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Abstract

Carbohydrates provide a rich source of structural diversity that could

be increasingly useful for innovative drug design. We suggest a repre-

sentation of monosaccharides based on their pharmacophoric proper-

ties (pseudoreceptor model) to enable quantitative similarity searching

with the aim to identify sugar bioisosters and functionally equivalent

scaffolds for synthesis. We present a bioinformatical comparison of

carbohydrate structures based on pseudoreceptor models. A similarity

matrix was computed for 19 monosaccharide structures. As an out-

come of this preliminary analysis, one might consider both glucose

and deoxyribose as ‘universal’ sugars with regard to their receptor

interaction potential. Potential applications of pharmacophore feature

representations of carbohydrate structures in bioinformatics are dis-

cussed. A recent case study is reviewed that led to the identification

of aminoglycoside scaffold replacements with antibacterial potential by

pseudoreceptor-based virtual screening of a large compound library.

Introduction

One of the early and pivotal steps in drug discovery is the identification of structurally novel

chemical entities (NCE) that exhibit a desired effect on a pharmaceutically relevant target

molecule. Computer-assisted molecular design and ‘virtual screening’ technology is being

increasingly used for this purpose with carbohydrate moieties offering a potentially sub-

stantial increase in structural diversity of candidate compounds [1]. Cipolla et al. recently
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affirmed that ‘‘[the] polyfunctionality of carbohydrates stimulate[s] their use as scaffolds for

the generation of libraries by combinatorial decoration with different pharmacophores.’’[2]

As a prerequisite for success in this endeavour, accurate representations of molecular struc-

ture and computation of relevant properties is essential. Current virtual screening approaches

like, e.g., automated ligand-receptor docking or pharmacophore similarity searching typi-

cally rely on heuristic or empirical methods for conformer generation and property estima-

tion, offering the advantage to computationally sieve through several millions of compounds

[3]. As a result, prioritized virtual hits are suggested for biochemical activity determination.

This strategy has been successfully applied to many hit finding exercises in early-phase drug

discovery, by complementing experimental high-throughput screening as a source for new

pharmacologically appealing compounds [4]. While mere hit retrieval seems feasible by

virtual screening the next step in the drug discovery pipeline, namely automated compu-

ter-assisted hit-to-lead optimization, requires further attention and method development [5].

Potentially different representations of molecular structures, their dynamics and properties

are required for each step of chemical optimization [6]. Therefore, it will be necessary to

develop and adapt appropriate molecular ‘descriptors’ of compounds of pharmaceutical

interest. Although the role of carbohydrate moieties for ligand-receptor interactions has been

realized and partially addressed in computational medicinal chemistry [7, 8], specifically in

the field of lectin-sugar interactions [9] and natural product analysis [10, 11], carbohydrates

have rarely been explicitly considered for virtual screening or computer-assisted drug de-

sign, and consequently our understanding of apt descriptors is limited. Current bioinforma-

tical analyses of biologically relevant polycarbohydrate structures, e. g. glycan sequences,

usually exclude modelling of potential receptor interactions [12]. Here, we suggest a ‘pseu-

doreceptor’ representation of monosaccharides as a conformation-sensitive descriptor for

molecular modelling [13]. Recently, we successfully applied this theoretical concept to

finding small synthetic inhibitors of bacterial protein biosynthesis by taking aminoglyco-

sides as query compounds for virtual screening of large compound libraries [14].

Carbohydrate-protein Interactions and

Pseudoreceptor Modelling

Sugar-protein interactions are of critical importance in a wide range of biochemical pro-

cesses and functions. Complex formation is largely mediated by weak interactions, which

give rise to specific association between the guest (carbohydrate) and host (macromolecular

receptor) molecule. The hydroxyl groups of carbohydrates can act as both hydrogen-bond

donors and acceptors, and form multiple hydrogen-bridges with a receptor structure. Tight

hydrogen-bond networks have indeed been identified from crystal structures of carbohy-

drate-protein complexes (Figure 1A). In addition, partially positively charged carbons of

carbohydrate ring systems can interact with p-electron systems and form CH-p interactions

between carbohydrate ligands and their macromolecular receptors, typically via arene host

systems (Figure 1B) [15]. In proteins, the amino acid side chains of Trp, Phe and Tyr are
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frequently found to recognize carbohydrate ligands [16, 17]. Using density functional theory

(DFT), the average energy contribution of such an interaction has been estimated to be

approximately -2.5 kcal6mol-1 [18, 19]. Its length is similar to the average hydrogen-bond

length (approx. 3 Å) observed in drug-protein interactions [20], with an optimal distance for

the CH-p dispersion interaction of approximately 3.7 Å [18].

Figure 1. Examples of carbohydrate-protein interactions. (A) Hydrogen-bond forma-

tion between maltoporin (LamB) and Fru-adGlc (PDB [21] ID: 1af6 [22]); (B) CH-p
interaction between human carbohydrate binding protein S-Lac lectin (L-14-II) and

lactose (PDB ID: 1hlc [23]).

Figure 2. Cartoon representation of the CH-p interaction between the aromatic residue

W65 of S-Lac lectin and partially positively charged carbon atoms of lactose (PDB

ID: 1hlc). Dashed lines are for illustration only. The right panel represents an energy-

minimized conformation of lactose with computed partial charges color coded in blue

(positive), white (neutral), and red (negative); color intensity corresponds to the

absolute charge value. Charges were computed with MOPAC (http://openmopac.net/)

with PM6-DH+ [24] and the COSMO implicit solvation model [25].
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Generally, such polar interaction patterns are appealing features for designing drugs with

high binding potency and selectivity. If one is interested in comparing the interaction

potential (‘pharmacophoric potential’) of carbohydrates with other drug-like compounds

by computational means, these features have to be adequately represented as numerical,

typically vectorial, molecular ‘descriptors’. Mathematical descriptor comparison enables

virtual screening for compounds with similar properties but different architecture

(‘scaffold-hopping’, bioisosteric replacement) and compound clustering.

One such descriptor is termed ‘pseudoreceptor’, which may be seen as an idealized receptor

pocket that is constructed around a ligand conformation or a conformation ensemble. The

idea is to place virtual receptor atoms (potential pharmacophoric points, PPP) by applying

geometric constraints for receptor-ligand interactions (Figure 3). For example, the geometry

of a hydrogen-bridge is defined by the distance r between the donor and acceptor base atom,

and the angles a and w (Figure 3A). Similar definitions are applied for arene-arene, lipo-

philic and ionic interactions, to name just the most prominent examples [26, 27]. For rapid

similarity analysis and database searching the spatial constellation of PPPs may be converted

to a linear vector representation. We here used the PRPS pseudoreceptor model [28] and

limited the number of PPPs to –OH mediated hydrogen-bridges only, owed to the fact that

PRPS in its current version does not consider CH-p interactions.

Briefly, PRPS models were translated into an alignment-free correlation vector representa-

tion. Such a pseudoreceptor-derived correlation vector encodes the distance-based frequency

of pairs of pseudoatom features present in the model (Eq. 1). Pseudoatom pairs with a

distance up to 15 Å (in 1 Å increments) were annotated. This resulted in a vector giving

the number Freq of pseudoatom pairs with features x and y at distance d.

Freqd x; yð Þ ¼
Px

i

Px

j
�
i;j
d
, where (1)

the Kronecker delta d computes to 1 whenever a pair of the pseudoatoms i and j exists at

distance d. Similarity analysis of monosaccharides was performed by computing the Eu-

clidean distance between their respective pseudoreceptor correlation vectors. This general

idea of property encoding for molecular similarity analysis was introduced by Moreau and

Broto [29], and has later been adapted to various applications ranging from structural

modelling [30] and database searching [31] to molecular de novo design [32].
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Figure 3. Principle of pseudoreceptor generation. (A) Geometric constraints for pla-

cing potential hydrogen-bond donor points around a ligand carbonyl oxygen atom, (B)

Potential hydrogen-bond acceptor (red) and -donor (blue) points placed around a

hydroxyl group of glucose, (C) A pseudoreceptor model of glucose.

Similarity of Monosaccharides Based on

Pseudoreceptor Models

Representing bioactive compounds by their pharmacophores provides the means to sort

them according to their interaction potential with macromolecular receptors. We performed

such an analysis for 19 selected monosaccharides that are abundant in natural products and

form carbohydrate components of bacterial cell walls and glycosylated proteins [33 – 35].

Sugar conformations were used as presented in Figure 4. Prior to PRPS pseudoreceptor

generation we subjected all compounds to energy relaxation to eliminate potentially remain-

ing strain. Then, each structure was represented as a vector coding for the corresponding

pseudoreceptor model. Subsequent hierarchical clustering of the vectors using Ward’s meth-

od [36] led to the tree presented in Figure 5A. It is apparent that due to different receptor

interaction potential caused by varying numbers of hydroxyl groups the C5 carbohydrates

(orange circles) are separated from C6 carbohydrates (blue circles). Glucose and deoxyribose

occupy prominent positions in the tree, located between the bulk of C5 and C6 sugar

molecules. One might therefore consider both glucose and deoxyribose as ‘universal’ mono-

saccharides with regard to their receptor interaction potential expressed by the pseudorecep-

tor model. The most distant cluster pairs are (mannose, gulose) and (xylose, arabinose). One

might also speculate that while mannose and gulose (xylose and arabinose, respectively)

seem exchangeable, a substitution of, e. g., mannose by xylose is structurally or functionally

more severe. Such predictions require rigorous chemical and biological testing.

Figure 5B presents a matrix of pairwise similarities between the 19 monosaccharides, again

highlighting a potentially special role of glucose and deoxyribose. Such a similarity table

could serve as a basis for quantifying the similarity of glycans with regard to potential

receptor interactions. In analogy to amino acid substitution matrices [37] this matrix could
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be used for generating glycan alignments, which would be complementary to existing

similarity schemes based on sugar types, as e. g. produced by the software KCaM (KEGG

Carbohydrate Matcher) [38, 39].

We furthermore see a requirement for consideration of CH-p interactions in pharmacophore

modelling tools such as our PRPS pseudoreceptor approach. Their critical importance in

specific carbohydrate-protein association has been recognized but not fully harvested by

bioinformatics and computer-assisted molecular modelling and design. It is likely that the

dendrogram and similarity matrix presented in Figure 5 will be subject to partial modifica-

tion when CH-p interactions are considered as PPPs. In this regard our present study should

be considered as preliminary only. More detailed computational investigations are necessary

to determine the impact of CH-p interaction modelling on the outcome of molecular simi-

larity analyses.

Figure 4. Repertoire of monosaccharides used in this study.
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Figure 5. Clustering of carbo-

hydrates represented by PRPS

pseudoreceptor models. (A)

Ward clustering; (B) hierarch-

ical tree and similarity analy-

sis (heat map coloring from

white to red indicates greater

similarity). Carbohydrates

considered: b-d-allopyranose,
b-d-altropyranose, a-d-arabi-
nofuranose, b-d-desoxyribo-
furanose, b-d-fructofuranose,
a-d-galactopyranose, b-d-
glucopyranose, b-d-gulopyra-
nose, b-d-idopyranose, a-d-
lyxopyranose, a-d-manno-

pyranose, b-d-psicopyranose,
b-d-ribofuranose, a-d-ribulo-
furanose, b-d-sorbopyranose,
a-d-tagatopyranose, a-d-talo-
pyranose, a-d-xylofuranose,
b-d-xylulofuranose.
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``Scaffold-hopping'' Using an Ensemble Pseudoreceptor

In a recent drug discovery project [14], we performed pseudoreceptor-based virtual screen-

ing to find replacements of aminoglycoside antibiotics that are able to block in vitro tran-

scription and translation. This proof-of-concept study demonstrates the applicability of

pseudoreceptor representations of carbohydrate derivatives to performing ‘scaffold-hops’,

i.e. finding isofunctional compounds with different architecture [40]. The pharmacophore

model matched an alternative chemotype, namely the vanilloid derivative 1, which possesses

lower structural complexity and greater synthetic accessibility than the reference aminogly-

cosides.

The pseudoreceptor was constructed for eight aminoglycosides bound to their 16S RNA

target (ribosomal A-site) (Figure 6). Crystal structure conformations of the ligands were

aligned to form a conformational ensemble. Then, a database of screening compounds was

converted to PRPS vectors (single compound conformations were computed), and com-

pounds were sorted by decreasing similarity to the reference pseudoreceptor model. From

the top-ranking candidates, ten compounds were selected, ordered and tested in an in vitro

transcription/translation assay, five of which exhibited inhibitory activity. The most potent

hit 1 is a vanilloid derivative (Scheme 1), with striking similarity to capsaicin (methyl

vanillyl nonenamide from chili pepper), which is also known as an antibiotic agent [41].

It is of note that aminoglycoside antibiotics, in turn, also block vanilloid receptor 1 (TRPV1)

[42]. These observations corroborate the ensemble pseudoreceptor as a common feature that

allows for scaffold replacements, which is relevant not only for the replacement of sugar

moieties in case of poor synthetic accessibility, but in particular for identifying carbohy-

drates and carbohydrate derivatives as building blocks in medicinal chemistry.

Figure 6. Ensemble pseudoreceptor model (left) generated from the alignment of eight

aminoglycosides bound to the ribosomal A-site (right). PDB identifiers: gentamicin

C1A (2et3) [43], paromomycin (1j7 t) [44], tobramycin (1lc4) [45], neomycin (2et4)

[43], neamin (2f4 s) [46], kanamycin A (2esi) [43], geneticin (1mwl) [47], amikacin

(2g5q) [48].
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Scheme 1. Bioactive compound 1 found by pseudoreceptor screening as a replace-

ment for aminoglycoside antibiotics. Compound 1 exhibits close structural similarity

to capsaicin.

Conclusions

‘Fuzzy’ (permissive) pharmacophore representations of molecular structures allow for re-

trieving alternative chemotypes with lower structural complexity and greater synthetic ac-

cessibility than the reference compound(s). This concept was pursued to group monosac-

charides according to their pharmacophore similarity. Structures were represented by sim-

plistic pseudoreceptor models, and a monosaccharide similarity matrix was obtained that

might be suited as a basis for property-based alignments, virtual compound screening and

the design of bioactive compounds. The pseudoreceptor approach used in this preliminary

study complements the many existing tools for pharmacophore-based hit and lead structure

identification [49]. Without doubt, other molecular representations that allow for abstraction

from the atomistic chemical structure and molecular constitution will also be suitable for this

purpose, possibly even outperform our specific PRPS implementation. We motivate the use

of property- and pharmacophore-based descriptors for carbohydrate modelling, specifically

glycan analysis, to identify potential targets (macromolecular receptors) and consider mole-

cular similarity not only by comparing sugar types but also by taking into consideration

functionally relevant features. Ideally, virtual screening similarity metrics based on structural

fingerprints are combined with metrics that are based on functionally relevant molecular

features and properties [50 – 52]. For further progress in this field, CH-p interactions should

be added to the set of pharmacophore feature types to more adequately model carbohydrate-

target interactions.
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