associated with disease [34 —36]. More importantly, it indicates that our method
can distinguish disease associated SNPs from non-disease associated SNPs.

We find that 27 % of the da-SNP set are located at buried sites compared to 16 % in the nd-
SNP set. This result is consistent with findings by Ferrer-Costa ef al. [34] that 32% of da-
SNPs are located at highly buried sites (< 5 % relative accessibility) compared to 7 % of nd-
SNPs in these locations and estimates by Sunyaev et al. [37] that 35% of da-SNPs are

23
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located at buried locations. Our method clearly distinguishes the da-SNP and nd-SNP sets
in terms of protein stability and therefore may be of use in correlating SNPs with diseases
caused by protein instability.

CONCLUSION

We have shown that our method performs comparably or better to other published methods
in the task of predicting whether a mutation will be stabilizing or destabilizing. An ad-
vantage of our method is that it does not use a priori knowledge about mutants' thermo-
dynamic measurements. Therefore, there is no bias caused by destabilizing mutations
making up the majority class. This is also reflected in the sensitivity and specificity
obtained when predicting whether a mutation is stabilizing or destabilizing (Table 1).

Substitutions that have been made within protein families during evolution should be
concordant with the underlying protein structure. Although our method has been applied
to a limited set of proteins and mutations, it has been shown that our ESSTs are able to
reflect how mutations can affect the stability of a protein.
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