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Abstract

Metal ions play a critical role in living systems. About one third of

proteins need to bind metal for their stability and/or function. In this

review, current sequence based and structure based methods for metal

binding site prediction will be presented, with emphasis on the CHED

and SeqCHED methods of prediction from apo-protein structures and

protein sequences having homologs (even remote) in the structural

protein databank (PDB). Metal binding site prediction will be

considered as a step in function assignment for new proteins. Finally,

a disproportional association of first and second shell metal binding

residues in human proteins with disease-related SNPs will be shown.

Introduction

Biological cells must adapt strict regulatory mechanisms in order to maintain metal homeo-

stasis within the cytoplasm [1]. While metal ions can be utilized in various manners in a

biological system, the position of a metal ion in space, its variation in time, and the exact

chemical partner with which it interacts (often a protein) have been selected by the demands

of evolution [2].

Metal ions are required for a great variety of purposes in proteins and are present in more

than one third of protein structures investigated [3, 4]. Metals increase the structural stability

of the protein in the proper conformation required for biological function. A metal ion can

serve as a cross-linking agent, since metal ions usually bind through several interactions with
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amino acid side chains [2]. In addition, metals can be directly involved in the chemical

reactions catalysed by an enzyme. They can serve as redox centres for catalysis (e. g., haem-

iron centres) or as electrophilic reactants in catalysis [5]. Metals can help to bring reactive

groups into the correct orientation for reaction.

Furthermore, metals can play a regulatory role in proteins. This includes a role in signal

transduction, in controlling the architecture of protein complexes, and in redox-active metal

sites, where the binding and release of the metal is under redox control [6]. Metals have

several valence states, which depending on their ligands can lie close in energy. As a

consequence, the metal can be switched from state to state upon binding to a protein,

resulting in considerable protein changes [2]. Because of the above, it is important to be

able to predict metal binding site based on sequence and/or structural information.

Sequence-based Metal Binding Site Predictions

One of the approaches [7], taken to harvest sequence information, systematically determines

all possible metal-binding signatures present in the Protein Data Bank. These signatures,

termed MBP (Metal Binding Patterns), include the binding residues and their spacing along

the sequence. The method was applied to copper proteins, and a library of metal binding

patterns was built. Each MBP is used together with the primary sequence of the correspond-

ing metalloprotein to browse any ensemble of sequences of interest. The level of confidence

of this method is variable, ranging between 50% to over 90%, depending on the lengths of

the local alignments identified around each binding residue. As this work was applied only

to copper, it is not clear to what extent it is applicable to other metals. Moreover, a limitation

of this work is that it requires identification of conserved spacing patterns between binding

residues and these spacings are not conserved in all cases. Hence, it is not possible to search

for a binding residue that is far away in sequence from other binding residues, since the

exact spacing can vary greatly among sequences. In another study [8], multiple sequence

alignment, entropy (residue conservation) and relative weight of gapless matches were

obtained, and the correlation between nearby residues was modelled by support vector

machine semi-pattern predictors.

Another algorithm [5] takes subsequences of proteins as input, under the assumption that

metal binding residues are influenced by the surrounding environment in nature. The amino

acid at the centre of the fragment is the target amino acid, whereas the others are the

‘‘neighbours’’. The fragment sequence is encoded to a feature vector, which contains in-

formation on the occurrence probability of the amino acid, the propensities of the secondary

structure, and the metal-binding propensity of the amino acid. The feature vector is fed into a

neural-network learning machine. The learning machine decides whether the target amino

acid binds metal or not. This process is repeated by shifting each time one position along the

protein sequence, resulting in a new fragment. With this algorithm, binding residues are

identified with higher than 90% sensitivity. However, the limitation of this approach is that it
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predicts metal binding residues rather than metal binding sites. Therefore, it analyses the

probability of each putative binding residue individually, instead of taking into consideration

the combined context of all residues belonging to one unified site. In some proteins one

protein chain can include more than one binding site (for example, 14% of zinc binding sites

fall in this category). Thus, the binding residues of different sites can be erroneously

intertwined [6].

A third algorithm [9] scans the sequence around the four main residue types involved in

metal binding (Cys, His, Asp, Glu; [10 – 12]) using a window of up to 25 residues, physi-

cochemical features (including conservativity) and correlated mutation analysis derived from

multiple sequence alignment.

Structure-based Metal Binding Site Predictions

One of the first algorithms [13] is based on the finding that many metal sites in proteins

share a common feature: they are cantered in a shell of hydrophilic ligands, surrounded by a

shell of carbon-containing groups. Therefore, it is possible to measure the contrast between

groups located at the centre of the sphere (more hydrophilic), and groups located at the outer

shell (more hydrophobic) within a radius threshold distance. The contrast function is gen-

erally maximal when cantered at or near a metal binding site. However, this algorithm also

identified regions of high contrast that were not associated with metal binding, such as

charged surface residues and buried, positively-charged residues [14].

A second algorithm [15] is designed specifically for Ca2+ binding site prediction, since it is

based on the finding that the coordination shell of Ca2+ ions in proteins contains almost

exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond strength

contribution of each ligating oxygen in the inner shell can be evaluated, and the sum of such

contributions closely approximates the valence of the bound cation. Assuming local neutra-

lization of charges, the bond strength, or bond order, contributed by each oxygen ligand to

the ligated cation is the charge of the cation divided by the number of ligands, or the

coordination number. When ligands are asymmetrically disposed around the ligating cation,

different bonds are expected to have different strengths. Here, the bond-length correlation to

bond order, which is also seen in covalent bonding, can be used to estimate the strength of

different bonds in structures. When a protein is embedded in a very fine grid of points and

an algorithm is used to calculate the valence of each point (representing a potential binding

site), a typical distribution of valence values is obtained. However, only a very small fraction

of the points have a significantly large valence value. These points share a tendency to

cluster around known Ca2+ ions, enabling prediction of such sites.

Sodhi et al. [16] calculated the likelihood of a given residue to be a metal ligand by

considering multiple sequence alignment of homologous proteins as well as approximate

structural information. This method, called MetSite, performed satisfactorily for SCOP
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database superfamilies [17] where large sets of evolutionary related proteins are available.

The algorithm was developed considering 190, 18, 11 and 49 superfamilies for Zn, Fe, Cu

and Mn, respectively, while valuation of performance was applied to five, four, one and one

cases, respectively. As with Lin et al. (2005), MetSite suffers from difficulties to identify the

location of a metal binding site by inspecting the distribution of predicted individual residues

within the protein structure.

The Fold-X algorithm [18] specializes in predicting the spatial position of a metal in the

protein. It uses a library, extracted from the PDB, containing the most common metal spatial

positions relative to the corresponding ligating atoms. In the first step, this library is used to

search for possible metal positions within the protein structure. Then, an optimization step is

performed to find the best position for the predicted metal using the Fold-X force field [19].

The resulting position is used to estimate the energy of binding. At the end, a hydration step

to add water ligands is also included. This algorithm is geared to, and performed well in

identifying the position of metals in holo forms.

FEATURE, a machine learning method based on a Bayesian classifier was used to identify

zinc and calcium binding sites in proteins [20, 21]. This method uses many averaged

biochemical and biophysical features in six concentric spherical shells around a suspected

site. Shell features include number of atoms, Van der Waals volume, hydrophobicity, solvent

accessibility, the presence of different oxygens, nitrogens, carbons and sulphur atoms, amino

acid residues, and charges. Similar to Fold-X, FEATURE predicts the position of metal ions

within the predicted binding site.

CHED Metal Binding Site Prediction

As mentioned previously, it is well established that four residues: Cys (C), His (H), Glu (E)

and Asp (D) (referred to as ‘‘CHED’’ by Babor et al. [22]), are the most common amino

acids forming soft metal binding sites [10 – 12]. The CHED prediction algorithm [22] is

composed of two steps. Step 1 is based on a statistical comparison of holo and apo structure

pairs, which showed that at most one ligand side chain reorients upon metal binding [23,

24]. In this step (Fig. 1), the algorithm searches for a 3D constellation of three amino acid

residues, whose metal-ligating atoms satisfy distance criteria and where at most one side

chain has rotated among the three residues. A binding site is defined as a single triad, or

multiple triads that share at least one residue between two or more of them. The second step

involves filtration and eliminates false positives. A ‘‘mild’’ filter was created based on the

observation that sites composed of a large number of triads tend to be true. Therefore, in

cases where a site is found to contain at least five triads, all other putative sites with three or

fewer triads are discarded. This filtration deletes about 10% of metal binding sites in apo

proteins, yielding a sensitivity (percentage of correctly predicted experimentally known
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metal binding sites) of 90%. However, among binding sites predicted, 38% proved to be

false positives, yielding a selectivity (percentage of correct binding sites among all pre-

dicted) of 62%.

Figure 1. Schematic presentation of step 1 in the CHED algorithm. All possible

sets of three amino acid residues (triads) from the four CHED residues, whose col-

lective distances of Cb atoms are less than 13.0 Å were retrieved. A triad was retained

if distances d1, d2 and d3 among ligand atoms from separate CHED residues satisfied

individual cutoff criteria. These cutoff values were chosen by analyzing a large (over

1000 sites), redundant set of holo forms and refined using available apo structures. In

addition, if one or two out of the three inter-ligand distances were not initially

satisfied, alternative side chain conformations of the relevant residues were built,

one at the time, using a backbone-independent rotamer library [25]. If no clashes were

eventually observed, and d1, d2 and d3 now satisfied the cutoff distances, then the built

up triad was retained.

To increase selectivity, a ‘‘stringent’’ filter was created using a decision tree with the

following features: number of times a residue of a potential binding site is selected (since

a specific residue can belong to more than one initial ‘binding site’ before joining them

together); proportions between C, H, E, D amino acids of a potential binding site; number of

sites predicted for the protein; residue sequence entropy; hydrogen bond surface areas

between the potential binding residues and any of its neighbouring amino acids. Further-

more, a support vector machine classifier was added, which included the above parameters

plus the number of triads per predicted site and relative solvent accessible surface. Triads

excluded by both the decision tree and support vector machine classifier were removed.

Stringent filtration reduced sensitivity to about 70%. Importantly, it upped selectivity to

90%.
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Figure 2. Superimposition of the holo (magenta) and apo (green) colicin E9

DNase domains. The ligand residues for zinc in the apo form were correctly pre-

dicted, even though the maximum Ca displacement was equal to 2.45 Å and

rearrangement of His102 upon metal ion binding was observed. The coordinates for

chains B were taken from PDB entries 2gze (holo form) and 1env (apo form) PDB

entries. Binding site residues were found using LPC software [26].

The search procedure for sites has sufficient flexibility built in to often allow for some

backbone shifts as well as side chain reorientations. An example is the Colicin E9 DNase

domain (Fig. 2). Here the entire binding site was identified successfully in the apo form.

SeqCHED Metal Binding Site Prediction

We developed SeqCHED [27] for prediction of metal binding sites starting with translated

DNA sequence data. The method integrates three tools: PsiBlast, SCCOMP and CHED

(Fig. 3). PsiBlast [28] identifies statistically significant alignments using a position-specific

score matrix that is derived iteratively. The tool was used in a specific manner: target

sequences were first subjected to two iterations of PsiBlast against the NCBI non-redundant

protein sequence database (NR, http://www.ncbi.nlm.nih.gov/blast/blast_databases.shtml)

with a third iteration against PDB to identify structural templates. SCCOMP [29] is a

method for side chain modelling. It uses a scoring function including terms for complemen-

tarity, excluded volume, internal energy based on roamer probability and solvent accessible

surface. The CHED procedure was described above. Table 1 summarizes statistics for

SeqCHED prediction. Again, importantly, upon stringent filtration selectivity is higher than

85%.
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Table 1. Predictability of transition metal binding sites in modeled structures

PDB template No. of modeled
sites

Sequence identity Mild filter Stringent filter

% Sensitivity % Selectivity % Sensitivity % Selectivity

Metal containing
223 Target (native) 98 63 93 92

223 Target (self model) 95 57 84 92

202 30 – 99% 95 58 84 93

98 18 – 30% 86 53 85 82

Non-metal con-
taining

143 Target (native) 91 61 76 89

143 Target (self model) 90 54 67 86

99 30 – 99% 79 52 49 89

162 18 – 30% 65 42 33 90

Figure 3. Scheme of the

SeqCHED procedure. The

procedure includes two Psi-

Blast iterations against a non-

redundant sequence database,

a third iteration against the

PDB database (to find a struc-

tural template), 3D modeling of

the target sequence (using

SCCOMP for side chain place-

ment), followed by metal bind-

ing site prediction using the

CHED algorithm.
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Linkage between Disease-associated SNPs and Metal

Binding Sites

We recently found that mutations associated with diseases (protein variants) are associated

with metal binding sites significantly more often than expected [30]. Among the sequences

having disease-related single nucleotide polymorphisms (dSNPs), 40% involve mutation of

a CHED residue, while for sequences not associated with disease (ndSNPs) the level is 30%.

This difference is highly significant and suggests a bias for association of dSNPs with metal

binding sites. An analysis of the relation between dSNPs and metal binding sites is presented

in Fig. 4. The results demonstrate a clear bias of dSNPs in the immediate vicinity of metal

binding sites.

Figure 4. Proximity of dSNPs to metal binding

sites (Figure from Levy et al. [30]). All proteins

containing predicted metal binding sites derived

from the Human Polymorphisms and Disease Mu-

tations index were analyzed. The data sets are com-

posed of 237 sequences containing 320 predicted

sites with one or more dSNPs, and 184 sequences

containing 243 predicted sites with one or more

ndSNPs. A. The histogram shows the percent dis-

tribution of distances between predicted site resi-

dues and the nearest dSNP (black bars) or ndSNP

(white bars). The overlap between the two distribu-

tions is colored gray. The first bar represents the

predicted binding site residues (first shell); the bar

between 1.0 and 1.5 Å, covalently bound second

shell residues; the bars between 2 Å and 4.5 Å,

non-covalently bound second shell residues. Bars

at greater distances represent residues in succes-

sively remote shells. B. The normalized ratio be-

tween the number of all dSNPs and ndSNPs was

obtained for 10 successive shells. A clear differen-

tial between the number of dSNPs and ndSNPs can

be seen for the first and second shells, and to a

lesser extent, for the third and forth shells. The

curve reaches a plateau (dashed line) at the fifth

shell.
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